repo
stringclasses
32 values
instance_id
stringlengths
13
37
base_commit
stringlengths
40
40
patch
stringlengths
1
1.89M
test_patch
stringclasses
1 value
problem_statement
stringlengths
304
69k
hints_text
stringlengths
0
246k
created_at
stringlengths
20
20
version
stringclasses
1 value
FAIL_TO_PASS
stringclasses
1 value
PASS_TO_PASS
stringclasses
1 value
environment_setup_commit
stringclasses
1 value
traceback
stringlengths
64
23.4k
__index_level_0__
int64
29
19k
pandas-dev/pandas
pandas-dev__pandas-17364
e8a1765edf91ec4d087b46b90d5e54530550029b
diff --git a/doc/source/whatsnew/v0.21.0.txt b/doc/source/whatsnew/v0.21.0.txt --- a/doc/source/whatsnew/v0.21.0.txt +++ b/doc/source/whatsnew/v0.21.0.txt @@ -405,6 +405,7 @@ Reshaping - Bug in :func:`crosstab` where passing two ``Series`` with the same name raised a ``KeyError`` (:issue:`13279`) - :func:`Series.argmin`, :func:`Series.argmax`, and their counterparts on ``DataFrame`` and groupby objects work correctly with floating point data that contains infinite values (:issue:`13595`). - Bug in :func:`unique` where checking a tuple of strings raised a ``TypeError`` (:issue:`17108`) +- Bug in :func:`concat` where order of result index was unpredictable if it contained non-comparable elements (:issue:`17344`) Numeric ^^^^^^^ diff --git a/pandas/core/common.py b/pandas/core/common.py --- a/pandas/core/common.py +++ b/pandas/core/common.py @@ -629,3 +629,17 @@ def _random_state(state=None): else: raise ValueError("random_state must be an integer, a numpy " "RandomState, or None") + + +def _get_distinct_objs(objs): + """ + Return a list with distinct elements of "objs" (different ids). + Preserves order. + """ + ids = set() + res = [] + for obj in objs: + if not id(obj) in ids: + ids.add(id(obj)) + res.append(obj) + return res diff --git a/pandas/core/indexes/api.py b/pandas/core/indexes/api.py --- a/pandas/core/indexes/api.py +++ b/pandas/core/indexes/api.py @@ -23,8 +23,7 @@ 'PeriodIndex', 'DatetimeIndex', '_new_Index', 'NaT', '_ensure_index', '_get_na_value', '_get_combined_index', - '_get_objs_combined_axis', - '_get_distinct_indexes', '_union_indexes', + '_get_objs_combined_axis', '_union_indexes', '_get_consensus_names', '_all_indexes_same'] @@ -41,7 +40,7 @@ def _get_objs_combined_axis(objs, intersect=False, axis=0): def _get_combined_index(indexes, intersect=False): # TODO: handle index names! - indexes = _get_distinct_indexes(indexes) + indexes = com._get_distinct_objs(indexes) if len(indexes) == 0: return Index([]) if len(indexes) == 1: @@ -55,10 +54,6 @@ def _get_combined_index(indexes, intersect=False): return _ensure_index(union) -def _get_distinct_indexes(indexes): - return list(dict((id(x), x) for x in indexes).values()) - - def _union_indexes(indexes): if len(indexes) == 0: raise AssertionError('Must have at least 1 Index to union')
Unconsistent (random) behaviour of pd.concat with different indexes #### Code Sample, a copy-pastable example if possible The following code ```python import pandas as pd dfs_sq = [] dfs_sq.append(pd.DataFrame(index=[0, 'sess'], columns=range(1,3))) for i in range(5): dfs_sq.append(pd.DataFrame(index=[0, 1, 'sess'], columns=range(1,3))) df_sq = pd.concat(dfs_sq, axis=1) assert df_sq.index[1] == 'sess', df_sq.index ``` ... saved as ``dependable.py``, succeeds if called as ``PYTHONHASHSEED=40 python3 dependable.py`` and fails if called as ``PYTHONHASHSEED=41 python3 dependable.py``: ```bash Traceback (most recent call last): File "dependable.py", line 11, in <module> assert df_sq.index[1] == 'sess', df_sq.index AssertionError: Index([0, 1, 'sess'], dtype='object') ``` #### Problem description This is not very nice. #### Expected Output The same - which one is not particularly important. #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.5.3.final.0 python-bits: 64 OS: Linux OS-release: 4.9.0-3-amd64 machine: x86_64 processor: byteorder: little LC_ALL: None LANG: it_IT.UTF-8 LOCALE: it_IT.UTF-8 pandas: 0.21.0.dev+389.g276f3089a pytest: 3.0.6 pip: 9.0.1 setuptools: None Cython: 0.25.2 numpy: 1.12.1 scipy: 0.19.0 pyarrow: None xarray: None IPython: 5.1.0.dev sphinx: 1.5.6 patsy: 0.4.1 dateutil: 2.6.0 pytz: 2017.2 blosc: None bottleneck: 1.2.1 tables: 3.3.0 numexpr: 2.6.1 feather: 0.3.1 matplotlib: 2.0.2 openpyxl: None xlrd: 1.0.0 xlwt: 1.1.2 xlsxwriter: 0.9.6 lxml: None bs4: 4.5.3 html5lib: 0.999999999 sqlalchemy: 1.0.15 pymysql: None psycopg2: None jinja2: 2.9.6 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: 0.2.1 </details>
Presumably this is because your Index is un-sortable, so the hash union defines the resulting order. Not sure there's anything that can be done? ```python In [16]: idx = dfs_sq[0].index.union(dfs_sq[1].index) In [17]: idx Out[17]: Index([0, 'sess', 1], dtype='object') In [18]: idx.sort_values() TypeError: '>' not supported between instances of 'int' and 'str' ``` > Not sure there's anything that can be done? OK, I'm replying without having looked at the code, but: if two indexes are unsortable, then I expect the resulting union to respect their original order (with e.g. priority given to the first index if orders don't coincide). Actually, I would have expected this to happen even when the two indexes, and the union too, are sortable... I'm also talking without having looked at much code ... but I believe we're currently doing a hash-based unique on the entire set of values, that's what tosses out the order. I suppose we could do something more iterative like you're suggesting that would preserve it.
2017-08-28T22:33:57Z
[]
[]
Traceback (most recent call last): File "dependable.py", line 11, in <module> assert df_sq.index[1] == 'sess', df_sq.index AssertionError: Index([0, 1, 'sess'], dtype='object')
11,343
pandas-dev/pandas
pandas-dev__pandas-17507
21a38008e3cab7a0459cce4fab4ace11379c3148
diff --git a/asv_bench/benchmarks/timestamp.py b/asv_bench/benchmarks/timestamp.py --- a/asv_bench/benchmarks/timestamp.py +++ b/asv_bench/benchmarks/timestamp.py @@ -1,5 +1,7 @@ from .pandas_vb_common import * from pandas import to_timedelta, Timestamp +import pytz +import datetime class TimestampProperties(object): @@ -58,3 +60,24 @@ def time_is_leap_year(self): def time_microsecond(self): self.ts.microsecond + + +class TimestampOps(object): + goal_time = 0.2 + + def setup(self): + self.ts = Timestamp('2017-08-25 08:16:14') + self.ts_tz = Timestamp('2017-08-25 08:16:14', tz='US/Eastern') + + dt = datetime.datetime(2016, 3, 27, 1) + self.tzinfo = pytz.timezone('CET').localize(dt, is_dst=False).tzinfo + self.ts2 = Timestamp(dt) + + def time_replace_tz(self): + self.ts.replace(tzinfo=pytz.timezone('US/Eastern')) + + def time_replace_across_dst(self): + self.ts2.replace(tzinfo=self.tzinfo) + + def time_replace_None(self): + self.ts_tz.replace(tzinfo=None) diff --git a/doc/source/whatsnew/v0.21.0.txt b/doc/source/whatsnew/v0.21.0.txt --- a/doc/source/whatsnew/v0.21.0.txt +++ b/doc/source/whatsnew/v0.21.0.txt @@ -487,6 +487,7 @@ Conversion - Bug in ``IntervalIndex.is_non_overlapping_monotonic`` when intervals are closed on both sides and overlap at a point (:issue:`16560`) - Bug in :func:`Series.fillna` returns frame when ``inplace=True`` and ``value`` is dict (:issue:`16156`) - Bug in :attr:`Timestamp.weekday_name` returning a UTC-based weekday name when localized to a timezone (:issue:`17354`) +- Bug in ``Timestamp.replace`` when replacing ``tzinfo`` around DST changes (:issue:`15683`) Indexing ^^^^^^^^ diff --git a/pandas/_libs/tslib.pyx b/pandas/_libs/tslib.pyx --- a/pandas/_libs/tslib.pyx +++ b/pandas/_libs/tslib.pyx @@ -142,6 +142,7 @@ def ints_to_pydatetime(ndarray[int64_t] arr, tz=None, freq=None, box=False): cdef: Py_ssize_t i, n = len(arr) + ndarray[int64_t] trans, deltas pandas_datetimestruct dts object dt int64_t value @@ -417,8 +418,9 @@ class Timestamp(_Timestamp): def _round(self, freq, rounder): - cdef int64_t unit - cdef object result, value + cdef: + int64_t unit, r, value, buff = 1000000 + object result from pandas.tseries.frequencies import to_offset unit = to_offset(freq).nanos @@ -429,16 +431,15 @@ class Timestamp(_Timestamp): if unit < 1000 and unit % 1000 != 0: # for nano rounding, work with the last 6 digits separately # due to float precision - buff = 1000000 - result = (buff * (value // buff) + unit * - (rounder((value % buff) / float(unit))).astype('i8')) + r = (buff * (value // buff) + unit * + (rounder((value % buff) / float(unit))).astype('i8')) elif unit >= 1000 and unit % 1000 != 0: msg = 'Precision will be lost using frequency: {}' warnings.warn(msg.format(freq)) - result = (unit * rounder(value / float(unit)).astype('i8')) + r = (unit * rounder(value / float(unit)).astype('i8')) else: - result = (unit * rounder(value / float(unit)).astype('i8')) - result = Timestamp(result, unit='ns') + r = (unit * rounder(value / float(unit)).astype('i8')) + result = Timestamp(r, unit='ns') if self.tz is not None: result = result.tz_localize(self.tz) return result @@ -683,14 +684,16 @@ class Timestamp(_Timestamp): cdef: pandas_datetimestruct dts - int64_t value + int64_t value, value_tz, offset object _tzinfo, result, k, v + datetime ts_input # set to naive if needed _tzinfo = self.tzinfo value = self.value if _tzinfo is not None: - value = tz_convert_single(value, 'UTC', _tzinfo) + value_tz = tz_convert_single(value, _tzinfo, 'UTC') + value += value - value_tz # setup components pandas_datetime_to_datetimestruct(value, PANDAS_FR_ns, &dts) @@ -724,16 +727,14 @@ class Timestamp(_Timestamp): _tzinfo = tzinfo # reconstruct & check bounds - value = pandas_datetimestruct_to_datetime(PANDAS_FR_ns, &dts) + ts_input = datetime(dts.year, dts.month, dts.day, dts.hour, dts.min, + dts.sec, dts.us, tzinfo=_tzinfo) + ts = convert_to_tsobject(ts_input, _tzinfo, None, 0, 0) + value = ts.value + (dts.ps // 1000) if value != NPY_NAT: _check_dts_bounds(&dts) - # set tz if needed - if _tzinfo is not None: - value = tz_convert_single(value, _tzinfo, 'UTC') - - result = create_timestamp_from_ts(value, dts, _tzinfo, self.freq) - return result + return create_timestamp_from_ts(value, dts, _tzinfo, self.freq) def isoformat(self, sep='T'): base = super(_Timestamp, self).isoformat(sep=sep) @@ -1175,7 +1176,7 @@ cdef class _Timestamp(datetime): return np.datetime64(self.value, 'ns') def __add__(self, other): - cdef int64_t other_int + cdef int64_t other_int, nanos if is_timedelta64_object(other): other_int = other.astype('timedelta64[ns]').view('i8') @@ -1625,6 +1626,10 @@ cdef inline void _localize_tso(_TSObject obj, object tz): """ Take a TSObject in UTC and localizes to timezone tz. """ + cdef: + ndarray[int64_t] trans, deltas + Py_ssize_t delta, posn + if is_utc(tz): obj.tzinfo = tz elif is_tzlocal(tz): @@ -1676,7 +1681,7 @@ cdef inline void _localize_tso(_TSObject obj, object tz): obj.tzinfo = tz -def _localize_pydatetime(object dt, object tz): +cpdef inline object _localize_pydatetime(object dt, object tz): """ Take a datetime/Timestamp in UTC and localizes to timezone tz. """ @@ -3892,7 +3897,7 @@ for _maybe_method_name in dir(NaTType): # Conversion routines -def _delta_to_nanoseconds(delta): +cpdef int64_t _delta_to_nanoseconds(delta): if isinstance(delta, np.ndarray): return delta.astype('m8[ns]').astype('int64') if hasattr(delta, 'nanos'): @@ -4137,7 +4142,7 @@ def tz_convert(ndarray[int64_t] vals, object tz1, object tz2): return result -def tz_convert_single(int64_t val, object tz1, object tz2): +cpdef int64_t tz_convert_single(int64_t val, object tz1, object tz2): """ Convert the val (in i8) from timezone1 to timezone2 @@ -5006,6 +5011,7 @@ cdef inline int64_t _normalized_stamp(pandas_datetimestruct *dts) nogil: def dates_normalized(ndarray[int64_t] stamps, tz=None): cdef: Py_ssize_t i, n = len(stamps) + ndarray[int64_t] trans, deltas pandas_datetimestruct dts if tz is None or is_utc(tz):
BUG: Timestamp.replace chaining not compat with datetime.replace #### Code Sample, a copy-pastable example if possible ```python import pytz import pandas as pd from datetime import datetime pytz.timezone('CET').localize(datetime(2016, 3, 27, 1), is_dst=None) pytz.timezone('CET').localize(pd.Timestamp(datetime(2016, 3, 27, 1)), is_dst=None) ``` #### Problem description The above code runs with Pandas 0.18 but raises the following exception with Pandas 0.19: ```python >>> pytz.timezone('CET').localize(pd.Timestamp(datetime(2016, 3, 27, 1)), is_dst=None) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/localhome/stefan/emsconda/envs/popeye/lib/python3.6/site-packages/pytz/tzinfo.py", line 327, in localize raise NonExistentTimeError(dt) pytz.exceptions.NonExistentTimeError: 2016-03-27 01:00:00 ``` Is this an intentional API breakage of 0.19 or a bug? #### Expected Output <no exception> #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS commit: None python: 3.6.0.final.0 python-bits: 64 OS: Linux OS-release: 4.9.12-100.fc24.x86_64+debug machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: de_DE.UTF-8 LOCALE: de_DE.UTF-8 pandas: 0.19.2 nose: None pip: 9.0.1 setuptools: 34.3.0 Cython: None numpy: 1.12.0 scipy: 0.18.1 statsmodels: None xarray: None IPython: 5.3.0 sphinx: None patsy: None dateutil: 2.6.0 pytz: 2016.10 blosc: 1.5.0 bottleneck: None tables: None numexpr: None matplotlib: 2.0.0 openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: None httplib2: None apiclient: None sqlalchemy: 1.1.5 pymysql: None psycopg2: None jinja2: None boto: None pandas_datareader: None </details>
This is correct according to ``pytz`` doc-string. ``` In [8]: pytz.timezone('CET').localize(Timestamp(datetime(2016, 3, 27, 1)), is_dst=True) Out[8]: Timestamp('2016-03-27 00:00:00+0100', tz='CET') In [9]: pytz.timezone('CET').localize(Timestamp(datetime(2016, 3, 27, 1)), is_dst=False) Out[9]: Timestamp('2016-03-27 01:00:00+0100', tz='CET') In [10]: pytz.timezone('CET').localize(Timestamp(datetime(2016, 3, 27, 1)), is_dst=None) --------------------------------------------------------------------------- NonExistentTimeError Traceback (most recent call last) <ipython-input-10-6cbd34e0bbef> in <module>() ----> 1 pytz.timezone('CET').localize(Timestamp(datetime(2016, 3, 27, 1)), is_dst=None) /Users/jreback/miniconda3/envs/pandas/lib/python3.5/site-packages/pytz/tzinfo.py in localize(self, dt, is_dst) 325 # If we refuse to guess, raise an exception. 326 if is_dst is None: --> 327 raise NonExistentTimeError(dt) 328 329 # If we are forcing the pre-DST side of the DST transition, we NonExistentTimeError: 2016-03-27 01:00:00 ``` actually I find the ``pytz`` behavior of ``is_dst=None`` to be just odd. They are conflating too many things into a single argument I am afraid. Okay, thx for the feedback. We did some more research on this issue and found the following: The problem occurs during DST-changes when we (de)normalize input dates from dates with tzinfo to UTC dates and back from tz-less UTC dates to dates with a tzinfo. The [stdlib docs](https://docs.python.org/3/library/datetime.html#datetime.date.replace) states: *“Return a date with the same value, except for those parameters given new values by whichever keyword arguments are specified.”* Lets test this: ``` import pytz import pandas as pd from datetime import datetime # Base datetime and a tzinfo object dt = datetime(2016, 3, 27, 1) tzinfo = pytz.timezone('CET').localize(dt, is_dst=False).tzinfo # Expected: tzinfo replaced, actual date value unchanged: print('Datetimes:') print(dt.replace(tzinfo=tzinfo)) print(dt.replace(tzinfo=tzinfo).replace(tzinfo=None)) # Unexpected behaviour in pandas 0.19.x: # Other values than tzinfo were changed: print('Pandas Timestamp:') print(pd.Timestamp(dt).replace(tzinfo=tzinfo)) print(pd.Timestamp(dt).replace(tzinfo=tzinfo).replace(tzinfo=None)) ``` Pandas 0.18.1: ``` Datetimes: 2016-03-27 01:00:00+01:00 2016-03-27 01:00:00 Pandas Timestamp: 2016-03-27 01:00:00+01:00 2016-03-27 01:00:00 # ok ``` Pandas 0.19.2: ``` Datetimes: 2016-03-27 01:00:00+01:00 2016-03-27 01:00:00 Pandas Timestamp: 2016-03-27 01:00:00+01:00 2016-03-27 00:00:00 # unexpected ``` The datetime in the last row of the Pandas 0.19.2 output is incorrect. This readily occurs in the context of pytz as `localize()` and `normalize()` do that all the time (here: pytz 2016.10) in `pytz.tzinfo.DstTzInfo.localize`, line 314, `loc_dt = tzinfo.normalize(dt.replace(tzinfo=tzinfo))` is executed and in `pytz.tzinfo.DstTzInfo.normalize`, line 239, `dt = dt.replace(tzinfo=None)` is executed. Interestingly, the issue only occurs if we do the “double replace” but not if we directly initialize a datetime with a tzinfo: ``` print(pd.Timestamp(datetime(2016, 3, 27, 1, tzinfo=tzinfo)) print(pd.Timestamp(datetime(2016, 3, 27, 1, tzinfo=tzinfo).replace(tzinfo=None)) ``` Pandas 0.18.1: ``` 2016-03-27 01:00:00+01:00 2016-03-27 01:00:00 ``` Pandas 0.19.2: ``` 2016-03-27 01:00:00+01:00 2016-03-27 01:00:00 ``` I looked at the change logs and coudn’t find anything related to this issue. I guess this is a bug, ``Timestamp.replace`` should act exactly like ``datetime.replace``. It is overriden because it needs to handle parameter validation and nanoseconds. So [21] should match [19] ``` In [18]: dt.replace(tzinfo=tzinfo) Out[18]: datetime.datetime(2016, 3, 27, 1, 0, tzinfo=<DstTzInfo 'CET' CET+1:00:00 STD>) In [19]: dt.replace(tzinfo=tzinfo).replace(tzinfo=None) Out[19]: datetime.datetime(2016, 3, 27, 1, 0) In [20]: pd.Timestamp(dt).replace(tzinfo=tzinfo) Out[20]: Timestamp('2016-03-27 01:00:00+0100', tz='CET') In [21]: pd.Timestamp(dt).replace(tzinfo=tzinfo).replace(tzinfo=None) Out[21]: Timestamp('2016-03-27 00:00:00') ``` All that said, I would *never* use ``.replace`` directly, and more naturally simply ``tz_localize`` and ``tz_convert``. (including ambiguity over transitions and such). ``` In [25]: pd.Timestamp(dt).tz_localize(tzinfo) Out[25]: Timestamp('2016-03-27 01:00:00+0100', tz='CET') In [26]: pd.Timestamp(dt).tz_localize(tzinfo).tz_localize(None) Out[26]: Timestamp('2016-03-27 01:00:00') ``` you are welcome to submit a PR to fix. https://github.com/pandas-dev/pandas/commit/f8bd08e9c2fc6365980f41b846bbae4b40f08b83 is the change (has been modified slightly since then). Unfortunately, we currently don't have the time to get familiar with the pandas internals and fix this issue ourselves. I added a regression test for this issues as follows: ```diff diff --git a/pandas/tests/tseries/test_timezones.py b/pandas/tests/tseries/test_timezones.py