Datasets:

Modalities:
Image
Text
Formats:
text
ArXiv:
Libraries:
Datasets
License:
text
stringlengths
51
51
9e10e305-7b52-4f16-bbb9-327076e33f07/object_aug.npy
271ab87e-e9cd-40e4-bf97-8a7a329f6cf2/object_aug.npy
d87e4425-b5d7-45a7-98b2-8f24e9345bff/object_aug.npy
546bb4e6-1fba-442a-b73e-4bdd7af675c5/object_aug.npy
88d03405-32bf-41b2-8b4e-96c3e9d07a9d/object_aug.npy
af09fcb2-dac2-4c0c-8799-05c5854e68b1/object_aug.npy
f1ab7457-2829-438a-8602-0901c0242efb/object_aug.npy
7ae735c7-b86d-477b-b71e-ec652f7ee184/object_aug.npy
65358fbe-69be-44ab-b4ee-8635c59f3285/object_aug.npy
284f6662-4fda-4d1c-9322-adf0f4d0ef52/object_aug.npy
f5736cdb-3a5c-4043-adb7-71ad6dd3be84/object_aug.npy
03dfd721-252a-465e-b707-67895beb4217/object_aug.npy
779efd76-3e42-4a7f-80fb-fb82c9a51784/object_aug.npy
1c211e14-3b57-4b87-b5f3-b939ddeebddc/object_aug.npy
ce3e8453-3d43-411c-b1b5-8131bb05cb26/object_aug.npy
980a9765-9d59-491c-a569-1e04735eccd5/object_aug.npy
550e74a1-fdd5-4484-814a-1337814acee7/object_aug.npy
c3bbd7f1-a529-4ba5-a4f6-8f7e548d5a59/object_aug.npy
e3ee8e00-7804-4e2c-8adb-d0f9d6e0f3fc/object_aug.npy
5b700f3b-f981-4b7c-94b1-6a821bd0a438/object_aug.npy
ecce925d-40f6-4d59-85cd-521f3db0b5dc/object_aug.npy
d6f24715-f9bd-43dd-ba98-a2d2d43271f1/object_aug.npy
9a1dc1f8-17c6-476a-a0e5-1335950dfd13/object_aug.npy
e60bd92e-ecab-4838-85e0-52394e5f2333/object_aug.npy
c64aa03a-8be4-4add-8905-584857ff5277/object_aug.npy
87b6f266-299a-44ec-89d2-143735e5b3a0/object_aug.npy
14a52e11-b153-4efe-ae1e-fb87854a84a0/object_aug.npy
4a691ef2-b707-4be8-8c56-7bc03879cb61/object_aug.npy
82514d58-926a-4ac6-aa19-68186e19a6b5/object_aug.npy
746fc167-94f5-4c6c-be10-23563708b9be/object_aug.npy
dde1f1b0-db45-412a-8157-b8171a0ce028/object_aug.npy
d6fa4a95-5cf9-43b7-9b0c-c4174e47cfad/object_aug.npy
27e417ab-ef21-4a37-8646-b8f683d8e6b5/object_aug.npy
508c33f2-6e16-4c25-81dc-91ee1e1f9c6c/object_aug.npy
48d08c35-2897-4fd5-9fbf-a520550ff679/object_aug.npy
97eb8dd2-01e9-4cc5-bdce-e0fdcdad5350/object_aug.npy
e2974047-d8ca-4430-8926-6825df70f6d6/object_aug.npy
81a892f5-8f87-40be-a447-f935af35fc11/object_aug.npy
0e71c9e5-4cc4-4b27-a3fd-f868ae463108/object_aug.npy
088484ea-ec33-4f31-ad55-957620e68c20/object_aug.npy
35d5fcf0-81aa-4dce-90b0-87df07178573/object_aug.npy
790f11c2-7ac4-4167-b401-6ff1b5ce1a19/object_aug.npy
e480b23c-40bd-40e2-a46a-520d86b74205/object_aug.npy
a998dc54-7d07-4e83-9141-7d023f4a9366/object_aug.npy
0f37884b-9680-4be3-bbb9-c998ab175554/object_aug.npy
74a290aa-c074-458d-99c9-52f787bcaf05/object_aug.npy
cd6acd7d-7e7a-47a2-b603-85692f90a8f8/object_aug.npy
9cc26951-d9ec-47d2-9cda-b9d0892106aa/object_aug.npy
3179a264-a82b-4197-a704-8f11ac2cfccc/object_aug.npy
e09112d4-7083-4ef4-a0b8-35a6f4539f3e/object_aug.npy
b7b32250-3bf3-43b0-a015-7c05e974dc0f/object_aug.npy
7fb44427-15fe-4dd3-a033-34589650bfa4/object_aug.npy
a824f4b9-4328-48ce-9f97-3f3b9531dc6e/object_aug.npy
2e818581-9be7-4f0d-93f4-7936726eee89/object_aug.npy
07c4aa87-e9d6-4a83-bc01-663f1e34b8da/object_aug.npy
a6066867-ab17-46ea-a1ab-df477b6a19c6/object_aug.npy
a0064ee3-c663-420f-bf66-623122c6f5f5/object_aug.npy
91152b44-24df-4659-99f9-d047a923e906/object_aug.npy
082f39e9-0be8-46d6-88a2-fe74869e7aa4/object_aug.npy
5534577b-1ddf-4d14-aefa-8a3717ff5ffa/object_aug.npy
859a370a-5d3d-466e-aaaa-fe1794824c82/object_aug.npy
3c480489-e3dc-43c3-80ae-8e2ac8881a3c/object_aug.npy
a16a18b2-7a05-440a-a9fd-cc993ea7e5ef/object_aug.npy
46c6633c-49e9-4b20-a592-8b814fe56918/object_aug.npy
23950bb0-4ed6-4ab4-8c86-c4f72b193fc0/object_aug.npy
7ef1b445-f526-496d-8981-b3ff943fbf62/object_aug.npy
b37bb846-8ec2-43fa-bb50-75a197e1eb75/object_aug.npy
637c15d4-f771-4b7e-ba5c-9bc7049ea9e0/object_aug.npy
15b8eaec-718a-432b-b8e4-958d9c1395b5/object_aug.npy
8a6d4a5e-b283-4a5e-a395-aeecf0f1d7cd/object_aug.npy
f154c241-7766-4e56-855e-facf83b84164/object_aug.npy
a4e7b199-33c4-4874-a54e-995bce1fd7dd/object_aug.npy
aeb7ba70-6aca-4430-90b4-1655e695712f/object_aug.npy
62622c88-8b3c-4040-9a30-f5ecce4a2fb5/object_aug.npy
523b5d6f-b887-4e88-8889-81801a945aa4/object_aug.npy
284c0d6e-dba9-4c8a-a5bc-f34781627b01/object_aug.npy
04984c01-10d0-41ec-bbc6-719160b3ab40/object_aug.npy
13029047-02e5-4659-9a49-d99205069f55/object_aug.npy
c53b08cd-ada6-479a-8bd0-01b4f3c7db54/object_aug.npy
7a55d165-1905-47d6-8896-b18c986ae253/object_aug.npy
e711f9b4-180d-4e39-8313-6165566f80ee/object_aug.npy
4b94dc39-8171-474c-86c6-2d8f639c5517/object_aug.npy
1b91f1bd-8873-428f-8270-c0938523e5d4/object_aug.npy
cdbe603c-532b-4754-9d3e-6a5a10741448/object_aug.npy
f11d3c53-e1e8-49a2-a77b-c057ccff9079/object_aug.npy
03d51b8a-e2be-4687-accd-a131b3c050bd/object_aug.npy
f4f833cd-7a01-4fd2-bb95-f15cf9ddc899/object_aug.npy
aa68d85c-2e15-48fa-adae-aba71ac3d038/object_aug.npy
a63d7e55-6254-4ff8-adc1-bf8e8237a5ba/object_aug.npy
d760be70-2b3a-43c9-8d4d-d911954752a3/object_aug.npy
633699fe-c30c-493b-b058-8ef873bd3503/object_aug.npy
4fe6408c-c1f9-4dbd-bb6d-2b8b89c8fee6/object_aug.npy
2ac76eb3-9f4d-422a-9b17-d2af78105c84/object_aug.npy
23c7ce22-d412-4df0-b363-df8902a5903b/object_aug.npy
f7e37117-e294-4fa4-9bdf-835d543597be/object_aug.npy
d9e00499-de77-4534-8778-0fb41d8b0bf5/object_aug.npy
26f42c8b-440e-4155-83d1-8c715ba41253/object_aug.npy
f6243239-94d8-419e-8bd5-501d29318121/object_aug.npy
ad15e97b-b1d1-4ea7-bb52-6e6ded6ada66/object_aug.npy
bca53a9d-080f-40fe-a5a6-951782854493/object_aug.npy

