text
stringlengths 13
181
|
---|
Q8NFJ9 Q9NUT2 |
Q06055 Q9H6D7 |
Q96ES7 Q9NVR5 |
O75419 Q14683 |
P67809 Q9UKK6 |
P01137 Q8N2Z9 |
Q14683 Q96CS2 |
P37231 Q16649 |
P56381 Q9Y230 |
O75152 Q14137 |
P61244 Q9H9Q2 |
O00541 Q9H9F9 |
A5X5Y0 P12107 |
P28370 Q587J8 |
P05496 Q9Y4A8 |
P51587 P56385 |
P56134 Q9UJJ9 |
P15382 Q9BRG1 |
Q9UHN1 Q9UJA5 |
P57054 Q9BPX6 |
Q86YV9 Q9NUP1 |
P39656 Q08211 |
P63272 P98198 |
O75486 P27918 |
O75964 Q14209 |
O94927 P14867 |
Q9BVC4 Q9C005 |
Q9BXF3 Q9Y4R8 |
P13498 Q96ST3 |
P01850 P12259 |
K9M1U5 P49959 |
P52655 Q6PI98 |
Q96RL1 Q9NV88 |
P01860 Q92466 |
O75444 P02708 |
O60506 Q9H1B4 |
Q14186 Q8IYB8 |
P41208 P51787 |
Q16576 Q9C005 |
Q13098 Q8NEZ2 |
Q69YN4 Q9BSQ5 |
Q86U42 Q9NRG0 |
P15407 Q00839 |
P14678 Q92878 |
O60244 Q7Z4G4 |
P16234 Q96RK4 |
P49841 Q9NXR8 |
P54105 Q96MF7 |
O75444 P26006 |
O15553 P30049 |
Q86TJ2 Q9NWA0 |
P20963 Q93050 |
P01861 Q13156 |
Q53TQ3 Q9H900 |
P40938 Q96FT9 |
P62805 Q96SY0 |
O95295 Q9NRF9 |
Q9UL03 Q9Y4A5 |
O95983 P05109 |
Q96MG7 Q9BW62 |
O75152 P60709 |
P05121 Q07001 |
Q16526 Q9BTP7 |
O75964 Q8IX21 |
P04908 Q9Y468 |
Q13505 Q9P2L0 |
P04843 P25054 |
P0C0L5 P62495 |
P15313 P35269 |
Q15904 Q9UPM8 |
Q8IUR0 Q9BQI6 |
Q7RTV0 Q9UJW3 |
P02462 Q13131 |
O75449 Q9UQE7 |
P54098 Q9H6Q4 |
Q8WUX9 Q9GZL7 |
P25054 P25208 |
P39656 Q13114 |
P15509 Q8ND04 |
P62495 Q92905 |
P02008 P06702 |
Q9H4I9 Q9H6Q4 |
Q09161 Q9UK53 |
O94905 Q08334 |
Q9H7L9 Q9HCE5 |
Q13098 Q9BY43 |
P07766 Q9Y3C7 |
Q05195 Q9NV56 |
P42285 Q96BN2 |
O75445 Q8NI35 |
O00255 O76071 |
P55072 Q96LB4 |
Q13224 Q5TA45 |
P51172 Q96JC1 |
P07686 Q96MF7 |
A6NGQ2 Q8WYH8 |
P27449 P56381 |
P38570 Q9Y6D9 |
Q6STE5 Q8WYB5 |
P01848 Q9BY43 |
CF/MS Elution Profile PPI Dataset
Proteins are the functional basis of life, but it is often their interactions with other proteins which gives rise to said functions. Therefore, we are often interested in whether two proteins participate in the same protein complex, or if they 'co-complex'. Co-fractionation mass spectrometry (CF/MS) is a high-throughput method for determining whether proteins form complexes. If they do, both proteins will typically separate out into the same fractions, or 'co-elute', during column chromatography experiments. As a result, their abundances will be highly correlated across all the fractions measured. CF/MS leverages this fact to identify new protein complexes by attempting to statistically correlate the elution profiles of groups of proteins. Typically, we use Pearson correlation coefficient to determine correlation between protein pairs. While this often works quite well, Pearson is a linear function. Current research is exploring whether there are non-linear, higher-order signals between these elution profiles that might have better predictive power than Pearson. As deep learning models excel at estimating non-linear relationships in data, the goal of this dataset is to act as training data for such models, especially Siamese networks.