index 1fc0e1b..75d4872 100644 --- a/pandas/tests/tseries/test_timezones.py +++ b/pandas/tests/tseries/test_timezones.py @@ -1233,6 +1233,18 @@ class TestTimeZones(tm.TestCase): self.assertEqual(result_pytz.to_pydatetime().tzname(), result_dateutil.to_pydatetime().tzname()) + # issue 15683 + dt = datetime(2016, 3, 27, 1) + tzinfo = pytz.timezone('CET').localize(dt, is_dst=False).tzinfo + # This should work: + result_dt = dt.replace(tzinfo=tzinfo) + result_pd = Timestamp(dt).replace(tzinfo=tzinfo) + self.assertEqual(result_dt.timestamp(), result_pd.timestamp()) + # self.assertEqual(result_dt, result_pd.to_datetime()) # This fails!!! + # This should fail: + result_dt = dt.replace(tzinfo=tzinfo).replace(tzinfo=None) + result_pd = Timestamp(dt).replace(tzinfo=tzinfo).replace(tzinfo=None) + self.assertEqual(result_dt.timestamp(), result_pd.timestamp()) + # self.assertEqual(result_dt, result_pd.to_datetime()) + def test_index_equals_with_tz(self): left = date_range('1/1/2011', periods=100, freq='H', tz='utc') right = date_range('1/1/2011', periods=100, freq='H', tz='US/Eastern') ``` Surprisingly, the `assertEqual()` using `to_datetime()` fails. I don't know if this is another issue or not: ``` > self.assertEqual(result_dt, result_pd.to_datetime()) E AssertionError: datetime.datetime(2016, 3, 27, 1, 0, tzinfo=<DstTzInfo 'CET' CET+1:00:00 STD>) != datetime.datetime(2016, 3, 27, 0, 0, tzinfo=<DstTzInfo 'CET' CET+1:00:00 STD>) ``` I still have no Idea how to fix this. I played around with with it a little bit more and something looks very broken: ```python >>> import datetime, pandas, pytz >>> >>> # Two equal datetimes: >>> dt = datetime.datetime(2016, 3, 27, 1) >>> pd = pandas.Timestamp(dt) >>> dt == pd True >>> dt == pd.to_pydatetime() True >>> dt.timestamp() == pd.timestamp() True >>> >>> # Let's introduce timezones and stuff breaks: >>> >>> tzinfo = pytz.timezone('CET') >>> rdt = dt.replace(tzinfo=tzinfo) >>> rpd = pd.replace(tzinfo=tzinfo) >>> >>> rdt == rpd # What? False >>> rdt == rpd.to_pydatetime() # Really? False >>> rdt.timestamp() == rpd.timestamp() # Why is this True now? True >>> # What do we have? >>> rdt datetime.datetime(2016, 3, 27, 1, 0, tzinfo=<DstTzInfo 'CET' CET+1:00:00 STD>) >>> rpd # This *looks* like rdt but is *not equal* to it. Timestamp('2016-03-27 01:00:00+0100', tz='CET') >>> rpd.to_pydatetime() # This is cleary not wanted: datetime.datetime(2016, 3, 27, 0, 0, tzinfo=<DstTzInfo 'CET' CET+1:00:00 STD>) >>> >>> # This seems to be the logical result of the above bug: >>> ndt = rdt.replace(tzinfo=None) >>> npd = rpd.replace(tzinfo=None) >>> ndt datetime.datetime(2016, 3, 27, 1, 0) >>> npd Timestamp('2016-03-27 00:00:00') >>> npd.to_pydatetime() datetime.datetime(2016, 3, 27, 0, 0) >>> ndt == dt True >>> npd == pd False ``` The `Timestamp` constructor already seems to be broken: ```python >>> dttz = datetime.datetime(2016, 3, 27, 1, tzinfo=tzinfo) >>> pdtz = pandas.Timestamp(2016, 3, 27, 1, tzinfo=tzinfo) >>> dttz datetime.datetime(2016, 3, 27, 1, 0, tzinfo=<DstTzInfo 'CET' CET+1:00:00 STD>) >>> pdtz # Where is the tzinfo? Timestamp('2016-03-27 01:00:00') >>> dttz.timestamp() == pdtz.timestamp() # Expected True >>> dttz == pdtz # Unexpected False >>> dttz == pdtz.to_pydatetime() # Unexpected False ``` @sscherfke ``datetime.datetime`` has a different underlying representation ``` In [1]: dt = pd.Timestamp('2016-03-27 01:00:00', tz='CET') In [2]: dt Out[2]: Timestamp('2016-03-27 00:00:00+0100', tz='CET') In [3]: dt.tz_convert('UTC') Out[3]: Timestamp('2016-03-26 23:00:00+0000', tz='UTC') In [4]: dt.tz_convert('UTC').value Out[4]: 1459033200000000000 In [5]: dt.value Out[5]: 1459033200000000000 In [6]: dt.tz Out[6]: <DstTzInfo 'CET' CET+1:00:00 STD> In [7]: dt.tz_convert('UTC').tz Out[7]: <UTC> ``` ``TImestamp`` keeps UTC time *always* and the tz as a parameter. This always efficient manipulation. You are encourage to use ``tz_localize/tz_convert`` as these correctly manipulate all dst / tz's and work across different tz vendors. the construction as a small issue xref in #15777 Okay, maybe my last example might then not be related to this issue. But the problem with `replace(tzinfo)` (it does not only replace the tzinfo but also alter the the actual date/time) remains. I'd really like to help fixing this issue but Pandas has a very huge code base and I'm a very new Pandas user... :-/ @sscherfke well ``.replace`` is actually a very straightforward method, though its in cython, and it *does* call other things. Yes, the *other things* is the problem. Finding out what they are supposed to do and what they actually to and which *other thing* actually it the culprit for this issue. :) now that #15934 is merged the construction issues should be fixed, FYI. Yes, the construction issues are fixed now. I hoped that this might (accidentally) fix this issue, but it doesn't: ```pycon >>> import datetime, pandas, pytz >>> tzinfo = pytz.timezone('CET') >>> dt = datetime.datetime(2016, 3, 27, 1) >>> pd = pandas.Timestamp(dt) >>> dttz = dt.replace(tzinfo=tzinfo) >>> pdtz1 = pd.replace(tzinfo=tzinfo) >>> pdtz2 = pandas.Timestamp('2016-03-27 01:00', tz='CET') >>> dttz == pdtz1 False >>> dttz == pdtz2 True >>> for x in [pdtz1, pdtz2]: ... print(x, x.tzinfo, x.timestamp(), x.value, x.to_pydatetime()) ... 2016-03-27 01:00:00+01:00 CET 1459036800.0 1459033200000000000 2016-03-27 00:00:00+01:00 2016-03-27 01:00:00+01:00 CET 1459036800.0 1459036800000000000 2016-03-27 01:00:00+01:00 ``` As you can see, the `value` of both Timestamp differs, so I guess `replace()` breaks it somehow. `replace()` (when called on a none-timezoned TS) calls the following four methods in this order: - `pandas_datetime_to_datetimestruct()` - `pandas_datetimestruct_to_datetime()` - `tz_convert_single()` - `create_timestamp_from_ts()` The `pandas_a_to_b()` methods are neither defined nor imported in the module (??), so I took a closer look at the remaining two. `create_timestamp_from_ts()` does not appear to do any calculations on the `value`. So I think `tz_convert_single()` remains as the most probable culprit. Yes, `tz_convert_single()` is the culprit. I added a few prints in `replace()`. Before that method is called at the end, the value is `1459040400000000000` and afterwards it is `1459033200000000000`. The difference is 2h (which is wrong – it should be 1h). yeah this should not be converting, instead it should be localizing. ``` diff --git a/pandas/_libs/tslib.pyx b/pandas/_libs/tslib.pyx index c471d46..6356073 100644 --- a/pandas/_libs/tslib.pyx +++ b/pandas/_libs/tslib.pyx @@ -732,7 +732,9 @@ class Timestamp(_Timestamp): # set tz if needed if _tzinfo is not None: - value = tz_convert_single(value, _tzinfo, 'UTC') + value = tz_localize_to_utc(np.array([value], dtype='i8'), _tzinfo, + ambiguous='raise', + errors='raise')[0] result = create_timestamp_from_ts(value, dts, _tzinfo, self.freq) return result ``` this breaks another test, but passes (so you would make this into an actual test) ``` In [1]: import datetime, pandas, pytz ...: tzinfo = pytz.timezone('CET') ...: dt = datetime.datetime(2016, 3, 27, 1) ...: pd = pandas.Timestamp(dt) ...: dttz = dt.replace(tzinfo=tzinfo) ...: pdtz1 = pd.replace(tzinfo=tzinfo) ...: pdtz2 = pandas.Timestamp('2016-03-27 01:00', tz='CET') ...: In [2]: dttz == pdtz1 Out[2]: True In [3]: dttz == pdtz2 Out[3]: True ``` I am very confused about what's happening inside Pandas: ```pycon >>> dt = datetime.datetime(2016, 3, 27, 1) >>> datetime.datetime.fromtimestamp(pandas.Timestamp(dt).timestamp()) datetime.datetime(2016, 3, 27, 1, 0) >>> datetime.datetime.fromtimestamp(pandas.Timestamp(dt).value / 1000000000) datetime.datetime(2016, 3, 27, 3, 0) ``` I thought `value` would be a high-res UTC timestamp but it is actually two hours ahead of `timestamp()` (at least in this case). When `value` is converted from `CET` to `UTC` at the end of `replace()`, `tz_convert_single()` detects that `value` is summer time (CEST) (because 2016-03-27 03:00 *is* CEST), it calculates an offset of 2h. *edit: Saw you comments only after I wrote this comment. A test case like this will show the issue and pass when your proposed fix is applied: ```python def test_issue_15683(self): # issue 15683 dt = datetime(2016, 3, 27, 1) tzinfo = pytz.timezone('CET').localize(dt, is_dst=False).tzinfo result_dt = dt.replace(tzinfo=tzinfo) result_pd = Timestamp(dt).replace(tzinfo=tzinfo) self.assertEqual(result_dt.timestamp(), result_pd.timestamp()) self.assertEqual(result_dt, result_pd.to_pydatetime()) self.assertEqual(result_dt, result_pd) result_dt = dt.replace(tzinfo=tzinfo).replace(tzinfo=None) result_pd = Timestamp(dt).replace(tzinfo=tzinfo).replace(tzinfo=None) self.assertEqual(result_dt.timestamp(), result_pd.timestamp()) self.assertEqual(result_dt, result_pd.to_pydatetime()) self.assertEqual(result_dt, result_pd) ``` happy to take a PR to fix as I said. What about the breaking test? if you'd like to delve into that would be helpful More problems (with our fix): ```pycon >>> import datetime, pandas, pytz >>> tzinfo = pytz.timezone('CET') >>> >>> # Reference case with datetime.datetime object >>> pd = pandas.Timestamp('2016-10-30 01:15').to_pydatetime() >>> pd datetime.datetime(2016, 10, 30, 1, 15) >>> tzinfo.localize(pd, is_dst=True) datetime.datetime(2016, 10, 30, 1, 15, tzinfo=<DstTzInfo 'CET' CEST+2:00:00 DST>) >>> >>> # Error in Pandas >>> pd = pandas.Timestamp('2016-10-30 01:15') >>> pd Timestamp('2016-10-30 01:15:00') >>> tzinfo.localize(pd, is_dst=True) Traceback (most recent call last): File "<stdin>", line 1, in <module> File ".../envs/pandas/lib/python3.6/site-packages/pytz/tzinfo.py", line 314, in localize loc_dt = tzinfo.normalize(dt.replace(tzinfo=tzinfo)) File ".../envs/pandas/lib/python3.6/site-packages/pytz/tzinfo.py", line 242, in normalize return self.fromutc(dt) File ".../envs/pandas/lib/python3.6/site-packages/pytz/tzinfo.py", line 187, in fromutc return (dt + inf[0]).replace(tzinfo=self._tzinfos[inf]) File "pandas/_libs/tslib.pyx", line 735, in pandas._libs.tslib.Timestamp.replace (pandas/_libs/tslib.c:14931) value = tz_localize_to_utc(np.array([value], dtype='i8'), _tzinfo, File "pandas/_libs/tslib.pyx", line 4582, in pandas._libs.tslib.tz_localize_to_utc (pandas/_libs/tslib.c:77718) raise pytz.AmbiguousTimeError( pytz.exceptions.AmbiguousTimeError: Cannot infer dst time from Timestamp('2016-10-30 02:15:00'), try using the 'ambigu ous' argument ``` This is weired as 01:15 is actually not ambiguous (02:15 would be). I guess the problem arises because we convert *from* our destination tz *to* UTC in `replace()`. In the old version (without the fix) there would be no error but a wrong result (1h offset). If a Timestamp has a tzinfo (e.g., UTC or CET), `(Timestamp.value / 1_000_000_000) == pd.timestamp()`. If a Timestamp does *not* have a tzinfo, `(Timestamp.value / 1_000_000_000) - pd.timestamp()` is the offset of my local timezone to UTC. Why is this by chance? What is this offset and why is it? @sscherfke not sure what you are asking. I finally found a solution that works. All tests in `test_timezones` are passing and our own code seems to work as well. :) ```diff diff --git a/pandas/_libs/tslib.pyx b/pandas/_libs/tslib.pyx index c471d46..c418059 100644 --- a/pandas/_libs/tslib.pyx +++ b/pandas/_libs/tslib.pyx @@ -685,14 +685,16 @@ class Timestamp(_Timestamp): cdef: pandas_datetimestruct dts int64_t value - object _tzinfo, result, k, v + object _tzinfo, result, k, v, ts_input _TSObject ts # set to naive if needed _tzinfo = self.tzinfo value = self.value if _tzinfo is not None: - value = tz_convert_single(value, 'UTC', _tzinfo) + value_tz = tz_convert_single(value, _tzinfo, 'UTC') + offset = value - value_tz + value += offset # setup components pandas_datetime_to_datetimestruct(value, PANDAS_FR_ns, &dts) @@ -726,16 +728,14 @@ class Timestamp(_Timestamp): _tzinfo = tzinfo # reconstruct & check bounds - value = pandas_datetimestruct_to_datetime(PANDAS_FR_ns, &dts) + ts_input = datetime(dts.year, dts.month, dts.day, dts.hour, dts.min, + dts.sec, dts.us, tzinfo=_tzinfo) + ts = convert_to_tsobject(ts_input, _tzinfo, None, 0, 0) + value = ts.value + (dts.ps // 1000) if value != NPY_NAT: _check_dts_bounds(&dts) - # set tz if needed - if _tzinfo is not None: - value = tz_convert_single(value, _tzinfo, 'UTC') - - result = create_timestamp_from_ts(value, dts, _tzinfo, self.freq) - return result + return create_timestamp_from_ts(value, dts, _tzinfo, self.freq) def isoformat(self, sep='T'): base = super(_Timestamp, self).isoformat(sep=sep) diff --git a/pandas/tests/tseries/test_timezones.py b/pandas/tests/tseries/test_timezones.py index 06b6bbb..08b8040 100644 --- a/pandas/tests/tseries/test_timezones.py +++ b/pandas/tests/tseries/test_timezones.py @@ -1280,6 +1280,25 @@ class TestTimeZones(tm.TestCase): self.assertEqual(result_pytz.to_pydatetime().tzname(), result_dateutil.to_pydatetime().tzname()) + def test_tzreplace_issue_15683(self): + """Regression test for issue 15683.""" + dt = datetime(2016, 3, 27, 1) + tzinfo = pytz.timezone('CET').localize(dt, is_dst=False).tzinfo + + result_dt = dt.replace(tzinfo=tzinfo) + result_pd = Timestamp(dt).replace(tzinfo=tzinfo) + + self.assertEqual(result_dt.timestamp(), result_pd.timestamp()) + self.assertEqual(result_dt, result_pd) + self.assertEqual(result_dt, result_pd.to_pydatetime()) + + result_dt = dt.replace(tzinfo=tzinfo).replace(tzinfo=None) + result_pd = Timestamp(dt).replace(tzinfo=tzinfo).replace(tzinfo=None) + + self.assertEqual(result_dt.timestamp(), result_pd.timestamp()) + self.assertEqual(result_dt, result_pd) + self.assertEqual(result_dt, result_pd.to_pydatetime()) + def test_index_equals_with_tz(self): left = date_range('1/1/2011', periods=100, freq='H', tz='utc') right = date_range('1/1/2011', periods=100, freq='H', tz='US/Eastern') ``` ok if u want to put a PR
2017-09-13T02:46:55Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/localhome/stefan/emsconda/envs/popeye/lib/python3.6/site-packages/pytz/tzinfo.py", line 327, in localize raise NonExistentTimeError(dt) pytz.exceptions.NonExistentTimeError: 2016-03-27 01:00:00
11,368
pandas-dev/pandas
pandas-dev__pandas-17846
674fb96b33c07c680844f674fcdf0767b6e3c2f9
diff --git a/doc/source/whatsnew/v0.21.1.txt b/doc/source/whatsnew/v0.21.1.txt --- a/doc/source/whatsnew/v0.21.1.txt +++ b/doc/source/whatsnew/v0.21.1.txt @@ -120,7 +120,7 @@ Reshaping - Error message in ``pd.merge_asof()`` for key datatype mismatch now includes datatype of left and right key (:issue:`18068`) - Bug in ``pd.concat`` when empty and non-empty DataFrames or Series are concatenated (:issue:`18178` :issue:`18187`) - Bug in ``DataFrame.filter(...)`` when :class:`unicode` is passed as a condition in Python 2 (:issue:`13101`) -- +- Bug when merging empty DataFrames when ``np.seterr(divide='raise')`` is set (:issue:`17776`) Numeric ^^^^^^^ diff --git a/pandas/core/reshape/merge.py b/pandas/core/reshape/merge.py --- a/pandas/core/reshape/merge.py +++ b/pandas/core/reshape/merge.py @@ -1529,7 +1529,8 @@ def _get_join_keys(llab, rlab, shape, sort): rkey = stride * rlab[0].astype('i8', subok=False, copy=False) for i in range(1, nlev): - stride //= shape[i] + with np.errstate(divide='ignore'): + stride //= shape[i] lkey += llab[i] * stride rkey += rlab[i] * stride
merging two empty dataframes can incur a division by zero #### Code Sample, a copy-pastable example if possible ```python import numpy import pandas pandas.show_versions() a = pandas.DataFrame({'a':[],'b':[],'c':[]}) numpy.seterr(divide='raise') pandas.merge(a,a,on=('a','b')) # no problem if we only merge on 'a'. ``` #### Problem description The call to merge triggers a division by zero. <details> Traceback (most recent call last): File "/homes/mickyl/work/bugs/pandas_merge_div_by_0.py", line 8, in <module> pandas.merge(a,a,on=('a','b')) File "/homes/mickyl/venvs/debian8/local/lib/python2.7/site-packages/pandas/core/reshape/merge.py", line 54, in merge return op.get_result() File "/homes/mickyl/venvs/debian8/local/lib/python2.7/site-packages/pandas/core/reshape/merge.py", line 569, in get_result join_index, left_indexer, right_indexer = self._get_join_info() File "/homes/mickyl/venvs/debian8/local/lib/python2.7/site-packages/pandas/core/reshape/merge.py", line 734, in _get_join_info right_indexer) = self._get_join_indexers() File "/homes/mickyl/venvs/debian8/local/lib/python2.7/site-packages/pandas/core/reshape/merge.py", line 713, in _get_join_indexers how=self.how) File "/homes/mickyl/venvs/debian8/local/lib/python2.7/site-packages/pandas/core/reshape/merge.py", line 985, in _get_join_indexers lkey, rkey = _get_join_keys(llab, rlab, shape, sort) File "/homes/mickyl/venvs/debian8/local/lib/python2.7/site-packages/pandas/core/reshape/merge.py", line 1457, in _get_join_keys stride //= shape[i] FloatingPointError: divide by zero encountered in long_scalars </details> The expeted behaviour is for merge to return an empty dataframe without causing division by 0. #### Expected Output just a print-out of all the version numbers with no exception. #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 2.7.9.final.0 python-bits: 64 OS: Linux OS-release: 4.7.0-0.bpo.1-amd64 machine: x86_64 processor: byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: None.None pandas: 0.20.3 pytest: 2.6.3 pip: 9.0.1 setuptools: 5.5.1 Cython: 0.25.2 numpy: 1.13.3 scipy: 0.19.1 xarray: None IPython: 5.4.1 sphinx: 1.2.3 patsy: None dateutil: 2.6.1 pytz: 2017.2 blosc: None bottleneck: 1.2.1 tables: 3.1.1 numexpr: 2.6.4 feather: None matplotlib: 2.0.0 openpyxl: 2.4.8 xlrd: 0.9.2 xlwt: 0.7.5 xlsxwriter: 0.5.2 lxml: 3.4.0 bs4: None html5lib: 0.999999999 sqlalchemy: 0.9.8 pymysql: None psycopg2: None jinja2: 2.9.6 s3fs: None pandas_gbq: None pandas_datareader: None </details>
you could make a patch to fix this. note that we surround pandas operations with ``np.seterr(divide='ignore')`` as a matter of course; we DO want to propagate. In this case it would be checked directly though. I'm sorry, I don't know what the right fix would be. Please remember that I don't understand this codebase like you do. well you would have to debug this and see where the error is occurring. then surround that with a ``np.seterr(divid='ignore')`` Hi, does "make a patch" mean edit the code directly? Sorry, I'm new to this and thought I'd try it, but now am not sure if I did the right thing.
