HIT / vis_hit_sample.py
varora's picture
update
35315d1
raw
history blame
6.28 kB
import argparse
from datasets import load_dataset
import open3d as o3d
import pyvista as pv
from PIL import Image
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import random
def plot_3D_image(values, resolution, p=None, interactive_slice=False, orthogonal_slices=True):
''' Interactive plot of the 3D volume'''
# Create the spatial reference
grid = pv.ImageData()
values = np.transpose(values, (1,2,0))
# Set the grid dimensions: shape + 1 because we want to inject our values on
# the CELL data
grid.dimensions = np.array(values.shape) + 1
# Edit the spatial reference
# The bottom left corner of the data set
origin = np.array(resolution[0]) * np.array(values.shape) * 0.5
grid.origin = origin
#print(f'Scan size in meter: {origin * 2}')
grid.spacing = resolution[0] # These are the cell sizes along each axis
# Add the data values to the cell data
grid.cell_data["values"] = values.flatten(order="F") # Flatten the array!
if p is None:
p = pv.Plotter()
if orthogonal_slices:
slices = grid.slice_orthogonal()
cmap = matplotlib.colors.ListedColormap(['black', 'indianred', 'goldenrod', 'steelblue', 'ghostwhite'])
p.add_mesh(slices, cmap=cmap)
if interactive_slice:
p.add_mesh_clip_plane(grid)
return p
def get_sliced_mri_png(sample):
# get data
mri = np.asarray(sample['mri_seg'])
resolution = np.asarray(sample['resolution'])
# set plotter
p = pv.Plotter(shape=(1, 1), off_screen=True)
p.subplot(0, 0)
plotter = plot_3D_image(mri, resolution, p, interactive_slice=False, orthogonal_slices=True)
plotter.view_yz()
plotter.remove_scalar_bar()
# store screenshot
img = p.screenshot("./extras/img.png", return_img=True)
# read screenshot
img = Image.fromarray(img)
# set plotter lateral
p = pv.Plotter(shape=(1, 1), off_screen=True)
p.subplot(0, 0)
plotter = plot_3D_image(mri, resolution, p, interactive_slice=False, orthogonal_slices=True)
plotter.remove_scalar_bar()
plotter.view_xz()
img_lateral = p.screenshot("./extras/img_lateral.png", return_img=True)
img_lateral = Image.fromarray(img_lateral)
# resize
img = img.resize((512+128, 372+128))
img_lateral = img_lateral.resize((512+128, 372+128))
return img, img_lateral
def vis_hit_sample(sample):
"""
:param sample: HIT dataset sample
:return:
"""
# get point-cloud from sample
pc = np.asarray(sample['body_cont_pc'])
# get mesh and mesh-free-verts from sample
mesh_verts = np.asarray(sample['smpl_dict']['verts'])
mesh_verts_free = np.asarray(sample['smpl_dict']['verts_free'])
mesh_faces = np.asarray(sample['smpl_dict']['faces'])
# create point-cloud
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(pc)
pcd.paint_uniform_color([0.6509803922, 0.2901960784, 0.2823529412])
pcd_front = pcd.__copy__()
# create mesh
mesh = o3d.geometry.TriangleMesh()
mesh.vertices = o3d.utility.Vector3dVector(mesh_verts)
mesh.triangles = o3d.utility.Vector3iVector(mesh_faces)
mesh.paint_uniform_color([0.737254902, 0.7960784314, 0.8196078431])
# create mesh-free-verts
mesh_free = o3d.geometry.TriangleMesh()
mesh_free.vertices = o3d.utility.Vector3dVector(mesh_verts_free)
mesh_free.triangles = o3d.utility.Vector3iVector(mesh_faces)
mesh_free.paint_uniform_color([0.737254902, 0.7960784314, 0.8196078431])
# visualize sample
vis = o3d.visualization.Visualizer()
vis.create_window()
# side-view
xyz = (-np.pi / 2, 0, 0)
R1 = o3d.geometry.get_rotation_matrix_from_xyz(xyz)
# vis mesh with pointcloud
vis.add_geometry(mesh.rotate(R1, center=(0, 0, 0)))
vis.add_geometry(pcd.rotate(R1, center=(0, 0, 0)))
# vis mesh-free-verts with pointcloud
vis.add_geometry(mesh_free.translate((1.2, 0, 0)))
vis.add_geometry(mesh_free.rotate(R1, center=(0, 0, 0)))
vis.add_geometry(pcd_front.translate((1.2, 0, 0)))
vis.add_geometry(pcd_front.rotate(R1, center=(0, 0, 0)))
# render
vis.get_render_option().mesh_show_wireframe = True
vis.get_render_option().point_size = 2
vis.poll_events()
vis.update_renderer()
vis.run()
return 0
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='HIT dataset visualization')
parser.add_argument('--gender', type=str, default='male')
parser.add_argument('--split', type=str, default='train')
parser.add_argument('--idx', type=int, default=None)
parser.add_argument('--show_skin', action='store_true')
parser.add_argument('--show_tissue', action='store_true')
# get args
args = parser.parse_args()
assert args.gender in ['male', 'female']
assert args.split in ['train', 'validation', 'test']
# load split
hit_dataset = load_dataset("varora/hit", name=args.gender, split=args.split)
# to load specific split, use:
# male splits
#male_val = load_dataset("varora/hit", "male", split="validation")
#male_val = load_dataset("varora/hit", "male", split="validation")
#male_test = load_dataset("varora/hit", "male", split="test")
# female splits
#female_train = load_dataset("varora/hit", "female", split="train")
#female_val = load_dataset("varora/hit", "female", split="validation")
#female_test = load_dataset("varora/hit", "female", split="test")
# len of split
N_dataset = hit_dataset.__len__()
# get idx for sample
if not args.idx:
idx = random.randint(0, N_dataset)
else:
idx = args.idx
assert idx < N_dataset, f"{idx} in {args.gender}:{args.split} is out of range for dataset of length {N_dataset}."
# get sample
hit_sample = hit_dataset[idx]
# visualize the sample
print(f"Visualizing sample no. {idx} in {args.gender}:{args.split}.")
if args.show_tissue:
img, img_lateral = get_sliced_mri_png(hit_sample)
img.show()
img_lateral.show()
elif args.show_skin:
vis_hit_sample(hit_sample)
else:
img, img_lateral = get_sliced_mri_png(hit_sample)
img.show()
img_lateral.show()
vis_hit_sample(hit_sample)