File size: 6,278 Bytes
f8be18d 4a7553f f8be18d 4a7553f 35315d1 4a7553f c4f6f4c 4a7553f f8be18d 35315d1 4a7553f f8be18d 4a7553f 1ede165 4a7553f 1ede165 4a7553f f8be18d 4a7553f f8be18d 4a7553f f8be18d 4a7553f f8be18d 4a7553f f8be18d 4a7553f f8be18d 4a7553f f8be18d 35315d1 f8be18d 56661e2 f8be18d 4a7553f f8be18d 4a7553f f8be18d 40c1e35 f8be18d c4f6f4c f8be18d 35315d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import argparse
from datasets import load_dataset
import open3d as o3d
import pyvista as pv
from PIL import Image
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import random
def plot_3D_image(values, resolution, p=None, interactive_slice=False, orthogonal_slices=True):
''' Interactive plot of the 3D volume'''
# Create the spatial reference
grid = pv.ImageData()
values = np.transpose(values, (1,2,0))
# Set the grid dimensions: shape + 1 because we want to inject our values on
# the CELL data
grid.dimensions = np.array(values.shape) + 1
# Edit the spatial reference
# The bottom left corner of the data set
origin = np.array(resolution[0]) * np.array(values.shape) * 0.5
grid.origin = origin
#print(f'Scan size in meter: {origin * 2}')
grid.spacing = resolution[0] # These are the cell sizes along each axis
# Add the data values to the cell data
grid.cell_data["values"] = values.flatten(order="F") # Flatten the array!
if p is None:
p = pv.Plotter()
if orthogonal_slices:
slices = grid.slice_orthogonal()
cmap = matplotlib.colors.ListedColormap(['black', 'indianred', 'goldenrod', 'steelblue', 'ghostwhite'])
p.add_mesh(slices, cmap=cmap)
if interactive_slice:
p.add_mesh_clip_plane(grid)
return p
def get_sliced_mri_png(sample):
# get data
mri = np.asarray(sample['mri_seg'])
resolution = np.asarray(sample['resolution'])
# set plotter
p = pv.Plotter(shape=(1, 1), off_screen=True)
p.subplot(0, 0)
plotter = plot_3D_image(mri, resolution, p, interactive_slice=False, orthogonal_slices=True)
plotter.view_yz()
plotter.remove_scalar_bar()
# store screenshot
img = p.screenshot("./extras/img.png", return_img=True)
# read screenshot
img = Image.fromarray(img)
# set plotter lateral
p = pv.Plotter(shape=(1, 1), off_screen=True)
p.subplot(0, 0)
plotter = plot_3D_image(mri, resolution, p, interactive_slice=False, orthogonal_slices=True)
plotter.remove_scalar_bar()
plotter.view_xz()
img_lateral = p.screenshot("./extras/img_lateral.png", return_img=True)
img_lateral = Image.fromarray(img_lateral)
# resize
img = img.resize((512+128, 372+128))
img_lateral = img_lateral.resize((512+128, 372+128))
return img, img_lateral
def vis_hit_sample(sample):
"""
:param sample: HIT dataset sample
:return:
"""
# get point-cloud from sample
pc = np.asarray(sample['body_cont_pc'])
# get mesh and mesh-free-verts from sample
mesh_verts = np.asarray(sample['smpl_dict']['verts'])
mesh_verts_free = np.asarray(sample['smpl_dict']['verts_free'])
mesh_faces = np.asarray(sample['smpl_dict']['faces'])
# create point-cloud
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(pc)
pcd.paint_uniform_color([0.6509803922, 0.2901960784, 0.2823529412])
pcd_front = pcd.__copy__()
# create mesh
mesh = o3d.geometry.TriangleMesh()
mesh.vertices = o3d.utility.Vector3dVector(mesh_verts)
mesh.triangles = o3d.utility.Vector3iVector(mesh_faces)
mesh.paint_uniform_color([0.737254902, 0.7960784314, 0.8196078431])
# create mesh-free-verts
mesh_free = o3d.geometry.TriangleMesh()
mesh_free.vertices = o3d.utility.Vector3dVector(mesh_verts_free)
mesh_free.triangles = o3d.utility.Vector3iVector(mesh_faces)
mesh_free.paint_uniform_color([0.737254902, 0.7960784314, 0.8196078431])
# visualize sample
vis = o3d.visualization.Visualizer()
vis.create_window()
# side-view
xyz = (-np.pi / 2, 0, 0)
R1 = o3d.geometry.get_rotation_matrix_from_xyz(xyz)
# vis mesh with pointcloud
vis.add_geometry(mesh.rotate(R1, center=(0, 0, 0)))
vis.add_geometry(pcd.rotate(R1, center=(0, 0, 0)))
# vis mesh-free-verts with pointcloud
vis.add_geometry(mesh_free.translate((1.2, 0, 0)))
vis.add_geometry(mesh_free.rotate(R1, center=(0, 0, 0)))
vis.add_geometry(pcd_front.translate((1.2, 0, 0)))
vis.add_geometry(pcd_front.rotate(R1, center=(0, 0, 0)))
# render
vis.get_render_option().mesh_show_wireframe = True
vis.get_render_option().point_size = 2
vis.poll_events()
vis.update_renderer()
vis.run()
return 0
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='HIT dataset visualization')
parser.add_argument('--gender', type=str, default='male')
parser.add_argument('--split', type=str, default='train')
parser.add_argument('--idx', type=int, default=None)
parser.add_argument('--show_skin', action='store_true')
parser.add_argument('--show_tissue', action='store_true')
# get args
args = parser.parse_args()
assert args.gender in ['male', 'female']
assert args.split in ['train', 'validation', 'test']
# load split
hit_dataset = load_dataset("varora/hit", name=args.gender, split=args.split)
# to load specific split, use:
# male splits
#male_val = load_dataset("varora/hit", "male", split="validation")
#male_val = load_dataset("varora/hit", "male", split="validation")
#male_test = load_dataset("varora/hit", "male", split="test")
# female splits
#female_train = load_dataset("varora/hit", "female", split="train")
#female_val = load_dataset("varora/hit", "female", split="validation")
#female_test = load_dataset("varora/hit", "female", split="test")
# len of split
N_dataset = hit_dataset.__len__()
# get idx for sample
if not args.idx:
idx = random.randint(0, N_dataset)
else:
idx = args.idx
assert idx < N_dataset, f"{idx} in {args.gender}:{args.split} is out of range for dataset of length {N_dataset}."
# get sample
hit_sample = hit_dataset[idx]
# visualize the sample
print(f"Visualizing sample no. {idx} in {args.gender}:{args.split}.")
if args.show_tissue:
img, img_lateral = get_sliced_mri_png(hit_sample)
img.show()
img_lateral.show()
elif args.show_skin:
vis_hit_sample(hit_sample)
else:
img, img_lateral = get_sliced_mri_png(hit_sample)
img.show()
img_lateral.show()
vis_hit_sample(hit_sample)
|