2017-10-11T18:57:43Z
[]
[]
Traceback (most recent call last): File "/homes/mickyl/work/bugs/pandas_merge_div_by_0.py", line 8, in <module> pandas.merge(a,a,on=('a','b')) File "/homes/mickyl/venvs/debian8/local/lib/python2.7/site-packages/pandas/core/reshape/merge.py", line 54, in merge return op.get_result() File "/homes/mickyl/venvs/debian8/local/lib/python2.7/site-packages/pandas/core/reshape/merge.py", line 569, in get_result join_index, left_indexer, right_indexer = self._get_join_info() File "/homes/mickyl/venvs/debian8/local/lib/python2.7/site-packages/pandas/core/reshape/merge.py", line 734, in _get_join_info right_indexer) = self._get_join_indexers() File "/homes/mickyl/venvs/debian8/local/lib/python2.7/site-packages/pandas/core/reshape/merge.py", line 713, in _get_join_indexers how=self.how) File "/homes/mickyl/venvs/debian8/local/lib/python2.7/site-packages/pandas/core/reshape/merge.py", line 985, in _get_join_indexers lkey, rkey = _get_join_keys(llab, rlab, shape, sort) File "/homes/mickyl/venvs/debian8/local/lib/python2.7/site-packages/pandas/core/reshape/merge.py", line 1457, in _get_join_keys stride //= shape[i] FloatingPointError: divide by zero encountered in long_scalars
11,430
pandas-dev/pandas
pandas-dev__pandas-17857
3c964a47d626a06a3f9c2d0795ee7d744dc72363
diff --git a/doc/source/whatsnew/v0.21.0.txt b/doc/source/whatsnew/v0.21.0.txt --- a/doc/source/whatsnew/v0.21.0.txt +++ b/doc/source/whatsnew/v0.21.0.txt @@ -956,6 +956,7 @@ I/O - Bug in :meth:`DataFrame.to_html` with ``notebook=True`` where DataFrames with named indices or non-MultiIndex indices had undesired horizontal or vertical alignment for column or row labels, respectively (:issue:`16792`) - Bug in :meth:`DataFrame.to_html` in which there was no validation of the ``justify`` parameter (:issue:`17527`) - Bug in :func:`HDFStore.select` when reading a contiguous mixed-data table featuring VLArray (:issue:`17021`) +- Bug in :func:`to_json` where several conditions (including objects with unprintable symbols, objects with deep recursion, overlong labels) caused segfaults instead of raising the appropriate exception (:issue:`14256`) Plotting ^^^^^^^^ @@ -1033,3 +1034,4 @@ Other ^^^^^ - Bug where some inplace operators were not being wrapped and produced a copy when invoked (:issue:`12962`) - Bug in :func:`eval` where the ``inplace`` parameter was being incorrectly handled (:issue:`16732`) + diff --git a/pandas/_libs/src/ujson/lib/ultrajson.h b/pandas/_libs/src/ujson/lib/ultrajson.h --- a/pandas/_libs/src/ujson/lib/ultrajson.h +++ b/pandas/_libs/src/ujson/lib/ultrajson.h @@ -307,4 +307,11 @@ EXPORTFUNCTION JSOBJ JSON_DecodeObject(JSONObjectDecoder *dec, const char *buffer, size_t cbBuffer); EXPORTFUNCTION void encode(JSOBJ, JSONObjectEncoder *, const char *, size_t); +#define Buffer_Reserve(__enc, __len) \ + if ((size_t)((__enc)->end - (__enc)->offset) < (size_t)(__len)) { \ + Buffer_Realloc((__enc), (__len)); \ + } + +void Buffer_Realloc(JSONObjectEncoder *enc, size_t cbNeeded); + #endif // PANDAS__LIBS_SRC_UJSON_LIB_ULTRAJSON_H_ diff --git a/pandas/_libs/src/ujson/lib/ultrajsonenc.c b/pandas/_libs/src/ujson/lib/ultrajsonenc.c --- a/pandas/_libs/src/ujson/lib/ultrajsonenc.c +++ b/pandas/_libs/src/ujson/lib/ultrajsonenc.c @@ -714,11 +714,6 @@ int Buffer_EscapeStringValidated(JSOBJ obj, JSONObjectEncoder *enc, } } -#define Buffer_Reserve(__enc, __len) \ - if ((size_t)((__enc)->end - (__enc)->offset) < (size_t)(__len)) { \ - Buffer_Realloc((__enc), (__len)); \ - } - #define Buffer_AppendCharUnchecked(__enc, __chr) *((__enc)->offset++) = __chr; FASTCALL_ATTR INLINE_PREFIX void FASTCALL_MSVC strreverse(char *begin, @@ -976,6 +971,7 @@ void encode(JSOBJ obj, JSONObjectEncoder *enc, const char *name, } enc->iterEnd(obj, &tc); + Buffer_Reserve(enc, 2); Buffer_AppendCharUnchecked(enc, ']'); break; } @@ -1003,6 +999,7 @@ void encode(JSOBJ obj, JSONObjectEncoder *enc, const char *name, } enc->iterEnd(obj, &tc); + Buffer_Reserve(enc, 2); Buffer_AppendCharUnchecked(enc, '}'); break; } diff --git a/pandas/_libs/src/ujson/python/objToJSON.c b/pandas/_libs/src/ujson/python/objToJSON.c --- a/pandas/_libs/src/ujson/python/objToJSON.c +++ b/pandas/_libs/src/ujson/python/objToJSON.c @@ -783,6 +783,7 @@ static void NpyArr_getLabel(JSOBJ obj, JSONTypeContext *tc, size_t *outLen, JSONObjectEncoder *enc = (JSONObjectEncoder *)tc->encoder; PRINTMARK(); *outLen = strlen(labels[idx]); + Buffer_Reserve(enc, *outLen); memcpy(enc->offset, labels[idx], sizeof(char) * (*outLen)); enc->offset += *outLen; *outLen = 0; @@ -879,7 +880,7 @@ int PdBlock_iterNext(JSOBJ obj, JSONTypeContext *tc) { NpyArrContext *npyarr; PRINTMARK(); - if (PyErr_Occurred()) { + if (PyErr_Occurred() || ((JSONObjectEncoder *)tc->encoder)->errorMsg) { return 0; } @@ -1224,6 +1225,10 @@ int Dir_iterNext(JSOBJ _obj, JSONTypeContext *tc) { PyObject *attrName; char *attrStr; + if (PyErr_Occurred() || ((JSONObjectEncoder *)tc->encoder)->errorMsg) { + return 0; + } + if (itemValue) { Py_DECREF(GET_TC(tc)->itemValue); GET_TC(tc)->itemValue = itemValue = NULL;
BUG: to_json with objects causing segfault #### Code Sample, a copy-pastable example if possible Creating an bson objectID, without giving an objectID exclusively is ok. ``` python >>> import bson >>> import pandas as pd >>> pd.DataFrame({'A': [bson.objectid.ObjectId()]}).to_json() Out[4]: '{"A":{"0":{"binary":"W\\u0e32\\u224cug\\u00fcR","generation_time":1474361586000}}}' >>> pd.DataFrame({'A': [bson.objectid.ObjectId()], 'B': [1]}).to_json() Out[5]: '{"A":{"0":{"binary":"W\\u0e4e\\u224cug\\u00fcS","generation_time":1474361614000}},"B":{"0":1}}' ``` However, if you provide an ID explicitly, an exception is raised ``` python >>> pd.DataFrame({'A': [bson.objectid.ObjectId('574b4454ba8c5eb4f98a8f45')]}).to_json() Traceback (most recent call last): File "/auto/energymdl2/anaconda/envs/commod_20160831/lib/python2.7/site-packages/IPython/core/interactiveshell.py", line 2885, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-7-c9a20090d481>", line 1, in <module> pd.DataFrame({'A': [bson.objectid.ObjectId('574b4454ba8c5eb4f98a8f45')]}).to_json() File "/auto/energymdl2/anaconda/envs/commod_20160831/lib/python2.7/site-packages/pandas/core/generic.py", line 1056, in to_json default_handler=default_handler) File "/auto/energymdl2/anaconda/envs/commod_20160831/lib/python2.7/site-packages/pandas/io/json.py", line 36, in to_json date_unit=date_unit, default_handler=default_handler).write() File "/auto/energymdl2/anaconda/envs/commod_20160831/lib/python2.7/site-packages/pandas/io/json.py", line 79, in write default_handler=self.default_handler) OverflowError: Unsupported UTF-8 sequence length when encoding string ``` And worse, if the column is not the only column, the entire process dies. ``` python >>> pd.DataFrame({'A': [bson.objectid.ObjectId('574b4454ba8c5eb4f98a8f45')], 'B': [1]}).to_json() Process finished with exit code 139 ``` #### Expected Output #### output of `pd.show_versions()` ``` pandas: 0.18.1 nose: 1.3.7 pip: 8.1.2 setuptools: 26.1.1 Cython: 0.24 numpy: 1.10.4 scipy: 0.17.0 statsmodels: 0.6.1 xarray: 0.7.2 IPython: 4.1.2 sphinx: 1.3.5 patsy: 0.4.1 dateutil: 2.5.2 pytz: 2016.6.1 blosc: None bottleneck: 1.0.0 tables: 3.2.2 numexpr: 2.5.2 matplotlib: 1.5.1 openpyxl: 2.3.2 xlrd: 0.9.4 xlwt: 1.0.0 xlsxwriter: 0.8.4 lxml: 3.6.0 bs4: 4.3.2 html5lib: 0.999 httplib2: 0.9.2 apiclient: 1.5.0 sqlalchemy: 1.0.13 pymysql: None psycopg2: None jinja2: 2.8 boto: 2.39.0 pandas_datareader: None ``` pymongo version is 3.3.0
When passing object dtypes which don't actually contain strings (though they could also contain objects which have a good enough response to special methods to work), you must supply a `default_handler`. So the first 2 cases above are expected. The 3rd is handled this way. ``` In [6]: pd.DataFrame({'A': [bson.objectid.ObjectId('574b4454ba8c5eb4f98a8f45')]}).to_json(default_handler=str) Out[6]: '{"A":{"0":"574b4454ba8c5eb4f98a8f45"}}' ``` seg faulting shouldn't happen though; we should get an exception that a `default_handler` is not supplied. http://pandas.pydata.org/pandas-docs/stable/io.html#fallback-behavior cc @kawochen cc @Komnomnomnom I suppose the 2nd path is also not reporting that a `default_handler` is missing ``` In [10]: pd.DataFrame({'A': [bson.objectid.ObjectId('574b4454ba8c5eb4f98a8f45')]}).to_json(default_handler=str) Out[10]: '{"A":{"0":"574b4454ba8c5eb4f98a8f45"}}' ``` This impacted us this weekend as well. Our default_handler was only handling specific objects that we wanted to control the json serialization for, but would other wise return the object. We have since changed the logic of the default_handler to serialize everything, but just raising an error if a default_handler is not present does not prevent the to_json method from causing a segfault for different objects. @jreback I should have some time this weekend or early next week to dig into these segfaults (if nobody gets to it first) This also comes up if you have shapely geometries in a column (came up by accident when a geopandas GeoDataFrame got converted to a regular DataFrame). If you have a small enough sample the json encoder hits the recursion limit and you get an error. ```python >>> import pandas as pd >>> from shapely.geometry import Polygon >>> geom = Polygon([(0, 0), (1, 1), (1, 0)]) >>> df = pd.DataFrame([('testval {}'.format(i), geom) for i in range(5)], columns=['value', 'geometry']) >>> df.to_json() Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/david/miniconda3/envs/geotesting/lib/python3.6/site-packages/pandas/core/generic.py", line 1089, in to_json lines=lines) File "/home/david/miniconda3/envs/geotesting/lib/python3.6/site-packages/pandas/io/json.py", line 39, in to_json date_unit=date_unit, default_handler=default_handler).write() File "/home/david/miniconda3/envs/geotesting/lib/python3.6/site-packages/pandas/io/json.py", line 85, in write default_handler=self.default_handler) OverflowError: Maximum recursion level reached ``` Add more rows to the DataFrame and you can get a segfault (doesn't appear to be guaranteed - sometimes you get the OverflowError). ```python >>> df = pd.DataFrame([('testval {}'.format(i), geom) for i in range(5000)], columns=['value', 'geometry']) >>> df.to_json() Segmentation fault (core dumped) ``` @DavidCEllis you need to supply a ``default_handler`` @jreback Sorry, I wasn't quite clear - this was a simple way to reproduce the segfault. It's not how I ran into the issue. I know how to make it work, I just wouldn't expect a segfault. The issue was I expected the object to be a GeoPandas GeoDataFrame and it had converted to a regular DataFrame through some operation. On a GeoDataFrame the method works without needing to specify a default_handler. On a regular DataFrame I would expect an exception like the overflow error but got a segfault. ```python >>> import pandas as pd >>> import geopandas as gpd >>> from shapely.geometry import Polygon >>> geom = Polygon([(0, 0), (1, 1), (1, 0)]) >>> gdf = gpd.GeoDataFrame([('testval {}'.format(i), geom) for i in range(5000)], columns=['value', 'geometry']) >>> gdf.to_json() 'Really long GeoJSON string output' >>> df = pd.DataFrame(gdf) # GeoDataFrame is a subclass >>> df.to_json() Segmentation fault (core dumped) ``` @DavidCEllis as you can see from above this is an open bug, pull-requests are welcome to fix. This should raise as ``default_handler`` not supplied. you cannot serialize something that is not a standard object or a pandas object (w/o special support of course). but it shouldn't segfault either. Fair point. Unfortunately I got to the point where the json export methods send the entire dataframe into a C function and I'm not a C programmer. [Based on the docs you linked earlier](http://pandas.pydata.org/pandas-docs/stable/io.html#fallback-behavior) I think the default_handler error not supplied will only come up if you supply an unsupported numpy dtype? It looks like it's falling back on the unsupported object behaviour which finishes with: > convert the object to a dict by traversing its contents. However this will often fail with an OverflowError or give unexpected results It seems that sometimes it ends up segfaulting instead of raising the OverflowError. On testing it seemed more likely to segfault the larger the array, sometimes the same sized array would segfault and sometimes it would raise the OverflowError. Not sure if this is useful but it seemed to be additional information on how it was being triggered. When dealing with dataframes that contain exotic datatypes you need a default handler for to_json. This has bit my team a couple times now since we first posted the linked issue above. For now always include a default_handler. On Fri, Mar 31, 2017 at 1:13 PM, David Ellis <notifications@github.com> wrote: > Fair point. Unfortunately I got to the point where the json export methods > send the entire dataframe into a C function and I'm not a C programmer. > > Based on the docs you linked earlier > <http://pandas.pydata.org/pandas-docs/stable/io.html#fallback-behavior> I > think the default_handler error not supplied will only come up if you > supply an unsupported numpy dtype? It looks like it's falling back on the > unsupported object behaviour which finishes with: > > convert the object to a dict by traversing its contents. However this will > often fail with an OverflowError or give unexpected results > > It seems that sometimes it ends up segfaulting instead of raising the > OverflowError. On testing it seemed more likely to segfault the larger the > array, sometimes the same sized array would segfault and sometimes it would > raise the OverflowError. Not sure if this is useful but it seemed to be > additional information on how it was being triggered. > > — > You are receiving this because you commented. > Reply to this email directly, view it on GitHub > <https://github.com/pandas-dev/pandas/issues/14256#issuecomment-290787649>, > or mute the thread > <https://github.com/notifications/unsubscribe-auth/AF-fO4893Bxug5QD99HKSg4dqCmKj69Xks5rrUJUgaJpZM4KBYfC> > . >
2017-10-12T15:59:09Z
[]
[]
Traceback (most recent call last): File "/auto/energymdl2/anaconda/envs/commod_20160831/lib/python2.7/site-packages/IPython/core/interactiveshell.py", line 2885, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-7-c9a20090d481>", line 1, in <module> pd.DataFrame({'A': [bson.objectid.ObjectId('574b4454ba8c5eb4f98a8f45')]}).to_json() File "/auto/energymdl2/anaconda/envs/commod_20160831/lib/python2.7/site-packages/pandas/core/generic.py", line 1056, in to_json default_handler=default_handler) File "/auto/energymdl2/anaconda/envs/commod_20160831/lib/python2.7/site-packages/pandas/io/json.py", line 36, in to_json date_unit=date_unit, default_handler=default_handler).write() File "/auto/energymdl2/anaconda/envs/commod_20160831/lib/python2.7/site-packages/pandas/io/json.py", line 79, in write default_handler=self.default_handler) OverflowError: Unsupported UTF-8 sequence length when encoding string
11,431
pandas-dev/pandas
pandas-dev__pandas-18017
5959ee3e133723136d4862864988a63ef3cc2a2f
diff --git a/doc/source/whatsnew/v0.22.0.txt b/doc/source/whatsnew/v0.22.0.txt --- a/doc/source/whatsnew/v0.22.0.txt +++ b/doc/source/whatsnew/v0.22.0.txt @@ -103,7 +103,7 @@ Indexing I/O ^^^ -- +- :func:`read_html` now rewinds seekable IO objects after parse failure, before attempting to parse with a new parser. If a parser errors and the object is non-seekable, an informative error is raised suggesting the use of a different parser (:issue:`17975`) - - diff --git a/pandas/io/html.py b/pandas/io/html.py --- a/pandas/io/html.py +++ b/pandas/io/html.py @@ -742,6 +742,18 @@ def _parse(flavor, io, match, attrs, encoding, **kwargs): try: tables = p.parse_tables() except Exception as caught: + # if `io` is an io-like object, check if it's seekable + # and try to rewind it before trying the next parser + if hasattr(io, 'seekable') and io.seekable(): + io.seek(0) + elif hasattr(io, 'seekable') and not io.seekable(): + # if we couldn't rewind it, let the user know + raise ValueError('The flavor {} failed to parse your input. ' + 'Since you passed a non-rewindable file ' + 'object, we can\'t rewind it to try ' + 'another parser. Try read_html() with a ' + 'different flavor.'.format(flav)) + retained = caught else: break
BUG: error in read_html when parsing badly-escaped HTML from an io object #### Code Sample, a copy-pastable example if possible Create `test.html`, with the contents: ```html <!doctype html> <html> <body> <table> <tr><td>poorly-escaped cell with an & oh noes</td></tr> </table> </body> </html> ``` ```py >>> import pandas as pd >>> pandas.__version__ '0.20.3' >>> f = open('./test.html') >>> pd.read_html(f) Traceback (most recent call last): File "<input>", line 1, in <module> pd.read_html(f) File "/usr/lib/python3.6/site-packages/pandas/io/html.py", line 906, in read_html keep_default_na=keep_default_na) File "/usr/lib/python3.6/site-packages/pandas/io/html.py", line 743, in _parse raise_with_traceback(retained) File "/usr/lib/python3.6/site-packages/pandas/compat/__init__.py", line 344, in raise_with_traceback raise exc.with_traceback(traceback) ValueError: No text parsed from document: <_io.TextIOWrapper name='/home/liam/test.html' mode='r' encoding='UTF-8'> ``` #### Problem description Pandas attempts to invoke a series of parsers on HTML documents, returning when one produces a result, and continuing to the next on error. This works fine when passing a path or entire document to `read_html()`, but when an IO object is passed, the subsequent parsers will be reading from a file whose read cursor is at EOF, producing an inscrutable 'no text parsed from document' error. This can easily be fixed by rewinding the file with `seek(0)` before continuing to the next parser (will add PR shortly). #### Expected Output ``` [ 0 0 poorly-escaped cell with an & oh noes] ``` #### Output of ``pd.show_versions()`` <details> ``` >>> pd.show_versions() INSTALLED VERSIONS ------------------ commit: e1dabf37645f0fcabeed1d845a0ada7b32415606 python: 3.6.2.final.0 python-bits: 64 OS: Linux OS-release: 4.13.6-1-ARCH machine: x86_64 processor: byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.21.0rc1+36.ge1dabf376.dirty pytest: 3.2.3 pip: 9.0.1 setuptools: 36.6.0 Cython: 0.27.2 numpy: 1.13.3 scipy: None pyarrow: None xarray: None IPython: None sphinx: None patsy: None dateutil: 2.6.1 pytz: 2017.2 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: 4.1.0 bs4: 4.6.0 html5lib: 0.999999999 sqlalchemy: None pymysql: None psycopg2: None jinja2: 2.9.6 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None ``` </details>