This dataset includes processed data from several Homo sapiens protein co-fractionation mass spectrometry (CF/MS) experiments, as well as positive/negative protein-protein interaction (PPI) labels for each pair.
Collated, maintained by Drew Lab at University of Illinois at Chicago
File formats
- The .elut file: A .elut file is a TSV-like format containing raw count data from a chromatographic fractionation experiment. Each row in a .elut file shows the abundance of a single protein across the collected fractions (columns). Generally speaking, these fractions are collected over time. However, different chromatographic columns can separate proteins along different axes. For example, Size-eclusion chromatography (SEC) will mostly separate proteins into fractions according to their size; Ion-exchange chromatography (IEX) will separate them into fractions according to their charge. Each file in this dataset comes from one of these two column separation methods and is named accordingly ('...xx_SEC_xx...' / '...xx_IEX_xx...'). We refer to a given protein's (row's) count data across all fractions (columns) as that protein's elution trace or elution profile. To summarize:
- A given row contains count data for a specific protein
- A row's first column contains its associated protein ID
- A row's subsequent columns contain that protein's count data from the fractionation experiment
- Note: The user may notice that the first row in a .elut file is one column longer than subsequent rows. This is because the first row contains row names (protein IDs), and the first column contains column names (fraction IDs). Therefore, cell 'A0' is empty.
File structure
- The .elut files each contain a collection elution traces for proteins from a given CF/MS experiment. These can be paired to make sample data. A complete list of data sources can be found at the bottom of this README
- The .txt files contain line-wise specification of protein complexes used to generate positive/negative labels. These can be used to direct the pairing of elution traces into data points.
- intact_complex_merge_20230309.train_ppis.txt: List of positive PPIs for training data
- intact_complex_merge_20230309.test_ppis.txt: List of positive PPIs for testing data
- intact_complex_merge_20230309.neg_train_ppis.txt: List of negative PPIs for training data
- intact_complex_merge_20230309.neg_test_ppis.txt: List of negative PPIs for testing data
- intact_complex_merge_20230309.train.txt Line-wise list of protein complexes
List of publications/experiments from which this dataset was assembled:
Connelly, K. E., Hedrick, V., Paschoal Sobreira, T. J., Dykhuizen, E. C., & Aryal, U. K. (2018). Analysis of Human Nuclear Protein Complexes by Quantitative Mass Spectrometry Profiling. Proteomics, 18(11), e1700427. https://doi.org/10.1002/pmic.201700427
- T98G_glioblastoma_multiforme_cells_SEC_Conelly_2018_Bio1.elut
- T98G_glioblastoma_multiforme_cells_SEC_Conelly_2018_Bio2.elut
