imdb-javanese / imdb-javanese.py
w11wo's picture
First version of imdb-javanese.
fc4c558
raw
history blame
3.2 kB
"""Javanese IMDB movie reviews dataset."""
from __future__ import absolute_import, division, print_function
import csv
import os
import datasets
_CITATION = """\
@InProceedings{maas-EtAl:2011:ACL-HLT2011,
author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher},
title = {Learning Word Vectors for Sentiment Analysis},
booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},
month = {June},
year = {2011},
address = {Portland, Oregon, USA},
publisher = {Association for Computational Linguistics},
pages = {142--150},
url = {http://www.aclweb.org/anthology/P11-1015}
}
"""
_DESCRIPTION = """\
Large Movie Review Dataset translated to Javanese.
This is a dataset for binary sentiment classification containing substantially \
more data than previous benchmark datasets. We provide a set of 25,000 highly \
polar movie reviews for training, and 25,000 for testing. There is additional \
unlabeled data for use as well. We translated the original IMDB Dataset to \
Javanese using the multi-lingual MarianMT Transformer model from \
`Helsinki-NLP/opus-mt-en-mul`.
"""
_URL = "https://github.com/w11wo/javanese-nlp/blob/main/imdb-javanese/javanese_imdb_csv.zip?raw=true"
_HOMEPAGE = "https://github.com/w11wo/javanese-nlp"
class JavaneseImdbReviews(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.ClassLabel(names=["0", "1", "-1"]),
}
),
citation=_CITATION,
homepage=_HOMEPAGE,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_path = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(dl_path, "javanese_imdb_train.csv")
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(dl_path, "javanese_imdb_test.csv")
},
),
datasets.SplitGenerator(
name=datasets.Split("unsupervised"),
gen_kwargs={
"filepath": os.path.join(dl_path, "javanese_imdb_unsup.csv")
},
),
]
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
reader = csv.reader(f, delimiter=",")
for id_, row in enumerate(reader):
if id_ == 0:
continue
yield id_, {"label": row[0], "text": row[1]}