Interestingly, when adding a test for the patch, I noticed that stuffing that test document into a `StringIO` seems to work? lxml still fails, but the fallback on html5lib/bs4 rewinds properly. I'll investigate that further tomorrow. Same issue: Cannot `read_html()` a webpage directly from an `urlopen()` result when `lxml` does not like it: ```python >>> from urllib.request import urlopen >>> import pandas as pd >>> url = 'http://en.wikipedia.org/wiki/Matplotlib' >>> assert pd.read_html(urlopen(url), 'Advantages', 'bs4') # works with bs4 alone >>> pd.read_html(urlopen(url), 'Advantages') Traceback (most recent call last): File "<pyshell#7>", line 1, in <module> pd.read_html(urlopen(url), 'Advantages') File "C:\Program Files\Python36\lib\site-packages\pandas\io\html.py", line 915, in read_html keep_default_na=keep_default_na) File "C:\Program Files\Python36\lib\site-packages\pandas\io\html.py", line 749, in _parse raise_with_traceback(retained) File "C:\Program Files\Python36\lib\site-packages\pandas\compat\__init__.py", line 367, in raise_with_traceback raise exc.with_traceback(traceback) ValueError: No text parsed from document: <http.client.HTTPResponse object at 0x0000000005621358> ``` Note that one cannot do `.seek(0)` on the `urlopen` return value (so the fix needs to be more complex). I think `lxml` does something slightly different with `StringIO`s. So here is a self-contained test case: ```python >>> import pandas as pd >>> from mock import Mock >>> def mock_urlopen(data, url='http://spam'): return Mock(**{'geturl.return_value': url, 'read.side_effect': [data, '', '']}) >>> good = mock_urlopen('<table><tr><td>spam<br />eggs</td></tr></table>') >>> bad = mock_urlopen('<table><tr><td>spam<wbr />eggs</td></tr></table>') >>> assert pd.read_html(good) >>> assert pd.read_html(bad, flavor='bs4') >>> bad.reset_mock() >>> pd.read_html(bad) Traceback (most recent call last): ... ValueError: No text parsed from document: <Mock id='85948960'> >>> bad.mock_calls [call.geturl(), call.tell(), call.read(4000), call.decode('ascii', 'strict'), call.decode().decode('ascii', 'strict'), call.decode().decode().find(':'), call.read()] ``` The second `.read()`-call is the one where `bs4` takes over and fails parsing the empty string. Minimal amendment: `reset_mock()` does not rewind `read.side_effect` so here is the same with a fresh mock: ```python >>> bad = mock_urlopen('<table><tr><td>spam<wbr />eggs</td></tr></table>') >>> pd.read_html(bad) Traceback (most recent call last): ... ValueError: No text parsed from document: <Mock id='50837656'> >>> bad.mock_calls [call.geturl(), call.tell(), call.read(4000), call.read(3952), call.decode('ascii', 'strict'), call.decode().decode('ascii', 'strict'), call.decode().decode().find(':'), call.read()] ``` Again, the last `.read()`-call is from `bs4` The only way to rewind a urlopen is re-requesting it or buffering it, unfortunately. This becomes a _much_ more complex patch, then :frowning: So i suppose that the try next parser should raise if we only have a filehandle (and not a path). would take that as a PR. We can seek for some IO handles, though. I don't see any reason not to add something like ```py if hasattr(io, 'seek'): io.seek(0) ``` and raise a warning if ```py hasattr(io, 'read') and not hasattr(io, 'seek') ``` Sounds good to me. I think @jreback means that the `raise` (possibly after checking for `seek`) should occur in the branch after the first parser fails, so it makes the current behaviour more official/transparent (give a better error message). The user can then select/try a different `flavor` (maybe the error message can hint at that) . ah, you're talking about ditching the fallthrough to the next parser entirely? I thought for io handles (possibly only non-seekable ones). Does not occur with file names, right? Yep, since _read() reopens the file for each parser if you're passing in filenames. On Sat, Oct 28, 2017 at 4:35 PM, Sebastian Bank <notifications@github.com> wrote: > I thought for io handles (possibly only non-seekable ones). Does not occur > with file names, right? > > — > You are receiving this because you authored the thread. > Reply to this email directly, view it on GitHub > <https://github.com/pandas-dev/pandas/issues/17975#issuecomment-340221351>, > or mute the thread > <https://github.com/notifications/unsubscribe-auth/AEa8SQpni0IETbGKuerchH4awQd7JEV5ks5sw54QgaJpZM4QFbJ2> > . >
2017-10-28T22:44:49Z
[]
[]
Traceback (most recent call last): File "<input>", line 1, in <module> pd.read_html(f) File "/usr/lib/python3.6/site-packages/pandas/io/html.py", line 906, in read_html keep_default_na=keep_default_na) File "/usr/lib/python3.6/site-packages/pandas/io/html.py", line 743, in _parse raise_with_traceback(retained) File "/usr/lib/python3.6/site-packages/pandas/compat/__init__.py", line 344, in raise_with_traceback raise exc.with_traceback(traceback) ValueError: No text parsed from document: <_io.TextIOWrapper name='/home/liam/test.html' mode='r' encoding='UTF-8'>
11,461
pandas-dev/pandas
pandas-dev__pandas-18248
9e3ad63cdb030c6b369d9d822469bb968e2d1804
diff --git a/doc/source/whatsnew/v0.22.0.txt b/doc/source/whatsnew/v0.22.0.txt --- a/doc/source/whatsnew/v0.22.0.txt +++ b/doc/source/whatsnew/v0.22.0.txt @@ -158,6 +158,6 @@ Categorical Other ^^^^^ -- +- Improved error message when attempting to use a Python keyword as an identifier in a numexpr query (:issue:`18221`) - - diff --git a/pandas/core/computation/expr.py b/pandas/core/computation/expr.py --- a/pandas/core/computation/expr.py +++ b/pandas/core/computation/expr.py @@ -307,7 +307,14 @@ def __init__(self, env, engine, parser, preparser=_preparse): def visit(self, node, **kwargs): if isinstance(node, string_types): clean = self.preparser(node) - node = ast.fix_missing_locations(ast.parse(clean)) + try: + node = ast.fix_missing_locations(ast.parse(clean)) + except SyntaxError as e: + from keyword import iskeyword + if any(iskeyword(x) for x in clean.split()): + e.msg = ("Python keyword not valid identifier" + " in numexpr query") + raise e method = 'visit_' + node.__class__.__name__ visitor = getattr(self, method) diff --git a/pandas/core/frame.py b/pandas/core/frame.py --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -2267,7 +2267,8 @@ def query(self, expr, inplace=False, **kwargs): by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier ``index`` is used for the frame index; you can also - use the name of the index to identify it in a query. + use the name of the index to identify it in a query. Please note that + Python keywords may not be used as identifiers. For further details and examples see the ``query`` documentation in :ref:`indexing <indexing.query>`.
df.query() does not support column name 'class' #### Code Sample, a copy-pastable example if possible ```python indices_to_plot = df.query('class>0') ``` #### Problem description Above code results in this error traceback: ```python Traceback (most recent call last): File "/Users/klay6683/miniconda3/envs/stable/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2910, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-33-6e077c50ac68>", line 2, in <module> indices_to_plot = df.query('class>0') File "/Users/klay6683/miniconda3/envs/stable/lib/python3.6/site-packages/pandas/core/frame.py", line 2297, in query res = self.eval(expr, **kwargs) File "/Users/klay6683/miniconda3/envs/stable/lib/python3.6/site-packages/pandas/core/frame.py", line 2366, in eval return _eval(expr, inplace=inplace, **kwargs) File "/Users/klay6683/miniconda3/envs/stable/lib/python3.6/site-packages/pandas/core/computation/eval.py", line 290, in eval truediv=truediv) File "/Users/klay6683/miniconda3/envs/stable/lib/python3.6/site-packages/pandas/core/computation/expr.py", line 732, in __init__ self.terms = self.parse() File "/Users/klay6683/miniconda3/envs/stable/lib/python3.6/site-packages/pandas/core/computation/expr.py", line 749, in parse return self._visitor.visit(self.expr) File "/Users/klay6683/miniconda3/envs/stable/lib/python3.6/site-packages/pandas/core/computation/expr.py", line 310, in visit node = ast.fix_missing_locations(ast.parse(clean)) File "/Users/klay6683/miniconda3/envs/stable/lib/python3.6/ast.py", line 35, in parse return compile(source, filename, mode, PyCF_ONLY_AST) File "<unknown>", line 1 class >0 ^ SyntaxError: invalid syntax ``` My column names are "occ_id, class, et, radius, lon, width, type" and if I execute this query on another column, it works fine: ```python indices_to_plot = df.query('et>0') ``` Only the column named 'class' seems to fail. #### Expected Output Sub selection of the dataframe according to the query. #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.6.3.final.0 python-bits: 64 OS: Darwin OS-release: 16.7.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.21.0 pytest: 3.2.3 pip: 9.0.1 setuptools: 36.6.0 Cython: 0.27.3 numpy: 1.13.3 scipy: 0.19.1 pyarrow: None xarray: 0.9.6 IPython: 6.2.1 sphinx: 1.6.5 patsy: 0.4.1 dateutil: 2.6.1 pytz: 2017.3 blosc: None bottleneck: 1.2.1 tables: 3.4.2 numexpr: 2.6.4 feather: None matplotlib: 2.1.0 openpyxl: None xlrd: 1.1.0 xlwt: 1.3.0 xlsxwriter: None lxml: None bs4: 4.6.0 html5lib: 0.999999999 sqlalchemy: None pymysql: None psycopg2: None jinja2: 2.9.6 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
While the error message could be better, I'm not sure this is something we can support (easily) - pandas and numexpr use the python parser to evaluate these expressions, and `class` is of course a reserved word in python. Understood, though this paragraph from the docstring made me believe it should work: > The DataFrame.index and DataFrame.columns attributes of the DataFrame instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier index is used for the frame index; you can also use the name of the index to identify it in a query. If it's impossible to use any reserved keywords as column names for `query` it should be explicitly called out in the docstring, I think. > If it's impossible to use any reserved keywords as column names for query it should be explicitly called out in the docstring, I think. Yes agreed, we may also want to wrap the parsing in a try/catch to bubble up a more directed error. PR welcome!
2017-11-12T21:11:07Z
[]
[]
Traceback (most recent call last): File "/Users/klay6683/miniconda3/envs/stable/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2910, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-33-6e077c50ac68>", line 2, in <module> indices_to_plot = df.query('class>0') File "/Users/klay6683/miniconda3/envs/stable/lib/python3.6/site-packages/pandas/core/frame.py", line 2297, in query res = self.eval(expr, **kwargs) File "/Users/klay6683/miniconda3/envs/stable/lib/python3.6/site-packages/pandas/core/frame.py", line 2366, in eval return _eval(expr, inplace=inplace, **kwargs) File "/Users/klay6683/miniconda3/envs/stable/lib/python3.6/site-packages/pandas/core/computation/eval.py", line 290, in eval truediv=truediv) File "/Users/klay6683/miniconda3/envs/stable/lib/python3.6/site-packages/pandas/core/computation/expr.py", line 732, in __init__ self.terms = self.parse() File "/Users/klay6683/miniconda3/envs/stable/lib/python3.6/site-packages/pandas/core/computation/expr.py", line 749, in parse return self._visitor.visit(self.expr) File "/Users/klay6683/miniconda3/envs/stable/lib/python3.6/site-packages/pandas/core/computation/expr.py", line 310, in visit node = ast.fix_missing_locations(ast.parse(clean)) File "/Users/klay6683/miniconda3/envs/stable/lib/python3.6/ast.py", line 35, in parse return compile(source, filename, mode, PyCF_ONLY_AST) File "<unknown>", line 1 class >0 ^ SyntaxError: invalid syntax
11,503
pandas-dev/pandas
pandas-dev__pandas-18309
dbec3c92e08063d247e0d28937c8695bbd66fe94
diff --git a/doc/source/whatsnew/v0.23.0.txt b/doc/source/whatsnew/v0.23.0.txt --- a/doc/source/whatsnew/v0.23.0.txt +++ b/doc/source/whatsnew/v0.23.0.txt @@ -301,6 +301,7 @@ Indexing - Bug in :func:`MultiIndex.remove_unused_levels` which would fill nan values (:issue:`18417`) - Bug in :func:`MultiIndex.from_tuples`` which would fail to take zipped tuples in python3 (:issue:`18434`) - Bug in :class:`Index` construction from list of mixed type tuples (:issue:`18505`) +- Bug in :func:`Index.drop` when passing a list of both tuples and non-tuples (:issue:`18304`) - Bug in :class:`IntervalIndex` where empty and purely NA data was constructed inconsistently depending on the construction method (:issue:`18421`) - Bug in :func:`IntervalIndex.symmetric_difference` where the symmetric difference with a non-``IntervalIndex`` did not raise (:issue:`18475`) - Bug in indexing a datetimelike ``Index`` that raised ``ValueError`` instead of ``IndexError`` (:issue:`18386`). diff --git a/pandas/core/common.py b/pandas/core/common.py --- a/pandas/core/common.py +++ b/pandas/core/common.py @@ -398,7 +398,19 @@ def _asarray_tuplesafe(values, dtype=None): return result -def _index_labels_to_array(labels): +def _index_labels_to_array(labels, dtype=None): + """ + Transform label or iterable of labels to array, for use in Index. + + Parameters + ---------- + dtype : dtype + If specified, use as dtype of the resulting array, otherwise infer. + + Returns + ------- + array + """ if isinstance(labels, (compat.string_types, tuple)): labels = [labels] @@ -408,7 +420,7 @@ def _index_labels_to_array(labels): except TypeError: # non-iterable labels = [labels] - labels = _asarray_tuplesafe(labels) + labels = _asarray_tuplesafe(labels, dtype=dtype) return labels diff --git a/pandas/core/indexes/base.py b/pandas/core/indexes/base.py --- a/pandas/core/indexes/base.py +++ b/pandas/core/indexes/base.py @@ -3761,7 +3761,8 @@ def drop(self, labels, errors='raise'): ------- dropped : Index """ - labels = _index_labels_to_array(labels) + arr_dtype = 'object' if self.dtype == 'object' else None + labels = _index_labels_to_array(labels, dtype=arr_dtype) indexer = self.get_indexer(labels) mask = indexer == -1 if mask.any():
pd.Index([ ('b', 'c'), 'a']).drop(['a', ('b', 'c')]) raises ValueError #### Code Sample, a copy-pastable example if possible ```bash pietro@debiousci:~$ PYTHONHASHSEED=5 python3 -c "import pandas as pd; s1 = pd.Series([0,1], name='a'); s2 = pd.Series([2,3], name=('b', 'c')); print(pd.crosstab(s1, s2))" Traceback (most recent call last): File "<string>", line 1, in <module> File "/home/pietro/nobackup/repo/pandas/pandas/core/reshape/pivot.py", line 466, in crosstab dropna=dropna, **kwargs) File "/home/pietro/nobackup/repo/pandas/pandas/core/frame.py", line 4462, in pivot_table margins_name=margins_name) File "/home/pietro/nobackup/repo/pandas/pandas/core/reshape/pivot.py", line 82, in pivot_table agged = grouped.agg(aggfunc) File "/home/pietro/nobackup/repo/pandas/pandas/core/groupby.py", line 4191, in aggregate return super(DataFrameGroupBy, self).aggregate(arg, *args, **kwargs) File "/home/pietro/nobackup/repo/pandas/pandas/core/groupby.py", line 3632, in aggregate return self._python_agg_general(arg, *args, **kwargs) File "/home/pietro/nobackup/repo/pandas/pandas/core/groupby.py", line 873, in _python_agg_general return self._wrap_aggregated_output(output) File "/home/pietro/nobackup/repo/pandas/pandas/core/groupby.py", line 4254, in _wrap_aggregated_output agg_labels = self._obj_with_exclusions._get_axis(agg_axis) File "pandas/_libs/properties.pyx", line 39, in pandas._libs.properties.cache_readonly.__get__ (pandas/_libs/properties.c:1604) File "/home/pietro/nobackup/repo/pandas/pandas/core/base.py", line 235, in _obj_with_exclusions return self.obj.drop(self.exclusions, axis=1) File "/home/pietro/nobackup/repo/pandas/pandas/core/generic.py", line 2517, in drop obj = obj._drop_axis(labels, axis, level=level, errors=errors) File "/home/pietro/nobackup/repo/pandas/pandas/core/generic.py", line 2549, in _drop_axis new_axis = axis.drop(labels, errors=errors) File "/home/pietro/nobackup/repo/pandas/pandas/core/indexes/base.py", line 3750, in drop labels = _index_labels_to_array(labels) File "/home/pietro/nobackup/repo/pandas/pandas/core/common.py", line 417, in _index_labels_to_array labels = _asarray_tuplesafe(labels) File "/home/pietro/nobackup/repo/pandas/pandas/core/common.py", line 386, in _asarray_tuplesafe result = np.asarray(values, dtype=dtype) File "/home/pietro/.local/lib/python3.5/site-packages/numpy/core/numeric.py", line 531, in asarray return array(a, dtype, copy=False, order=order) ValueError: setting an array element with a sequence ``` Compare to: ``` pietro@debiousci:~$ PYTHONHASHSEED=6 python3 -c "import pandas as pd; s1 = pd.Series([0,1], name='a'); s2 = pd.Series([2,3], name=('b', 'c')); print(pd.crosstab(s1, s2))" ('b', 'c') 2 3 a 0 1 0 1 0 1 ``` #### Problem description The above happens (pseudo-)randomly with python 3 and, it seems, always with python 2. #### Expected Output The case `` PYTHONHASHSEED=6``. #### Output of ``pd.show_versions()`` <details> In [2]: pd.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 3.5.3.final.0 python-bits: 64 OS: Linux OS-release: 4.9.0-3-amd64 machine: x86_64 processor: byteorder: little LC_ALL: None LANG: it_IT.UTF-8 LOCALE: it_IT.UTF-8 pandas: 0.22.0.dev0+131.g63e8527d3 pytest: 3.2.3 pip: 9.0.1 setuptools: 36.7.0 Cython: 0.25.2 numpy: 1.12.1 scipy: 0.19.0 pyarrow: None xarray: None IPython: 6.2.1 sphinx: 1.5.6 patsy: 0.4.1 dateutil: 2.6.1 pytz: 2017.2 blosc: None bottleneck: 1.2.0dev tables: 3.3.0 numexpr: 2.6.1 feather: 0.3.1 matplotlib: 2.0.0 openpyxl: None xlrd: 1.0.0 xlwt: 1.1.2 xlsxwriter: 0.9.6 lxml: None bs4: 4.5.3 html5lib: 0.999999999 sqlalchemy: 1.0.15 pymysql: None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: 0.2.1 </details>
> The above happens (pseudo-)randomly with python 3 and, it seems, always with python 2. Sometimes it works also in Python 2.
