Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
Javanese
Size:
100K - 1M
License:
"""Javanese IMDB movie reviews dataset.""" | |
from __future__ import absolute_import, division, print_function | |
import csv | |
import os | |
import datasets | |
_CITATION = """\ | |
@InProceedings{maas-EtAl:2011:ACL-HLT2011, | |
author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher}, | |
title = {Learning Word Vectors for Sentiment Analysis}, | |
booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies}, | |
month = {June}, | |
year = {2011}, | |
address = {Portland, Oregon, USA}, | |
publisher = {Association for Computational Linguistics}, | |
pages = {142--150}, | |
url = {http://www.aclweb.org/anthology/P11-1015} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Large Movie Review Dataset translated to Javanese. | |
This is a dataset for binary sentiment classification containing substantially \ | |
more data than previous benchmark datasets. We provide a set of 25,000 highly \ | |
polar movie reviews for training, and 25,000 for testing. There is additional \ | |
unlabeled data for use as well. We translated the original IMDB Dataset to \ | |
Javanese using the multi-lingual MarianMT Transformer model from \ | |
`Helsinki-NLP/opus-mt-en-mul`. | |
""" | |
_URL = "https://github.com/w11wo/javanese-nlp/blob/main/imdb-javanese/javanese_imdb_csv.zip?raw=true" | |
_HOMEPAGE = "https://github.com/w11wo/javanese-nlp" | |
class JavaneseImdbReviews(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"text": datasets.Value("string"), | |
"label": datasets.ClassLabel(names=["0", "1", "-1"]), | |
} | |
), | |
citation=_CITATION, | |
homepage=_HOMEPAGE, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
dl_path = dl_manager.download_and_extract(_URL) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": os.path.join(dl_path, "javanese_imdb_train.csv") | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": os.path.join(dl_path, "javanese_imdb_test.csv") | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split("unsupervised"), | |
gen_kwargs={ | |
"filepath": os.path.join(dl_path, "javanese_imdb_unsup.csv") | |
}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
with open(filepath, encoding="utf-8") as f: | |
reader = csv.reader(f, delimiter=",") | |
for id_, row in enumerate(reader): | |
if id_ == 0: | |
continue | |
yield id_, {"label": row[0], "text": row[1]} | |