Kirkwood, K. J., Ahmad, Y., Larance, M., & Lamond, A. I. (2013). Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics. Molecular & cellular proteomics : MCP, 12(12), 3851β3873. https://doi.org/10.1074/mcp.M113.032367
- U2OS_cells_SEC_Kirkwood_2013_rep1.elut
- U2OS_cells_SEC_Kirkwood_2013_rep2.elut
- U2OS_cells_SEC_Kirkwood_2013_rep3.elut
Larance, M., Kirkwood, K. J., Tinti, M., Brenes Murillo, A., Ferguson, M. A., & Lamond, A. I. (2016). Global Membrane Protein Interactome Analysis using In vivo Crosslinking and Mass Spectrometry-based Protein Correlation Profiling. Molecular & cellular proteomics : MCP, 15(7), 2476β2490. https://doi.org/10.1074/mcp.O115.055467
- U2OS_cells_SEC_Larance_2016_PT3281S1.elut
- U2OS_cells_SEC_Larance_2016_PT3441S1.elut
- U2OS_cells_SEC_Larance_2016_PT3442S1.elut
- U2OS_cells_SEC_Larance_2016_PT3701S1.elut
- U2OS_cells_SEC_Larance_2016_PTSS3801.elut
- U2OS_cells_SEC_Larance_2016_PTSS3802.elut
Mallam, A. L., Sae-Lee, W., Schaub, J. M., Tu, F., Battenhouse, A., Jang, Y. J., Kim, J., Wallingford, J. B., Finkelstein, I. J., Marcotte, E. M., & Drew, K. (2019). Systematic Discovery of Endogenous Human Ribonucleoprotein Complexes. Cell reports, 29(5), 1351β1368.e5. https://doi.org/10.1016/j.celrep.2019.09.060
- HEK_293_T_cells_SEC_Mallam_2019_C1.elut
- HEK_293_T_cells_SEC_Mallam_2019_C2.elut
Moutaoufik, M. T., Malty, R., Amin, S., Zhang, Q., Phanse, S., Gagarinova, A., Zilocchi, M., Hoell, L., Minic, Z., Gagarinova, M., Aoki, H., Stockwell, J., Jessulat, M., Goebels, F., Broderick, K., Scott, N. E., Vlasblom, J., Musso, G., Prasad, B., Lamantea, E., β¦ Babu, M. (2019). Rewiring of the Human Mitochondrial Interactome during Neuronal Reprogramming Reveals Regulators of the Respirasome and Neurogenesis. iScience, 19, 1114β1132. https://doi.org/10.1016/j.isci.2019.08.057
- NTera2_embryonal_carcinoma_stem_cells_IEX_Moutaoufik_2019_2_R1.elut
- NTera2_embryonal_carcinoma_stem_cells_IEX_Moutaoufik_2019_2_R2.elut
- NTera2_embryonal_carcinoma_stem_cells_IEX_Moutaoufik_2019_R1.elut
- NTera2_embryonal_carcinoma_stem_cells_IEX_Moutaoufik_2019_R2.elut
- NTera2_embryonal_carcinoma_stem_cells_SEC_Moutaoufik_2019_2_R1.elut
- NTera2_embryonal_carcinoma_stem_cells_SEC_Moutaoufik_2019_2_R2.elut
- NTera2_embryonal_carcinoma_stem_cells_SEC_Moutaoufik_2019_R1.elut
- NTera2_embryonal_carcinoma_stem_cells_SEC_Moutaoufik_2019_R2.elut
Wan, C., Borgeson, B., Phanse, S., Tu, F., Drew, K., Clark, G., Xiong, X., Kagan, O., Kwan, J., Bezginov, A., Chessman, K., Pal, S., Cromar, G., Papoulas, O., Ni, Z., Boutz, D. R., Stoilova, S., Havugimana, P. C., Guo, X., Malty, R. H., β¦ Emili, A. (2015). Panorama of ancient metazoan macromolecular complexes. Nature, 525(7569), 339β344. https://doi.org/10.1038/nature14877
- CB660_neural_stem_cell_IEX_Wan_2015.elut
- G166_glioma_stem_cell_IEX_Wan_2015_Hs_HCW_2.elut
- G166_glioma_stem_cell_IEX_Wan_2015_Hs_HCW_3.elut
- IEX_Wan_2015_Hs_HCW_4.elut
- IEX_Wan_2015_Hs_HCW_5.elut
- IEX_Wan_2015_Hs_HCW_6.elut
- IEX_Wan_2015_Hs_HCW_7.elut
- IEX_Wan_2015_Hs_HCW_8.elut
- IEX_Wan_2015_Hs_HCW_9.elut
- IEX_Wan_2015_Hs_IEX_1.elut
- IEX_Wan_2015_Hs_IEX_2.elut
- Downloads last month
- 43