2017-11-15T15:53:00Z
[]
[]
Traceback (most recent call last): File "<string>", line 1, in <module> File "/home/pietro/nobackup/repo/pandas/pandas/core/reshape/pivot.py", line 466, in crosstab dropna=dropna, **kwargs) File "/home/pietro/nobackup/repo/pandas/pandas/core/frame.py", line 4462, in pivot_table margins_name=margins_name) File "/home/pietro/nobackup/repo/pandas/pandas/core/reshape/pivot.py", line 82, in pivot_table agged = grouped.agg(aggfunc) File "/home/pietro/nobackup/repo/pandas/pandas/core/groupby.py", line 4191, in aggregate return super(DataFrameGroupBy, self).aggregate(arg, *args, **kwargs) File "/home/pietro/nobackup/repo/pandas/pandas/core/groupby.py", line 3632, in aggregate return self._python_agg_general(arg, *args, **kwargs) File "/home/pietro/nobackup/repo/pandas/pandas/core/groupby.py", line 873, in _python_agg_general return self._wrap_aggregated_output(output) File "/home/pietro/nobackup/repo/pandas/pandas/core/groupby.py", line 4254, in _wrap_aggregated_output agg_labels = self._obj_with_exclusions._get_axis(agg_axis) File "pandas/_libs/properties.pyx", line 39, in pandas._libs.properties.cache_readonly.__get__ (pandas/_libs/properties.c:1604) File "/home/pietro/nobackup/repo/pandas/pandas/core/base.py", line 235, in _obj_with_exclusions return self.obj.drop(self.exclusions, axis=1) File "/home/pietro/nobackup/repo/pandas/pandas/core/generic.py", line 2517, in drop obj = obj._drop_axis(labels, axis, level=level, errors=errors) File "/home/pietro/nobackup/repo/pandas/pandas/core/generic.py", line 2549, in _drop_axis new_axis = axis.drop(labels, errors=errors) File "/home/pietro/nobackup/repo/pandas/pandas/core/indexes/base.py", line 3750, in drop labels = _index_labels_to_array(labels) File "/home/pietro/nobackup/repo/pandas/pandas/core/common.py", line 417, in _index_labels_to_array labels = _asarray_tuplesafe(labels) File "/home/pietro/nobackup/repo/pandas/pandas/core/common.py", line 386, in _asarray_tuplesafe result = np.asarray(values, dtype=dtype) File "/home/pietro/.local/lib/python3.5/site-packages/numpy/core/numeric.py", line 531, in asarray return array(a, dtype, copy=False, order=order) ValueError: setting an array element with a sequence
11,511
pandas-dev/pandas
pandas-dev__pandas-18376
f2d8db1acccd73340988af9ad5874252fd5c3967
diff --git a/doc/source/whatsnew/v0.23.0.txt b/doc/source/whatsnew/v0.23.0.txt --- a/doc/source/whatsnew/v0.23.0.txt +++ b/doc/source/whatsnew/v0.23.0.txt @@ -342,6 +342,7 @@ Conversion - Bug in :class:`Series`` with ``dtype='timedelta64[ns]`` where addition or subtraction of ``TimedeltaIndex`` had results cast to ``dtype='int64'`` (:issue:`17250`) - Bug in :class:`TimedeltaIndex` where division by a ``Series`` would return a ``TimedeltaIndex`` instead of a ``Series`` (issue:`19042`) - Bug in :class:`Series` with ``dtype='timedelta64[ns]`` where addition or subtraction of ``TimedeltaIndex`` could return a ``Series`` with an incorrect name (issue:`19043`) +- Fixed bug where comparing :class:`DatetimeIndex` failed to raise ``TypeError`` when attempting to compare timezone-aware and timezone-naive datetimelike objects (:issue:`18162`) - Indexing diff --git a/pandas/core/indexes/datetimes.py b/pandas/core/indexes/datetimes.py --- a/pandas/core/indexes/datetimes.py +++ b/pandas/core/indexes/datetimes.py @@ -13,14 +13,14 @@ _INT64_DTYPE, _NS_DTYPE, is_object_dtype, - is_datetime64_dtype, + is_datetime64_dtype, is_datetime64tz_dtype, is_datetimetz, is_dtype_equal, is_timedelta64_dtype, is_integer, is_float, is_integer_dtype, - is_datetime64_ns_dtype, + is_datetime64_ns_dtype, is_datetimelike, is_period_dtype, is_bool_dtype, is_string_like, @@ -106,8 +106,12 @@ def _dt_index_cmp(opname, cls, nat_result=False): def wrapper(self, other): func = getattr(super(DatetimeIndex, self), opname) - if (isinstance(other, datetime) or - isinstance(other, compat.string_types)): + + if isinstance(other, (datetime, compat.string_types)): + if isinstance(other, datetime): + # GH#18435 strings get a pass from tzawareness compat + self._assert_tzawareness_compat(other) + other = _to_m8(other, tz=self.tz) result = func(other) if isna(other): @@ -117,6 +121,10 @@ def wrapper(self, other): other = DatetimeIndex(other) elif not isinstance(other, (np.ndarray, Index, ABCSeries)): other = _ensure_datetime64(other) + + if is_datetimelike(other): + self._assert_tzawareness_compat(other) + result = func(np.asarray(other)) result = _values_from_object(result) @@ -652,6 +660,20 @@ def _simple_new(cls, values, name=None, freq=None, tz=None, result._reset_identity() return result + def _assert_tzawareness_compat(self, other): + # adapted from _Timestamp._assert_tzawareness_compat + other_tz = getattr(other, 'tzinfo', None) + if is_datetime64tz_dtype(other): + # Get tzinfo from Series dtype + other_tz = other.dtype.tz + if self.tz is None: + if other_tz is not None: + raise TypeError('Cannot compare tz-naive and tz-aware ' + 'datetime-like objects.') + elif other_tz is None: + raise TypeError('Cannot compare tz-naive and tz-aware ' + 'datetime-like objects') + @property def tzinfo(self): """
DatetimeIndex comparison tzaware vs naive should raise ``` >>> dr = pd.date_range('2016-01-01', periods=6) >>> dz = dr.tz_localize('US/Pacific') >>> dr < dz array([ True, True, True, True, True, True], dtype=bool) >>> dr[0] < dz[0] Traceback (most recent call last): File "<stdin>", line 1, in <module> File "pandas/_libs/tslib.pyx", line 1169, in pandas._libs.tslib._Timestamp.__richcmp__ File "pandas/_libs/tslib.pyx", line 1230, in pandas._libs.tslib._Timestamp._assert_tzawareness_compat TypeError: Cannot compare tz-naive and tz-aware timestamps ``` The vectorized comparison should raise too right?
yes this should raise
2017-11-20T00:21:05Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "pandas/_libs/tslib.pyx", line 1169, in pandas._libs.tslib._Timestamp.__richcmp__ File "pandas/_libs/tslib.pyx", line 1230, in pandas._libs.tslib._Timestamp._assert_tzawareness_compat TypeError: Cannot compare tz-naive and tz-aware timestamps
11,522
pandas-dev/pandas
pandas-dev__pandas-18380
1915ffc53ea60494f24d83844bbff00efa392c82
diff --git a/doc/source/whatsnew/v0.22.0.txt b/doc/source/whatsnew/v0.22.0.txt --- a/doc/source/whatsnew/v0.22.0.txt +++ b/doc/source/whatsnew/v0.22.0.txt @@ -26,6 +26,7 @@ Other Enhancements - :func:`pandas.tseries.frequencies.to_offset` now accepts leading '+' signs e.g. '+1h'. (:issue:`18171`) - :class:`pandas.io.formats.style.Styler` now has method ``hide_index()`` to determine whether the index will be rendered in ouptut (:issue:`14194`) - :class:`pandas.io.formats.style.Styler` now has method ``hide_columns()`` to determine whether columns will be hidden in output (:issue:`14194`) +- Improved wording of ValueError raised in :func:`Timestamp.tz_localize` function .. _whatsnew_0220.api_breaking: diff --git a/pandas/_libs/tslib.pyx b/pandas/_libs/tslib.pyx --- a/pandas/_libs/tslib.pyx +++ b/pandas/_libs/tslib.pyx @@ -1445,10 +1445,8 @@ cpdef array_with_unit_to_datetime(ndarray values, unit, errors='coerce'): else: if is_raise: - raise ValueError("non convertible value {0}" - "with the unit '{1}'".format( - val, - unit)) + raise ValueError("unit='{0}' not valid with non-numerical " + "val='{1}'".format(unit, val)) if is_ignore: raise AssertionError
DOC/ERR: update error message / doc-string for to_datetime with non-convertible object and unit kw #### A small, complete example of the issue ``` import pandas as pd pd.to_datetime(datetime.datetime(2016,1,1), unit='s') Traceback (most recent call last): File "/home/julienv/.pycharm_helpers/pydev/pydevd_exec2.py", line 3, in Exec exec(exp, global_vars, local_vars) File "<input>", line 1, in <module> File "/usr/local/lib/python3.4/dist-packages/pandas/util/decorators.py", line 91, in wrapper return func(*args, **kwargs) File "/usr/local/lib/python3.4/dist-packages/pandas/tseries/tools.py", line 424, in to_datetime return _convert_listlike(np.array([arg]), box, format)[0] File "/usr/local/lib/python3.4/dist-packages/pandas/tseries/tools.py", line 330, in _convert_listlike errors=errors) File "pandas/tslib.pyx", line 2144, in pandas.tslib.array_with_unit_to_datetime (pandas/tslib.c:39248) File "pandas/tslib.pyx", line 2255, in pandas.tslib.array_with_unit_to_datetime (pandas/tslib.c:38492) ValueError: non convertible value 2016-01-01 00:00:00with the unit 's' ``` #### Expected Output Timestamp('2016-01-01 00:00:00') #### Output of `pd.show_versions()` <details> > > > pd.show_versions() ## INSTALLED VERSIONS commit: None python: 3.4.3.final.0 python-bits: 64 OS: Linux OS-release: 3.13.0-96-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: fr_FR.UTF-8 LOCALE: fr_FR.UTF-8 pandas: 0.19.0 nose: None pip: 1.5.4 setuptools: 3.3 Cython: 0.20.1post0 numpy: 1.11.2 scipy: 0.18.1 statsmodels: None xarray: None IPython: None sphinx: 1.2.2 patsy: None dateutil: 2.5.3 pytz: 2016.7 blosc: None bottleneck: None tables: None numexpr: None matplotlib: 1.5.1 openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: 0.999 httplib2: None apiclient: None sqlalchemy: None pymysql: None psycopg2: 2.5.3 (dt dec pq3 ext) jinja2: 2.7.3 boto: None pandas_datareader: None </details>
This may have changed, but is is actually in some way correct. As stated in the docstring (but maybe not clear enough), the `unit` keyword is to interpret correctly a integer or float, eg: ``` In [17]: pd.to_datetime(1000000000, unit='s') Out[17]: Timestamp('2001-09-09 01:46:40') ``` It is not meant to the precision of the resulting datetime, as this is always 'ns' whathever the input. So since the keyword would not have any effect when parsing a datetime object, I think it is correct to raise an error. if you'd like to submit a doc-string update would be ok. Furthermore the error message is missing a space (after the Timestamp), and I think could be more informative, e.g. print the type of the object (as well, maybe in lieu of the value). Yes, an error message that says something like "unit='s' is only valid with numerical input" would be a lot more informative
2017-11-20T04:00:49Z
[]
[]
Traceback (most recent call last): File "/home/julienv/.pycharm_helpers/pydev/pydevd_exec2.py", line 3, in Exec exec(exp, global_vars, local_vars) File "<input>", line 1, in <module> File "/usr/local/lib/python3.4/dist-packages/pandas/util/decorators.py", line 91, in wrapper return func(*args, **kwargs) File "/usr/local/lib/python3.4/dist-packages/pandas/tseries/tools.py", line 424, in to_datetime return _convert_listlike(np.array([arg]), box, format)[0] File "/usr/local/lib/python3.4/dist-packages/pandas/tseries/tools.py", line 330, in _convert_listlike errors=errors) File "pandas/tslib.pyx", line 2144, in pandas.tslib.array_with_unit_to_datetime (pandas/tslib.c:39248) File "pandas/tslib.pyx", line 2255, in pandas.tslib.array_with_unit_to_datetime (pandas/tslib.c:38492) ValueError: non convertible value 2016-01-01 00:00:00with the unit 's'
11,523
pandas-dev/pandas
pandas-dev__pandas-18637
13f6267207dd1f140b12d7718277508eff5c1efb
diff --git a/pandas/_libs/sparse.pyx b/pandas/_libs/sparse.pyx --- a/pandas/_libs/sparse.pyx +++ b/pandas/_libs/sparse.pyx @@ -12,8 +12,8 @@ from distutils.version import LooseVersion # numpy versioning _np_version = np.version.short_version -_np_version_under1p10 = LooseVersion(_np_version) < '1.10' -_np_version_under1p11 = LooseVersion(_np_version) < '1.11' +_np_version_under1p10 = LooseVersion(_np_version) < LooseVersion('1.10') +_np_version_under1p11 = LooseVersion(_np_version) < LooseVersion('1.11') np.import_array() np.import_ufunc() diff --git a/pandas/compat/__init__.py b/pandas/compat/__init__.py --- a/pandas/compat/__init__.py +++ b/pandas/compat/__init__.py @@ -399,7 +399,7 @@ def raise_with_traceback(exc, traceback=Ellipsis): # dateutil minimum version import dateutil -if LooseVersion(dateutil.__version__) < '2.5': +if LooseVersion(dateutil.__version__) < LooseVersion('2.5'): raise ImportError('dateutil 2.5.0 is the minimum required version') from dateutil import parser as _date_parser parse_date = _date_parser.parse diff --git a/pandas/compat/numpy/__init__.py b/pandas/compat/numpy/__init__.py --- a/pandas/compat/numpy/__init__.py +++ b/pandas/compat/numpy/__init__.py @@ -9,12 +9,12 @@ # numpy versioning _np_version = np.__version__ _nlv = LooseVersion(_np_version) -_np_version_under1p10 = _nlv < '1.10' -_np_version_under1p11 = _nlv < '1.11' -_np_version_under1p12 = _nlv < '1.12' -_np_version_under1p13 = _nlv < '1.13' -_np_version_under1p14 = _nlv < '1.14' -_np_version_under1p15 = _nlv < '1.15' +_np_version_under1p10 = _nlv < LooseVersion('1.10') +_np_version_under1p11 = _nlv < LooseVersion('1.11') +_np_version_under1p12 = _nlv < LooseVersion('1.12') +_np_version_under1p13 = _nlv < LooseVersion('1.13') +_np_version_under1p14 = _nlv < LooseVersion('1.14') +_np_version_under1p15 = _nlv < LooseVersion('1.15') if _nlv < '1.9': raise ImportError('this version of pandas is incompatible with ' diff --git a/pandas/conftest.py b/pandas/conftest.py --- a/pandas/conftest.py +++ b/pandas/conftest.py @@ -70,8 +70,8 @@ def ip(): is_dateutil_le_261 = pytest.mark.skipif( - LooseVersion(dateutil.__version__) > '2.6.1', + LooseVersion(dateutil.__version__) > LooseVersion('2.6.1'), reason="dateutil api change version") is_dateutil_gt_261 = pytest.mark.skipif( - LooseVersion(dateutil.__version__) <= '2.6.1', + LooseVersion(dateutil.__version__) <= LooseVersion('2.6.1'), reason="dateutil stable version") diff --git a/pandas/core/computation/check.py b/pandas/core/computation/check.py --- a/pandas/core/computation/check.py +++ b/pandas/core/computation/check.py @@ -6,7 +6,7 @@ try: import numexpr as ne - ver = ne.__version__ + ver = LooseVersion(ne.__version__) _NUMEXPR_INSTALLED = ver >= LooseVersion(_MIN_NUMEXPR_VERSION) if not _NUMEXPR_INSTALLED: diff --git a/pandas/core/missing.py b/pandas/core/missing.py --- a/pandas/core/missing.py +++ b/pandas/core/missing.py @@ -347,7 +347,7 @@ def _from_derivatives(xi, yi, x, order=None, der=0, extrapolate=False): import scipy from scipy import interpolate - if LooseVersion(scipy.__version__) < '0.18.0': + if LooseVersion(scipy.__version__) < LooseVersion('0.18.0'): try: method = interpolate.piecewise_polynomial_interpolate return method(xi, yi.reshape(-1, 1), x, diff --git a/pandas/io/feather_format.py b/pandas/io/feather_format.py --- a/pandas/io/feather_format.py +++ b/pandas/io/feather_format.py @@ -22,7 +22,7 @@ def _try_import(): "pip install -U feather-format\n") try: - feather.__version__ >= LooseVersion('0.3.1') + LooseVersion(feather.__version__) >= LooseVersion('0.3.1') except AttributeError: raise ImportError("the feather-format library must be >= " "version 0.3.1\n" @@ -106,7 +106,7 @@ def read_feather(path, nthreads=1): feather = _try_import() path = _stringify_path(path) - if feather.__version__ < LooseVersion('0.4.0'): + if LooseVersion(feather.__version__) < LooseVersion('0.4.0'): return feather.read_dataframe(path) return feather.read_dataframe(path, nthreads=nthreads) diff --git a/pandas/io/html.py b/pandas/io/html.py --- a/pandas/io/html.py +++ b/pandas/io/html.py @@ -684,7 +684,7 @@ def _parser_dispatch(flavor): raise ImportError( "BeautifulSoup4 (bs4) not found, please install it") import bs4 - if bs4.__version__ == LooseVersion('4.2.0'): + if LooseVersion(bs4.__version__) == LooseVersion('4.2.0'): raise ValueError("You're using a version" " of BeautifulSoup4 (4.2.0) that has been" " known to cause problems on certain" diff --git a/pandas/io/parquet.py b/pandas/io/parquet.py --- a/pandas/io/parquet.py +++ b/pandas/io/parquet.py @@ -50,7 +50,7 @@ def __init__(self): "\nor via pip\n" "pip install -U pyarrow\n") - if LooseVersion(pyarrow.__version__) < '0.4.1': + if LooseVersion(pyarrow.__version__) < LooseVersion('0.4.1'): raise ImportError("pyarrow >= 0.4.1 is required for parquet" "support\n\n" "you can install via conda\n" @@ -58,8 +58,10 @@ def __init__(self): "\nor via pip\n" "pip install -U pyarrow\n") - self._pyarrow_lt_050 = LooseVersion(pyarrow.__version__) < '0.5.0' - self._pyarrow_lt_060 = LooseVersion(pyarrow.__version__) < '0.6.0' + self._pyarrow_lt_050 = (LooseVersion(pyarrow.__version__) < + LooseVersion('0.5.0')) + self._pyarrow_lt_060 = (LooseVersion(pyarrow.__version__) < + LooseVersion('0.6.0')) self.api = pyarrow def write(self, df, path, compression='snappy', @@ -97,7 +99,7 @@ def __init__(self): "\nor via pip\n" "pip install -U fastparquet") - if LooseVersion(fastparquet.__version__) < '0.1.0': + if LooseVersion(fastparquet.__version__) < LooseVersion('0.1.0'): raise ImportError("fastparquet >= 0.1.0 is required for parquet " "support\n\n" "you can install via conda\n" diff --git a/pandas/io/pytables.py b/pandas/io/pytables.py --- a/pandas/io/pytables.py +++ b/pandas/io/pytables.py @@ -248,7 +248,7 @@ def _tables(): _table_mod = tables # version requirements - if LooseVersion(tables.