Procedural 3D Synthetic Shapes Dataset

Overview

This dataset contains 152,508 procedurally synthesized 3D shapes in order to help people better reproduce results for Learning 3D Representations from Procedural 3D Programs. The shapes are created using a procedural 3D program that combines primitive shapes (e.g., cubes, spheres, and cylinders) and applies various transformations and augmentations to enhance geometric diversity.

Our dataset is collected based on recent works Xie et al. (2024), and we utilized procedure generated data in self-supervised setting. Each 3D shape is represented by uniformly sampled surface points, making it a versatile resource for pretraining models for tasks such as masked point cloud completion, shape classification, and more.

Shape Complexity

Figure 1. Examples of procedurally generated 3D shapes showcasing varying geometric complexity. In this dataset, we only provide data in the category of (d). Please checkout github if you want to render data in different complexity level

Key Features

  • Size: 150,000 procedurally generated 3D shapes.
  • Representation: Each shape is sampled with 8,192 surface points.
  • Primitives: Shapes are composed of randomly sampled primitives, including:
    • Cubes
    • Spheres
    • Cylinders
  • Augmentations:
    • Boolean operations (e.g., difference, union)
    • Wireframe conversion

Dataset Size and Performance

We evaluated the impact of dataset size on the PB-T50-RS benchmark for shape classification using Point-MAE-Zero. Our findings show that performance improves with larger dataset sizes but exhibits diminishing returns beyond a certain threshold.

Impact of Dataset Size

Figure 2. The effect of dataset size on downstream shape classification performance. Note that our performance is on par with Point-MAE trained with ShapeNet at exactly the same scale.

Additional experiments are available in our paper.

Dataset Format

The dataset is provided in a format ready for point cloud-based learning:

  • Surface Points: Stored as .npy files.
  • Under data/result, we have 152508 sub-directories. And in each directory, we provide object.npy and object_aug.npy. object_aug.npy contains surface points after augmentations. For example of dataloader, please checkout our github.

License

This dataset is licensed under the CC BY-SA 4.0 License. You are free to share and adapt the dataset, provided appropriate credit is given and any derivative works are distributed under the same license. Please also check licence here zeroverse.

Citation

If you find this dataset useful in your research, please cite our work:

@article{chen2024learning3drepresentationsprocedural,
      title={Learning 3D Representations from Procedural 3D Programs}, 
      author={Xuweiyi Chen and Zezhou Cheng},
      year={2024},
      eprint={2411.17467},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2411.17467}, 
}
Downloads last month
249