__version__) < '3.0.0': + if LooseVersion(tables.__version__) < LooseVersion('3.0.0'): raise ImportError("PyTables version >= 3.0.0 is required") # set the file open policy diff --git a/pandas/io/sql.py b/pandas/io/sql.py --- a/pandas/io/sql.py +++ b/pandas/io/sql.py @@ -67,11 +67,11 @@ def _is_sqlalchemy_connectable(con): _SQLALCHEMY_INSTALLED = True from distutils.version import LooseVersion - ver = LooseVersion(sqlalchemy.__version__) + ver = sqlalchemy.__version__ # For sqlalchemy versions < 0.8.2, the BIGINT type is recognized # for a sqlite engine, which results in a warning when trying to # read/write a DataFrame with int64 values. (GH7433) - if ver < '0.8.2': + if LooseVersion(ver) < LooseVersion('0.8.2'): from sqlalchemy import BigInteger from sqlalchemy.ext.compiler import compiles diff --git a/pandas/plotting/_compat.py b/pandas/plotting/_compat.py --- a/pandas/plotting/_compat.py +++ b/pandas/plotting/_compat.py @@ -8,7 +8,7 @@ def _mpl_le_1_2_1(): try: import matplotlib as mpl - return (str(mpl.__version__) <= LooseVersion('1.2.1') and + return (LooseVersion(mpl.__version__) <= LooseVersion('1.2.1') and str(mpl.__version__)[0] != '0') except ImportError: return False @@ -19,8 +19,9 @@ def _mpl_ge_1_3_1(): import matplotlib # The or v[0] == '0' is because their versioneer is # messed up on dev - return (matplotlib.__version__ >= LooseVersion('1.3.1') or - matplotlib.__version__[0] == '0') + return (LooseVersion(matplotlib.__version__) >= + LooseVersion('1.3.1') or + str(matplotlib.__version__)[0] == '0') except ImportError: return False @@ -28,8 +29,8 @@ def _mpl_ge_1_3_1(): def _mpl_ge_1_4_0(): try: import matplotlib - return (matplotlib.__version__ >= LooseVersion('1.4') or - matplotlib.__version__[0] == '0') + return (LooseVersion(matplotlib.__version__) >= LooseVersion('1.4') or + str(matplotlib.__version__)[0] == '0') except ImportError: return False @@ -37,8 +38,8 @@ def _mpl_ge_1_4_0(): def _mpl_ge_1_5_0(): try: import matplotlib - return (matplotlib.__version__ >= LooseVersion('1.5') or - matplotlib.__version__[0] == '0') + return (LooseVersion(matplotlib.__version__) >= LooseVersion('1.5') or + str(matplotlib.__version__)[0] == '0') except ImportError: return False @@ -46,7 +47,7 @@ def _mpl_ge_1_5_0(): def _mpl_ge_2_0_0(): try: import matplotlib - return matplotlib.__version__ >= LooseVersion('2.0') + return LooseVersion(matplotlib.__version__) >= LooseVersion('2.0') except ImportError: return False @@ -62,7 +63,7 @@ def _mpl_le_2_0_0(): def _mpl_ge_2_0_1(): try: import matplotlib - return matplotlib.__version__ >= LooseVersion('2.0.1') + return LooseVersion(matplotlib.__version__) >= LooseVersion('2.0.1') except ImportError: return False @@ -70,6 +71,6 @@ def _mpl_ge_2_0_1(): def _mpl_ge_2_1_0(): try: import matplotlib - return matplotlib.__version__ >= LooseVersion('2.1') + return LooseVersion(matplotlib.__version__) >= LooseVersion('2.1') except ImportError: return False diff --git a/pandas/util/testing.py b/pandas/util/testing.py --- a/pandas/util/testing.py +++ b/pandas/util/testing.py @@ -329,7 +329,7 @@ def _skip_if_mpl_1_5(): import matplotlib as mpl v = mpl.__version__ - if v > LooseVersion('1.4.3') or v[0] == '0': + if LooseVersion(v) > LooseVersion('1.4.3') or str(v)[0] == '0': import pytest pytest.skip("matplotlib 1.5") else: @@ -362,7 +362,7 @@ def _skip_if_no_xarray(): xarray = pytest.importorskip("xarray") v = xarray.__version__ - if v < LooseVersion('0.7.0'): + if LooseVersion(v) < LooseVersion('0.7.0'): import pytest pytest.skip("xarray version is too low: {version}".format(version=v))
plotting/_compat Version Comparisons Not Working in Py27 I noticed this while setting up a virtual environment using matplotlib 1.4.0 to test #18190. ``__version__`` sometimes returns a string and other times returns a unicode object in Python 2.7. When returning unicode, the comparisons that occur in ``plotting/_compat.py`` will raise ```python >>> from distutils.version import LooseVersion >>> import matplotlib >>> matplotlib.__version__ u'1.4.0' >>> matplotlib.__version__ < LooseVersion("1.5") Traceback (most recent call last): File "<stdin>", line 1, in <module> File "~/miniconda3/envs/mpl1_4/lib/python2.7/distutils/version.py", line 296, in __cmp__ return cmp(self.version, other.version) AttributeError: 'unicode' object has no attribute 'version' ``` In some cases, the versions are converted to ``str`` objects in ``plotting/_compat.py`` to presumably avoid this error, but it is not done consistently. As perhaps a better approach, we could create ``LooseVersion`` objects from all the ``__version__`` properties so that the comparison is done between equal types across the board. ```python >>> LooseVersion(matplotlib.__version__) < LooseVersion("1.5") True ``` #### Output of ``pd.show_versions()`` <details> Python 2.7.14 | packaged by conda-forge | (default, Nov 4 2017, 10:22:41) [GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)] on darwin Type "help", "copyright", "credits" or "license" for more information. >>> import pandas as pd >>> pd.show_versions() INSTALLED VERSIONS ------------------ commit: 2c903d594299b2441d4742e777a10e8c76557386 python: 2.7.14.final.0 python-bits: 64 OS: Darwin OS-release: 17.2.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: None.None pandas: 0.22.0.dev0+283.g2c903d594.dirty pytest: 3.3.0 pip: 9.0.1 setuptools: 38.2.3 Cython: 0.27.3 numpy: 1.9.3 scipy: None pyarrow: None xarray: None IPython: None sphinx: None patsy: None dateutil: 2.6.1 pytz: 2017.3 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: 1.4.0 openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: None sqlalchemy: None pymysql: None psycopg2: None jinja2: None s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
I've seen this error when a library imports `unicode_literals`. > As perhaps a better approach, we could create LooseVersion objects from all the __version__ properties so that the comparison is done between equal types across the board. That's probably best anyway.
2017-12-04T21:20:47Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "~/miniconda3/envs/mpl1_4/lib/python2.7/distutils/version.py", line 296, in __cmp__ return cmp(self.version, other.version) AttributeError: 'unicode' object has no attribute 'version'
11,569
pandas-dev/pandas
pandas-dev__pandas-19013
0e3c797c4c12fa04fd745e595e822886e917b316
diff --git a/doc/source/whatsnew/v0.23.0.txt b/doc/source/whatsnew/v0.23.0.txt --- a/doc/source/whatsnew/v0.23.0.txt +++ b/doc/source/whatsnew/v0.23.0.txt @@ -368,7 +368,7 @@ Numeric ^^^^^^^ - Bug in :func:`Series.__sub__` subtracting a non-nanosecond ``np.datetime64`` object from a ``Series`` gave incorrect results (:issue:`7996`) -- +- Bug in :class:`DatetimeIndex`, :class:`TimedeltaIndex` addition and subtraction of zero-dimensional integer arrays gave incorrect results (:issue:`19012`) - Categorical diff --git a/pandas/core/indexes/datetimelike.py b/pandas/core/indexes/datetimelike.py --- a/pandas/core/indexes/datetimelike.py +++ b/pandas/core/indexes/datetimelike.py @@ -669,6 +669,8 @@ def __add__(self, other): from pandas.core.index import Index from pandas.core.indexes.timedeltas import TimedeltaIndex from pandas.tseries.offsets import DateOffset + + other = lib.item_from_zerodim(other) if is_timedelta64_dtype(other): return self._add_delta(other) elif isinstance(self, TimedeltaIndex) and isinstance(other, Index): @@ -689,6 +691,7 @@ def __add__(self, other): return self._add_datelike(other) else: # pragma: no cover return NotImplemented + cls.__add__ = __add__ cls.__radd__ = __add__ @@ -697,6 +700,8 @@ def __sub__(self, other): from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.timedeltas import TimedeltaIndex from pandas.tseries.offsets import DateOffset + + other = lib.item_from_zerodim(other) if is_timedelta64_dtype(other): return self._add_delta(-other) elif isinstance(self, TimedeltaIndex) and isinstance(other, Index): @@ -724,6 +729,7 @@ def __sub__(self, other): else: # pragma: no cover return NotImplemented + cls.__sub__ = __sub__ def __rsub__(self, other): @@ -737,8 +743,10 @@ def _add_delta(self, other): return NotImplemented def _add_delta_td(self, other): - # add a delta of a timedeltalike - # return the i8 result view + """ + Add a delta of a timedeltalike + return the i8 result view + """ inc = delta_to_nanoseconds(other) new_values = checked_add_with_arr(self.asi8, inc, @@ -748,8 +756,10 @@ def _add_delta_td(self, other): return new_values.view('i8') def _add_delta_tdi(self, other): - # add a delta of a TimedeltaIndex - # return the i8 result view + """ + Add a delta of a TimedeltaIndex + return the i8 result view + """ # delta operation if not len(self) == len(other):
DatetimeIndex/TimedeltaIndex add/sub zero-dim arrays incorrect Opening this mainly to get the appropriate reference for the upcoming PR. Setup: ``` dti = pd.date_range('2016-01-01', periods=3, freq='H') one = np.array(1) ``` 0.21.1: ``` >>> dti + one DatetimeIndex(['2016-01-01 00:00:00.000000001', '2016-01-01 01:00:00.000000001', '2016-01-01 02:00:00.000000001'], dtype='datetime64[ns]', freq='H') >>> dti.freq = None >>> dti + one DatetimeIndex(['2016-01-01 00:00:00.000000001', '2016-01-01 01:00:00.000000001', '2016-01-01 02:00:00.000000001'], dtype='datetime64[ns]', freq=None) ``` Master (see #19011) ``` >>> dti + one Traceback (most recent call last): File "<stdin>", line 1, in <module> File "pandas/core/indexes/datetimelike.py", line 685, in __add__ elif is_offsetlike(other): File "pandas/core/dtypes/common.py", line 294, in is_offsetlike elif (is_list_like(arr_or_obj) and len(arr_or_obj) and TypeError: len() of unsized object ```
2017-12-31T01:18:48Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "pandas/core/indexes/datetimelike.py", line 685, in __add__ elif is_offsetlike(other): File "pandas/core/dtypes/common.py", line 294, in is_offsetlike elif (is_list_like(arr_or_obj) and len(arr_or_obj) and TypeError: len() of unsized object
11,635
pandas-dev/pandas
pandas-dev__pandas-19338
5fdb9c0edef57da4b29a437eca84bad5f20719b7
diff --git a/pandas/core/internals.py b/pandas/core/internals.py --- a/pandas/core/internals.py +++ b/pandas/core/internals.py @@ -4407,42 +4407,6 @@ def _blklocs(self): """ compat with BlockManager """ return None - def reindex(self, new_axis, indexer=None, method=None, fill_value=None, - limit=None, copy=True): - # if we are the same and don't copy, just return - if self.index.equals(new_axis): - if copy: - return self.copy(deep=True) - else: - return self - - values = self._block.get_values() - - if indexer is None: - indexer = self.items.get_indexer_for(new_axis) - - if fill_value is None: - fill_value = np.nan - - new_values = algos.take_1d(values, indexer, fill_value=fill_value) - - # fill if needed - if method is not None or limit is not None: - new_values = missing.interpolate_2d(new_values, - method=method, - limit=limit, - fill_value=fill_value) - - if self._block.is_sparse: - make_block = self._block.make_block_same_class - - block = make_block(new_values, copy=copy, - placement=slice(0, len(new_axis))) - - mgr = SingleBlockManager(block, new_axis) - mgr._consolidate_inplace() - return mgr - def get_slice(self, slobj, axis=0): if axis >= self.ndim: raise IndexError("Requested axis not found in manager") diff --git a/pandas/core/series.py b/pandas/core/series.py --- a/pandas/core/series.py +++ b/pandas/core/series.py @@ -197,8 +197,13 @@ def __init__(self, data=None, index=None, dtype=None, name=None, elif isinstance(data, SingleBlockManager): if index is None: index = data.index - else: - data = data.reindex(index, copy=copy) + elif not data.index.equals(index) or copy: + # GH#19275 SingleBlockManager input should only be called + # internally + raise AssertionError('Cannot pass both SingleBlockManager ' + '`data` argument and a different ' + '`index` argument. `copy` must ' + 'be False.') elif isinstance(data, Categorical): # GH12574: Allow dtype=category only, otherwise error if ((dtype is not None) and diff --git a/pandas/core/sparse/series.py b/pandas/core/sparse/series.py --- a/pandas/core/sparse/series.py +++ b/pandas/core/sparse/series.py @@ -166,9 +166,13 @@ def __init__(self, data=None, index=None, sparse_index=None, kind='block', data = data.astype(dtype) if index is None: index = data.index.view() - else: - - data = data.reindex(index, copy=False) + elif not data.index.equals(index) or copy: # pragma: no cover + # GH#19275 SingleBlockManager input should only be called + # internally + raise AssertionError('Cannot pass both SingleBlockManager ' + '`data` argument and a different ' + '`index` argument. `copy` must ' + 'be False.') else: length = len(index)
SingleBlockManager.reindex almost unused, unusable https://github.com/pandas-dev/pandas/blob/master/pandas/core/internals.py#L4447 SingleBlockManager.reindex has only code code branch hit in test coverage, immediately returns `self`. This is good because I think if it went further than that it would likely raise one of several errors. The end of the method: ``` if self._block.is_sparse: make_block = self._block.make_block_same_class block = make_block(new_values, copy=copy, placement=slice(0, len(new_axis))) mgr = SingleBlockManager(block, new_axis) mgr._consolidate_inplace() return mgr ``` In the case where `not self._block.is_sparse`, then I'm pretty sure the author intended for `make_block` to point at the module-level `make_block` function. But instead it would raise an `UnboundLocalError`: ``` ser = pd.Series([1, 2, 3]) idx = ser.index * 2 >>> ser._data.reindex(idx) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "pandas/core/internals.py", line 4518, in reindex block = make_block(new_values, copy=copy, UnboundLocalError: local variable 'make_block' referenced before assignment ``` Moreover, the call to `make_block` passes a `copy` kwarg, which is not accepted by the module-level function. So my hope is that it can be confirmed that this method is no longer needed and can removed.
well if you remove it and things don't break that would confirm it no? > well if you remove it and things don't break that would confirm it no? Well it definitely wouldn't break any of the existing tests; is `core.internals` solidly enough tested that any un-covered code can be removed? If you look at the test coverage the only path that gets hit is https://github.com/pandas-dev/pandas/blob/master/pandas/core/internals.py#L4464 that returns `self` almost immediately: ``` def reindex(self, new_axis, indexer=None, method=None, fill_value=None, limit=None, copy=True): # if we are the same and don't copy, just return if self.index.equals(new_axis): if copy: return self.copy(deep=True) else: return self # <-- only relevant path [... 21 more lines that are never hit ...] block = make_block(new_values, copy=copy, placement=slice(0, len(new_axis))) mgr = SingleBlockManager(block, new_axis) mgr._consolidate_inplace() return mgr ``` It looks like the only places where BlockManager.reindex gets called are in `Series.__init__` and `SparseSeries.__init__` Series: ``` elif isinstance(data, SingleBlockManager): if index is None: index = data.index else: data = data.reindex(index, copy=copy) ``` SparseSeries ``` elif isinstance(data, SingleBlockManager): if dtype is not None: data = data.astype(dtype) if index is None: index = data.index.view() else: data = data.reindex(index, copy=False) ``` In each case, an extra case after the `if index is None` clause `elif data.index.equals(index): pass` catches _all_ remaining cases that currently pass into the `else:` block. Given that users shouldn't be passing `SingleBlockManager` manually, I think it'd be OK to require `data.index.equals(index)` in this case so we can remove `BlockManager.reindex`
2018-01-22T03:32:00Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "pandas/core/internals.py", line 4518, in reindex block = make_block(new_values, copy=copy, UnboundLocalError: local variable 'make_block' referenced before assignment
11,689
pandas-dev/pandas
pandas-dev__pandas-19554
d24a9507ba539f455d9b90885edf098c7dc93e99
diff --git a/pandas/util/testing.py b/pandas/util/testing.py --- a/pandas/util/testing.py +++ b/pandas/util/testing.py @@ -1304,7 +1304,12 @@ def assert_frame_equal(left, right, check_dtype=True, 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare check_names : bool, default True - Whether to check the Index names attribute. + Whether to check that the `names` attribute for both the `index` + and `column` attributes of the DataFrame is identical, i.e. + + * left.index.names == right.index.names + * left.columns.names == right.columns.names + by_blocks : bool, default False Specify how to compare internal data. If False, compare by columns. If True, compare by blocks.
check_names=False parameter for pandas.util.testing.assert_frame_equal applies to index.names but not columns.names *edit by @TomAugspurger* The `check_names` docstring for `pandas.util.testing.assert_frame_equal` is unclear: ``` check_names : bool, default True Whether to check the Index names attribute. ``` This should clarify that both the index and columns names attribute are checked. --- #### Code Sample, a copy-pastable example if possible ```python import pandas as pd from pandas.util.testing import assert_frame_equal df1 = pd.DataFrame({'A':[1.0]}) df2 = pd.DataFrame({'B':[1.0]}) assert_frame_equal(df1, df2, check_names=False) """ will return: In [7]: assert_frame_equal(df1, df2, check_names=False) Traceback (most recent call last): File "<ipython-input-7-d273edeeb6af>", line 1, in <module> assert_frame_equal(df1, df2, check_names=False) File "<snipped>/lib/python3.5/site-packages/pandas/util/testing.py", line 1372, in assert_frame_equal obj='{obj}.columns'.format(obj=obj)) File "<snipped>/lib/python3.5/site-packages/pandas/util/testing.py", line 927, in assert_index_equal obj=obj, lobj=left, robj=right) File "pandas/_libs/testing.pyx", line 59, in pandas._libs.testing.assert_almost_equal File "pandas/_libs/testing.pyx", line 173, in pandas._libs.testing.assert_almost_equal File "<snipped>/lib/python3.5/site-packages/pandas/util/testing.py", line 1093, in raise_assert_detail raise AssertionError(msg) AssertionError: DataFrame.columns are different DataFrame.columns values are different (100.0 %) [left]: Index(['A'], dtype='object') [right]: Index(['B'], dtype='object') """ ``` #### Problem description When the parameter `check_names=False` is set for `assert_frames_equal`, the index and columns names should be ignored in the comparison, but an assertion error is still raised if the index or columns names are different. This is the same behaviour as when `check_names=True` (the default) is set, and the opposite of what I believe is intended. #### Expected Output The expected output for the case above should be nothing - a valid assertion. #### Output of ``pd.show_versions()`` <details> In [8]: pd.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 3.5.4.final.0 python-bits: 64 OS: Linux OS-release: 3.10.0-327.13.1.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: en_GB.UTF-8 pandas: 0.22.0 pytest: 3.2.1 pip: 9.0.1 setuptools: 27.2.0 Cython: None numpy: 1.13.1 scipy: 1.0.0 pyarrow: None xarray: None IPython: 5.1.0 sphinx: 1.4.8 patsy: None dateutil: 2.6.1 pytz: 2017.2 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: 2.0.2 openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: None sqlalchemy: None pymysql: None psycopg2: None jinja2: 2.8 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
From the docstring: ``` check_names : bool, default True Whether to check the Index names attribute. ``` So it checks if `left.index.names == right.index.names`. Same for `.columns`, so everything is correct I think. Do you have a usecase for ignoring the actual column labels themselves? Ah ok, I guess I'd assumed that as both: `AssertionError: DataFrame.index are different` and `AssertionError: DataFrame.columns are different` are possible returns from `assert_frame_equal`, either could differ if `check_names=False` was set. `check_names` to me implies both index names and column names are being checked, as they are, but also either can differ. Only index name can actually differ. Perhaps the docstring should clarify that column names are also checked, but cannot differ regardless of this parameter setting. I can't speak for it being a common use case but yes - I test if various data processing functions can handle df populated by reading from different format source files. The df get assigned column names using whatever columns names are provided by the file or are assigned by user input. My tests only know that the column order for the parts of the df I'm interested in checking should be the same in every case. So the data values, index values and column order of the df should match, but column names and index names don't have to. I could simply assign a temporary set of column names internally of course. Well, the docstring could be improved. Both `df.index.names` and `df.columns.names` are checked. That's still different from your original issue though, which was about the values. > I could simply assign a temporary set of column names internally of course. I'd recommend doing that. I don't think changing `assert_frame_equal` to ignore index / column labels is generally useful enough to warrant a parameter. I've been a little unclear here still I think. > I don't think changing `assert_frame_equal` to ignore index / column labels is generally useful enough to warrant a parameter This is exactly what `check_names` is for and is doing, but only for `df.index.names`. `check_names=False` allows for the case of `left.index.names != right.index.names` to pass `assert_frame_equal`. My issue was that I assumed `check_names=False` would also pass `left.columns.names != right.columns.names`, as I was intending to use it. If the latter isn't a common use, then I agree it's not worth changes. In that case, my vote would be to simply rename `check_names` to something like `check_index_names`, as that is exactly what it does, and all that bool setting applies to. @willjbrown88 ```python In [3]: pd.util.testing.assert_frame_equal( ...: pd.DataFrame(columns=pd.Index(['a', 'b'], name='c1')), ...: pd.DataFrame(columns=pd.Index(['a', 'b'], name='c2')) ...: ) --------------------------------------------------------------------------- AssertionError Traceback (most recent call last) <ipython-input-3-653d160e6f54> in <module>() 1 pd.util.testing.assert_frame_equal( 2 pd.DataFrame(columns=pd.Index(['a', 'b'], name='c1')), ----> 3 pd.DataFrame(columns=pd.Index(['a', 'b'], name='c2')) 4 ) ~/sandbox/pandas-ip/pandas/pandas/util/testing.py in assert_frame_equal(left, right, check_dtype, check_index_type, check_column_type, check_frame_type, check_less_precise, check_names, by_blocks, check_exact, check_datetimelike_compat, check_categorical, check_like, obj) 1285 check_exact=check_exact, 1286 check_categorical=check_categorical, -> 1287 obj='{obj}.columns'.format(obj=obj)) 1288 1289 # compare by blocks ~/sandbox/pandas-ip/pandas/pandas/util/testing.py in assert_index_equal(left, right, exact, check_names, check_less_precise, check_exact, check_categorical, obj) 844 # metadata comparison 845 if check_names: --> 846 assert_attr_equal('names', left, right, obj=obj) 847 if isinstance(left, pd.PeriodIndex) or isinstance(right, pd.PeriodIndex): 848 assert_attr_equal('freq', left, right, obj=obj) ~/sandbox/pandas-ip/pandas/pandas/util/testing.py in assert_attr_equal(attr, left, right, obj) 921 else: 922 msg = 'Attribute "{attr}" are different'.format(attr=attr) --> 923 raise_assert_detail(obj, msg, left_attr, right_attr) 924 925 ~/sandbox/pandas-ip/pandas/pandas/util/testing.py in raise_assert_detail(obj, message, left, right, diff) 1006 msg += "\n[diff]: {diff}".format(diff=diff) 1007 -> 1008 raise AssertionError(msg) 1009 1010 AssertionError: DataFrame.columns are different Attribute "names" are different [left]: ['c1'] [right]: ['c2'] In [4]: pd.util.testing.assert_frame_equal( ...: pd.DataFrame(columns=pd.Index(['a', 'b'], name='c1')), ...: pd.DataFrame(columns=pd.Index(['a', 'b'], name='c2')), ...: check_names=False ...: ) ```
2018-02-06T17:51:59Z
[]
[]
Traceback (most recent call last): File "<ipython-input-7-d273edeeb6af>", line 1, in <module> assert_frame_equal(df1, df2, check_names=False) File "<snipped>/lib/python3.5/site-packages/pandas/util/testing.py", line 1372, in assert_frame_equal obj='{obj}.columns'.format(obj=obj)) File "<snipped>/lib/python3.5/site-packages/pandas/util/testing.py", line 927, in assert_index_equal obj=obj, lobj=left, robj=right) File "pandas/_libs/testing.pyx", line 59, in pandas._libs.testing.assert_almost_equal File "pandas/_libs/testing.pyx", line 173, in pandas._libs.testing.assert_almost_equal File "<snipped>/lib/python3.5/site-packages/pandas/util/testing.py", line 1093, in raise_assert_detail raise AssertionError(msg) AssertionError: DataFrame.columns are different
11,713
pandas-dev/pandas
pandas-dev__pandas-19818
aa59954a217c8f856bb0980265520d37b85a80af
diff --git a/pandas/core/frame.py b/pandas/core/frame.py --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -1612,7 +1612,7 @@ def to_stata(self, fname, convert_dates=None, write_index=True, time_stamp : datetime A datetime to use as file creation date. Default is the current time. - dataset_label : str + data_label : str A label for the data set. Must be 80 characters or smaller. variable_labels : dict Dictionary containing columns as keys and variable labels as @@ -1635,10 +1635,18 @@ def to_stata(self, fname, convert_dates=None, write_index=True, Examples -------- + >>> data.to_stata('./data_file.dta') + + Or with dates + + >>> data.to_stata('./date_data_file.dta', {2 : 'tw'}) + + Alternatively you can create an instance of the StataWriter class + >>> writer = StataWriter('./data_file.dta', data) >>> writer.write_file() - Or with dates + With dates: >>> writer = StataWriter('./date_data_file.dta', data, {2 : 'tw'}) >>> writer.write_file()
Wrong parameter name in to_stata() method In the [API documentation for `df.to_stata()`](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_stata.html), a parameter `dataset_label` is listed to give the Stata file a label, however the Pandas API [actually uses the parameter `data_label`](https://github.com/pandas-dev/pandas/blob/master/pandas/core/frame.py#L1591). From `core/frame.py`: > ```python > def to_stata(self, fname, convert_dates=None, write_index=True, > encoding="latin-1", byteorder=None, time_stamp=None, > data_label=None, variable_labels=None): > ``` Thus using `dataset_label` doesn't work, but `data_label` does. ```python >>> import pandas as pd >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.to_stata('test.dta', dataset_label='data label') Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: to_stata() got an unexpected keyword argument 'dataset_label' >>> df.to_stata('test.dta', data_label='data label') ``` I'll submit a PR shortly changing that docstring. #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.6.4.final.0 python-bits: 64 OS: Linux OS-release: 4.13.0-32-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.22.0 pytest: 3.3.0 pip: 9.0.1 setuptools: 38.5.1 Cython: 0.27.3 numpy: 1.14.0 scipy: 1.0.0 pyarrow: 0.8.0 xarray: None IPython: 6.2.1 sphinx: 1.6.3 patsy: 0.4.1 dateutil: 2.6.1 pytz: 2017.3 blosc: None bottleneck: 1.2.1 tables: 3.4.2 numexpr: 2.6.4 feather: 0.4.0 matplotlib: 2.1.1 openpyxl: 2.4.9 xlrd: 1.1.0 xlwt: 1.3.0 xlsxwriter: 1.0.2 lxml: 4.1.1 bs4: 4.6.0 html5lib: 1.0.1 sqlalchemy: 1.1.13 pymysql: None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
2018-02-21T17:04:17Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: to_stata() got an unexpected keyword argument 'dataset_label'
11,746
pandas-dev/pandas
pandas-dev__pandas-19833
3b135c3c4424cfa10b955a0d505189f0a06e9122
diff --git a/doc/source/whatsnew/v0.23.0.txt b/doc/source/whatsnew/v0.23.0.txt --- a/doc/source/whatsnew/v0.23.0.txt +++ b/doc/source/whatsnew/v0.23.0.txt @@ -896,6 +896,7 @@ Reshaping - Bug in :func:`DataFrame.join` which does an ``outer`` instead of a ``left`` join when being called with multiple DataFrames and some have non-unique indices (:issue:`19624`) - :func:`Series.rename` now accepts ``axis`` as a kwarg (:issue:`18589`) - Comparisons between :class:`Series` and :class:`Index` would return a ``Series`` with an incorrect name, ignoring the ``Index``'s name attribute (:issue:`19582`) +- Bug in :func:`qcut` where datetime and timedelta data with ``NaT`` present raised a ``ValueError`` (:issue:`19768`) Other ^^^^^ diff --git a/pandas/core/reshape/tile.py b/pandas/core/reshape/tile.py --- a/pandas/core/reshape/tile.py +++ b/pandas/core/reshape/tile.py @@ -279,18 +279,22 @@ def _trim_zeros(x): def _coerce_to_type(x): """ if the passed data is of datetime/timedelta type, - this method converts it to integer so that cut method can + this method converts it to numeric so that cut method can handle it """ dtype = None if is_timedelta64_dtype(x): - x = to_timedelta(x).view(np.int64) + x = to_timedelta(x) dtype = np.timedelta64 elif is_datetime64_dtype(x): - x = to_datetime(x).view(np.int64) + x = to_datetime(x) dtype = np.datetime64 + if dtype is not None: + # GH 19768: force NaT to NaN during integer conversion + x = np.where(x.notna(), x.view(np.int64), np.nan) + return x, dtype
qcut raising ValueError if NaT present #### Code Sample, a copy-pastable example if possible ```python from io import StringIO import pandas as pd csv = 'Index,Date\n1,2013-01-01 23:00:00\n2,\n3,2013-01-01 23:00:01' df = pd.read_csv(StringIO(csv), index_col=0, parse_dates=[1]) pd.qcut(df["Date"], 2) ``` #### Problem description `qcut` raises a `ValueError`: ``` Traceback (most recent call last): File "mve.py", line 26, in <module> pd.qcut(df["Date"], 2) File "/tmp/test/env/lib/python3.5/site-packages/pandas/core/reshape/tile.py", line 208, in qcut dtype=dtype, duplicates=duplicates) File "/tmp/test/env/lib/python3.5/site-packages/pandas/core/reshape/tile.py", line 251, in _bins_to_cuts dtype=dtype) File "/tmp/test/env/lib/python3.5/site-packages/pandas/core/reshape/tile.py", line 344, in _format_labels labels = IntervalIndex.from_breaks(breaks, closed=closed) File "/tmp/test/env/lib/python3.5/site-packages/pandas/core/indexes/interval.py", line 370, in from_breaks name=name, copy=copy) File "/tmp/test/env/lib/python3.5/site-packages/pandas/core/indexes/interval.py", line 411, in from_arrays copy=copy, verify_integrity=True) File "/tmp/test/env/lib/python3.5/site-packages/pandas/core/indexes/interval.py", line 225, in _simple_new result._validate() File "/tmp/test/env/lib/python3.5/site-packages/pandas/core/indexes/interval.py", line 265, in _validate raise ValueError('missing values must be missing in the same ' ValueError: missing values must be missing in the same location both left and right sides ``` #### Expected Output `qcut` returning something like ``` Index 1 (2013-01-01 22:59:59.999999999, 2013-01-01 23:00:01.0 2 NaT 3 (2013-01-01 22:59:59.999999999, 2013-01-01 23:00:01.0 ``` #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.5.2.final.0 python-bits: 64 OS: Linux OS-release: 4.13.0-32-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: de_DE.UTF-8 LOCALE: de_DE.UTF-8 pandas: 0.22.0 pytest: None pip: 9.0.1 setuptools: 38.5.1 Cython: None numpy: 1.14.0 scipy: None pyarrow: None xarray: None IPython: None sphinx: None patsy: None dateutil: 2.6.1 pytz: 2018.3 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: None sqlalchemy: None pymysql: None psycopg2: None jinja2: None s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
1) Could you rewrite your example to not use `read_csv` (i.e. just construct the `DataFrame` from scratch). 2) Yeah...that does look weird indeed. Even the error message is confusing. PR to patch is welcome!
2018-02-22T01:05:37Z
[]
[]
Traceback (most recent call last): File "mve.py", line 26, in <module> pd.qcut(df["Date"], 2) File "/tmp/test/env/lib/python3.5/site-packages/pandas/core/reshape/tile.py", line 208, in qcut dtype=dtype, duplicates=duplicates) File "/tmp/test/env/lib/python3.5/site-packages/pandas/core/reshape/tile.py", line 251, in _bins_to_cuts dtype=dtype) File "/tmp/test/env/lib/python3.5/site-packages/pandas/core/reshape/tile.py", line 344, in _format_labels labels = IntervalIndex.from_breaks(breaks, closed=closed) File "/tmp/test/env/lib/python3.5/site-packages/pandas/core/indexes/interval.py", line 370, in from_breaks name=name, copy=copy) File "/tmp/test/env/lib/python3.5/site-packages/pandas/core/indexes/interval.py", line 411, in from_arrays copy=copy, verify_integrity=True) File "/tmp/test/env/lib/python3.5/site-packages/pandas/core/indexes/interval.py", line 225, in _simple_new result._validate() File "/tmp/test/env/lib/python3.5/site-packages/pandas/core/indexes/interval.py", line 265, in _validate raise ValueError('missing values must be missing in the same ' ValueError: missing values must be missing in the same location both left and right sides
11,751
pandas-dev/pandas
pandas-dev__pandas-20005
aedbd948938f7e9230a321eb49f6c789867ab2b6
diff --git a/doc/make.py b/doc/make.py --- a/doc/make.py +++ b/doc/make.py @@ -11,6 +11,7 @@ $ python make.py html $ python make.py latex """ +import importlib import sys import os import shutil @@ -20,8 +21,6 @@ import webbrowser import jinja2 -import pandas - DOC_PATH = os.path.dirname(os.path.abspath(__file__)) SOURCE_PATH = os.path.join(DOC_PATH, 'source') @@ -134,7 +133,7 @@ def _process_single_doc(self, single_doc): self.single_doc = single_doc elif single_doc is not None: try: - obj = pandas + obj = pandas # noqa: F821 for name in single_doc.split('.'): obj = getattr(obj, name) except AttributeError: @@ -332,7 +331,7 @@ def main(): 'compile, e.g. "indexing", "DataFrame.join"')) argparser.add_argument('--python-path', type=str, - default=os.path.join(DOC_PATH, '..'), + default=os.path.dirname(DOC_PATH), help='path') argparser.add_argument('-v', action='count', dest='verbosity', default=0, help=('increase verbosity (can be repeated), ' @@ -343,7 +342,13 @@ def main(): raise ValueError('Unknown command {}. Available options: {}'.format( args.command, ', '.join(cmds))) + # Below we update both os.environ and sys.path. The former is used by + # external libraries (namely Sphinx) to compile this module and resolve + # the import of `python_path` correctly. The latter is used to resolve + # the import within the module, injecting it into the global namespace os.environ['PYTHONPATH'] = args.python_path + sys.path.append(args.python_path) + globals()['pandas'] = importlib.import_module('pandas') builder = DocBuilder(args.num_jobs, not args.no_api, args.single, args.verbosity)
Unable to Build Documentation ```bash python make.py html Traceback (most recent call last): File "doc/make.py", line 23, in <module> import pandas ModuleNotFoundError: No module named 'pandas' ``` I believe a slight bug was introduced by c8859b57b891701f250fb05f2cc60d2e6cae2d6b in including `import pandas` at the top of the script. Unless the user has pandas installed as a package I don't think this module would know where to find it without modifying the path or being more explicit on import @jorisvandenbossche
The path is being modified somewhere else in the file make.py. If you inline the import inside the `_process_single_doc` method, does that fix the error? I don't think that makes a difference. I looked but didn't see anywhere else in the file that added the project root to the import path - perhaps I'm overlooking it? Otherwise adding something like the below fixes the issue: ```python DOC_PATH = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.dirname(DOC_PATH)) import pandas ``` https://github.com/pandas-dev/pandas/blob/master/doc/make.py#L346 and the default is '..' Can you actually try it? I hope it would work because it then comes after `os.environ['PYTHONPATH'] = args.python_path`, but not fully sure imports work that way. Hmm OK I see what we are trying to do. I think setting `os.environ['PYTHONPATH']` gives sphinx access to the import path when it compiles the module externally, but doesn't help the import mechanism specifically within the module. I'll push a PR in a few that I think should serve both purposes
2018-03-05T22:17:02Z
[]
[]
Traceback (most recent call last): File "doc/make.py", line 23, in <module> import pandas ModuleNotFoundError: No module named 'pandas'
11,780
pandas-dev/pandas
pandas-dev__pandas-20292
31afaf858604ab85665b54b92f40cef19d69a28d
diff --git a/doc/source/whatsnew/v0.23.0.txt b/doc/source/whatsnew/v0.23.0.txt --- a/doc/source/whatsnew/v0.23.0.txt +++ b/doc/source/whatsnew/v0.23.0.txt @@ -896,6 +896,7 @@ Timezones - Bug in :func:`Timestamp.tz_localize` where localizing a timestamp near the minimum or maximum valid values could overflow and return a timestamp with an incorrect nanosecond value (:issue:`12677`) - Bug when iterating over :class:`DatetimeIndex` that was localized with fixed timezone offset that rounded nanosecond precision to microseconds (:issue:`19603`) - Bug in :func:`DataFrame.diff` that raised an ``IndexError`` with tz-aware values (:issue:`18578`) +- Bug in :func:`melt` that converted tz-aware dtypes to tz-naive (:issue:`15785`) Offsets ^^^^^^^ diff --git a/pandas/core/reshape/melt.py b/pandas/core/reshape/melt.py --- a/pandas/core/reshape/melt.py +++ b/pandas/core/reshape/melt.py @@ -13,7 +13,9 @@ import re from pandas.core.dtypes.missing import notna +from pandas.core.dtypes.common import is_extension_type from pandas.core.tools.numeric import to_numeric +from pandas.core.reshape.concat import concat @Appender(_shared_docs['melt'] % @@ -70,7 +72,12 @@ def melt(frame, id_vars=None, value_vars=None, var_name=None, mdata = {} for col in id_vars: - mdata[col] = np.tile(frame.pop(col).values, K) + id_data = frame.pop(col) + if is_extension_type(id_data): + id_data = concat([id_data] * K, ignore_index=True) + else: + id_data = np.tile(id_data.values, K) + mdata[col] = id_data mcolumns = id_vars + var_name + [value_name]
BUG: melt changes type of tz-aware columns #### Code Samples ```python import pandas as pd frame = pd.DataFrame({'klass':range(5), 'ts': [pd.Timestamp('2017-03-23 08:22:42.173378+01'), pd.Timestamp('2017-03-23 08:22:42.178578+01'), pd.Timestamp('2017-03-23 08:22:42.173578+01'), pd.Timestamp('2017-03-23 08:22:42.178378+01'), pd.Timestamp('2017-03-23 08:22:42.163378+01')], 'attribute':['att1', 'att2', 'att3', 'att4', 'att5'], 'value': ['a', 'b', 'c', 'd', 'd']}) # At this point, frame.ts is of dtype datetime64[ns, pytz.FixedOffset(60)] frame.set_index(['ts', 'klass'], inplace=True) queried_index = frame.query('value=="d"').index pivoted_frame = frame.reset_index().pivot_table(index=['klass', 'ts'], columns='attribute', values='value', aggfunc='first') melted_frame = pd.melt(pivoted_frame.reset_index(), id_vars=['klass', 'ts'], var_name='attribute', value_name='value') # At this point, melted_frame.ts is of dtype datetime64[ns] queried_after_melted_index = melted_frame.query('value=="d"').set_index(['ts', 'klass']).index frame.loc[queried_index] # Works frame.loc[queried_index] = 'test' # Works frame.loc[queried_after_melted_index] # Works frame.loc[queried_after_melted_index] = 'test' # Breaks ``` The last statement gives: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py", line 140, in __setitem__ indexer = self._get_setitem_indexer(key) File "/usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py", line 127, in _get_setitem_indexer return self._convert_to_indexer(key, is_setter=True) File "/usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py", line 1230, in _convert_to_indexer raise KeyError('%s not in index' % objarr[mask]) KeyError: "MultiIndex(levels=[[2017-03-23 07:22:42.163378, 2017-03-23 07:22:42.173378, 2017-03-23 07:22:42.173578, 2017-03-23 07:22:42.178378, 2017-03-23 07:22:42.178578], [0, 1, 2, 3, 4]],\n labels=[[3, 0], [3, 4]],\n names=['ts', 'klass']) not in index" ``` #### Problem description - It is counter-intuitive that any operation (which does not explicitly mention in its docs that it does) alters the type of any column. - Also counter-intuitive is that ```frame.loc``` has different behavior in a statement than it has in an assignment. #### Expected Output - ```melted_frame.ts``` and ```frame.ts``` have the same dtype. - ```DataFrame.loc``` fails in both cases, not just in an assignment, or succeeds in both. #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.5.2.final.0 python-bits: 64 OS: Linux OS-release: 4.4.0-66-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.19.2 nose: None pip: 9.0.1 setuptools: 20.7.0 Cython: None numpy: 1.12.0 scipy: None statsmodels: None xarray: None IPython: 5.3.0 sphinx: None patsy: None dateutil: 2.6.0 pytz: 2016.10 blosc: None bottleneck: None tables: None numexpr: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: 0.7.3 lxml: 3.5.0 bs4: 4.4.1 html5lib: 0.999 httplib2: 0.9.1 apiclient: None sqlalchemy: None pymysql: None psycopg2: 2.6.1 (dt dec pq3 ext lo64) jinja2: 2.8 boto: None pandas_datareader: None </details>
@stigviaene ``.melt`` doesn't have the battery of tests that most other things have. So not suprising that this doesn't convert correctly. Welcome to have you submit a patch to fix or at least see if you can locate the problem. your comments on indexing are orthogonal. If you have a specific bug/comment you can raise in another issue.
2018-03-12T02:00:24Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py", line 140, in __setitem__ indexer = self._get_setitem_indexer(key) File "/usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py", line 127, in _get_setitem_indexer return self._convert_to_indexer(key, is_setter=True) File "/usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py", line 1230, in _convert_to_indexer raise KeyError('%s not in index' % objarr[mask]) KeyError: "MultiIndex(levels=[[2017-03-23 07:22:42.163378, 2017-03-23 07:22:42.173378, 2017-03-23 07:22:42.173578, 2017-03-23 07:22:42.178378, 2017-03-23 07:22:42.178578], [0, 1, 2, 3, 4]],\n labels=[[3, 0], [3, 4]],\n names=['ts', 'klass']) not in index"
11,798
pandas-dev/pandas
pandas-dev__pandas-20401
cdfce2b0ad99f7faad57cc5247cf33aab5725bed
diff --git a/doc/source/whatsnew/v0.23.0.txt b/doc/source/whatsnew/v0.23.0.txt --- a/doc/source/whatsnew/v0.23.0.txt +++ b/doc/source/whatsnew/v0.23.0.txt @@ -1035,6 +1035,7 @@ Reshaping - Bug in :class:`Series` constructor with ``Categorical`` where a ```ValueError`` is not raised when an index of different length is given (:issue:`19342`) - Bug in :meth:`DataFrame.astype` where column metadata is lost when converting to categorical or a dictionary of dtypes (:issue:`19920`) - Bug in :func:`cut` and :func:`qcut` where timezone information was dropped (:issue:`19872`) +- Bug in :class:`Series` constructor with a ``dtype=str``, previously raised in some cases (:issue:`19853`) Other ^^^^^ diff --git a/pandas/core/series.py b/pandas/core/series.py --- a/pandas/core/series.py +++ b/pandas/core/series.py @@ -4059,9 +4059,10 @@ def _try_cast(arr, take_fast_path): if issubclass(subarr.dtype.type, compat.string_types): # GH 16605 # If not empty convert the data to dtype - if not isna(data).all(): - data = np.array(data, dtype=dtype, copy=False) - - subarr = np.array(data, dtype=object, copy=copy) + # GH 19853: If data is a scalar, subarr has already the result + if not is_scalar(data): + if not np.all(isna(data)): + data = np.array(data, dtype=dtype, copy=False) + subarr = np.array(data, dtype=object, copy=copy) return subarr
BUG: invalid constrution of a Series with dtype=str ```python pd.Series('', dtype=str, index=range(1000)) ``` throws a `ValueError` with the following message: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\james\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pandas\core\series.py", line 266, in __init__ data = SingleBlockManager(data, index, fastpath=True) File "C:\Users\james\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pandas\core\internals.py", line 4402, in __init__ fastpath=True) File "C:\Users\james\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pandas\core\internals.py", line 2957, in make_block return klass(values, ndim=ndim, fastpath=fastpath, placement=placement) File "C:\Users\james\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pandas\core\internals.py", line 2082, in __init__ placement=placement, **kwargs) File "C:\Users\james\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pandas\core\internals.py", line 111, in __init__ raise ValueError('Wrong number of dimensions') ValueError: Wrong number of dimensions ``` Would it be possible to fix the behavior to initialize the series to `''` (or at least provide a clearer message)?
``pd.Series('', dtype=object, index=range(1000))`` That's ok. String uses 'object' dtype. this takes a different path in master. We pretty much treat str as object. So this is a construction bug. ``` In [4]: pd.Series('', index=range(1000), dtype=str) --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-4-3bd08f17c610> in <module>() ----> 1 pd.Series('', index=range(1000), dtype=str) ~/pandas/pandas/core/series.py in __init__(self, data, index, dtype, name, copy, fastpath) 237 else: 238 data = _sanitize_array(data, index, dtype, copy, --> 239 raise_cast_failure=True) 240 241 data = SingleBlockManager(data, index, fastpath=True) ~/pandas/pandas/core/series.py in _sanitize_array(data, index, dtype, copy, raise_cast_failure) 3260 # GH 16605 3261 # If not empty convert the data to dtype -> 3262 if not isna(data).all(): 3263 data = np.array(data, dtype=dtype, copy=False) 3264 AttributeError: 'bool' object has no attribute 'all' ``` @jamesqo there is no reason to specify a dtype here as this will be inferred to ``object`` dtype anyhow (``str`` as I said above is pretty much an alias for ``object`` dtype). a PR to fix is welcome. @jamesqo note that setting the string ``''`` like this doesn't have much utilitiy. pandas has a full suite of string operations that are all NaN aware.
2018-03-18T16:20:47Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\james\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pandas\core\series.py", line 266, in __init__ data = SingleBlockManager(data, index, fastpath=True) File "C:\Users\james\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pandas\core\internals.py", line 4402, in __init__ fastpath=True) File "C:\Users\james\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pandas\core\internals.py", line 2957, in make_block return klass(values, ndim=ndim, fastpath=fastpath, placement=placement) File "C:\Users\james\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pandas\core\internals.py", line 2082, in __init__ placement=placement, **kwargs) File "C:\Users\james\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pandas\core\internals.py", line 111, in __init__ raise ValueError('Wrong number of dimensions') ValueError: Wrong number of dimensions
11,806
pandas-dev/pandas
pandas-dev__pandas-20537
fac2ef1b2095c7785006c901e941e2657571d935
diff --git a/doc/source/whatsnew/v0.23.0.txt b/doc/source/whatsnew/v0.23.0.txt --- a/doc/source/whatsnew/v0.23.0.txt +++ b/doc/source/whatsnew/v0.23.0.txt @@ -1098,6 +1098,7 @@ I/O - Bug in :func:`read_pickle` when unpickling objects with :class:`TimedeltaIndex` or :class:`Float64Index` created with pandas prior to version 0.20 (:issue:`19939`) - Bug in :meth:`pandas.io.json.json_normalize` where subrecords are not properly normalized if any subrecords values are NoneType (:issue:`20030`) - Bug in ``usecols`` parameter in :func:`pandas.io.read_csv` and :func:`pandas.io.read_table` where error is not raised correctly when passing a string. (:issue:`20529`) +- Bug in :func:`HDFStore.keys` when reading a file with a softlink causes exception (:issue:`20523`) Plotting ^^^^^^^^ diff --git a/pandas/io/pytables.py b/pandas/io/pytables.py --- a/pandas/io/pytables.py +++ b/pandas/io/pytables.py @@ -1073,10 +1073,11 @@ def groups(self): self._check_if_open() return [ g for g in self._handle.walk_nodes() - if (getattr(g._v_attrs, 'pandas_type', None) or - getattr(g, 'table', None) or + if (not isinstance(g, _table_mod.link.Link) and + (getattr(g._v_attrs, 'pandas_type', None) or + getattr(g, 'table', None) or (isinstance(g, _table_mod.table.Table) and - g._v_name != u('table'))) + g._v_name != u('table')))) ] def get_node(self, key):
Presence of softlink in HDF5 file breaks HDFStore.keys() #### Code Sample, a copy-pastable example if possible ```python #! /path/to/python3.6 import pandas as pd df = pd.DataFrame({ "a": [1], "b": [2] }) print(df.to_string()) hdf = pd.HDFStore("/tmp/test.hdf", mode="w") hdf.put("/test/key", df) #Brittle hdf._handle.create_soft_link(hdf._handle.root.test, "symlink", "/test/key") hdf.close() print("Successful write") hdf = pd.HDFStore("/tmp/test.hdf", mode="r") ''' Traceback (most recent call last): File "snippet.py", line 31, in <module> print(hdf.keys()) File "python3.6.3/lib/python3.6/site-packages/pandas/io/pytables.py", line 529, in keys return [n._v_pathname for n in self.groups()] File "python3.6.3/lib/python3.6/site-packages/pandas/io/pytables.py", line 1077, in groups g for g in self._handle.walk_nodes() File "python3.6.3/lib/python3.6/site-packages/pandas/io/pytables.py", line 1078, in <listcomp> if (getattr(g._v_attrs, 'pandas_type', None) or File "python3.6.3/lib/python3.6/site-packages/tables/link.py", line 79, in __getattr__ "`%s` instance" % self.__class__.__name__) KeyError: 'you cannot get attributes from this `NoAttrs` instance' ''' print(hdf.keys()) #causes exception hdf.close() print("Successful read") ``` #### Problem description I know I have a esoteric problem, but I'm building an HDF5 file using Pandas and then using pytables to softlink to the Pandas dataframe. I understand this is unsupported and brittle but for my use case I haven't been able to come up with a better/simpler solution. This issue is similar to: https://github.com/pandas-dev/pandas/issues/6019 The root cause is when we call HDFStore.keys(), it calls HDFStore.groups() and eventually g._v_attrs on a Pytables File. https://github.com/pandas-dev/pandas/blob/master/pandas/io/pytables.py#L1076 But calling g._v_attrs on a tables.link.SoftLink causes a KeyError due to: https://github.com/PyTables/PyTables/blob/develop/tables/link.py#L76 And there doesn't look to be a way to guard against an instance of NoAttrs since that class is defined within the method. One solution may be to check the instance of g if it's a Link ``` return [ g for g in self._handle.walk_nodes() if (not isinstance(g, _table_mod.link.Link) and (getattr(g._v_attrs, 'pandas_type', None) or getattr(g, 'table', None) or (isinstance(g, _table_mod.table.Table) and g._v_name != u('table')))) ] ``` I'd be happy to write a PR and tests if you find this change acceptable. #### Expected Output ``` a b 0 1 2 Successful write ['/test/key'] Successful read ``` #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.6.3.final.0 python-bits: 64 OS: Linux OS-release: 3.10.0-514.21.1.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: en_US.utf-8 LANG: en_US.utf-8 LOCALE: en_US.UTF-8 pandas: 0.22.0 pytest: None pip: 9.0.1 setuptools: 38.5.1 Cython: None numpy: 1.14.0 scipy: 1.0.0 pyarrow: None xarray: None IPython: 6.2.1 sphinx: None patsy: 0.4.1 dateutil: 2.6.1 pytz: 2018.3 blosc: None bottleneck: None tables: 3.4.2 numexpr: 2.6.4 feather: None matplotlib: 2.1.0 openpyxl: None xlrd: 1.1.0 xlwt: None xlsxwriter: None lxml: None bs4: 4.6.0 html5lib: 1.0.1 sqlalchemy: None pymysql: None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
sure would take a patch to avoid an error on this
2018-03-29T13:43:21Z
[]
[]
Traceback (most recent call last): File "snippet.py", line 31, in <module> print(hdf.keys()) File "python3.6.3/lib/python3.6/site-packages/pandas/io/pytables.py", line 529, in keys return [n._v_pathname for n in self.groups()] File "python3.6.3/lib/python3.6/site-packages/pandas/io/pytables.py", line 1077, in groups g for g in self._handle.walk_nodes() File "python3.6.3/lib/python3.6/site-packages/pandas/io/pytables.py", line 1078, in <listcomp> if (getattr(g._v_attrs, 'pandas_type', None) or File "python3.6.3/lib/python3.6/site-packages/tables/link.py", line 79, in __getattr__ "`%s` instance" % self.__class__.__name__) KeyError: 'you cannot get attributes from this `NoAttrs` instance'
11,821
pandas-dev/pandas
pandas-dev__pandas-20549
336fba7c0191444c3328009e6d4f9f5d00ee224b
diff --git a/doc/source/api.rst b/doc/source/api.rst --- a/doc/source/api.rst +++ b/doc/source/api.rst @@ -2106,6 +2106,7 @@ Standard moving window functions Rolling.skew Rolling.kurt Rolling.apply + Rolling.aggregate Rolling.quantile Window.mean Window.sum @@ -2133,6 +2134,7 @@ Standard expanding window functions Expanding.skew Expanding.kurt Expanding.apply + Expanding.aggregate Expanding.quantile Exponentially-weighted moving window functions diff --git a/doc/source/whatsnew/v0.23.0.txt b/doc/source/whatsnew/v0.23.0.txt --- a/doc/source/whatsnew/v0.23.0.txt +++ b/doc/source/whatsnew/v0.23.0.txt @@ -438,6 +438,7 @@ Other Enhancements ``SQLAlchemy`` dialects supporting multivalue inserts include: ``mysql``, ``postgresql``, ``sqlite`` and any dialect with ``supports_multivalues_insert``. (:issue:`14315`, :issue:`8953`) - :func:`read_html` now accepts a ``displayed_only`` keyword argument to controls whether or not hidden elements are parsed (``True`` by default) (:issue:`20027`) - zip compression is supported via ``compression=zip`` in :func:`DataFrame.to_pickle`, :func:`Series.to_pickle`, :func:`DataFrame.to_csv`, :func:`Series.to_csv`, :func:`DataFrame.to_json`, :func:`Series.to_json`. (:issue:`17778`) +- :class:`WeekOfMonth` constructor now supports ``n=0`` (:issue:`20517`). - :class:`DataFrame` and :class:`Series` now support matrix multiplication (```@```) operator (:issue:`10259`) for Python>=3.5 - Updated ``to_gbq`` and ``read_gbq`` signature and documentation to reflect changes from the Pandas-GBQ library version 0.4.0. Adds intersphinx mapping to Pandas-GBQ @@ -847,7 +848,7 @@ Other API Changes - :func:`DatetimeIndex.strftime` and :func:`PeriodIndex.strftime` now return an ``Index`` instead of a numpy array to be consistent with similar accessors (:issue:`20127`) - Constructing a Series from a list of length 1 no longer broadcasts this list when a longer index is specified (:issue:`19714`, :issue:`20391`). - :func:`DataFrame.to_dict` with ``orient='index'`` no longer casts int columns to float for a DataFrame with only int and float columns (:issue:`18580`) -- A user-defined-function that is passed to :func:`Series.rolling().aggregate() <pandas.core.window.Rolling.aggregate>`, :func:`DataFrame.rolling().aggregate() <pandas.core.window.Rolling.aggregate>`, or its expanding cousins, will now *always* be passed a ``Series``, rather than an ``np.array``; ``.apply()`` only has the ``raw`` keyword, see :ref:`here <whatsnew_0230.enhancements.window_raw>`. This is consistent with the signatures of ``.aggregate()`` across pandas (:issue:`20584`) +- A user-defined-function that is passed to :func:`Series.rolling().aggregate() <pandas.core.window.Rolling.aggregate>`, :func:`DataFrame.rolling().aggregate() <pandas.core.window.Rolling.aggregate>`, or its expanding cousins, will now *always* be passed a ``Series``, rather than a ``np.array``; ``.apply()`` only has the ``raw`` keyword, see :ref:`here <whatsnew_0230.enhancements.window_raw>`. This is consistent with the signatures of ``.aggregate()`` across pandas (:issue:`20584`) .. _whatsnew_0230.deprecations: diff --git a/pandas/tseries/offsets.py b/pandas/tseries/offsets.py --- a/pandas/tseries/offsets.py +++ b/pandas/tseries/offsets.py @@ -1461,9 +1461,6 @@ def __init__(self, n=1, normalize=False, week=0, weekday=0): self.weekday = weekday self.week = week - if self.n == 0: - raise ValueError('N cannot be 0') - if self.weekday < 0 or self.weekday > 6: raise ValueError('Day must be 0<=day<=6, got {day}' .format(day=self.weekday))
date_range fails when I try to generate ones with 1 periods and freq equal WOM-1MON #### Code Sample ```python import pandas as pd pd.date_range('20100104', periods=2, freq='WOM-1MON') # works pd.date_range('20100104', periods=1, freq='WOM-1MON') # fails ``` ```python-traceback Traceback (most recent call last): File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2910, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-31-ec0b4bad59c9>", line 1, in <module> pd.date_range('20100104', periods=1, freq='WOM-1MON') File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/pandas/core/indexes/datetimes.py", line 2057, in date_range closed=closed, **kwargs) File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/pandas/util/_decorators.py", line 118, in wrapper return func(*args, **kwargs) File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/pandas/core/indexes/datetimes.py", line 324, in __new__ ambiguous=ambiguous) File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/pandas/core/indexes/datetimes.py", line 531, in _generate index = _generate_regular_range(start, end, periods, offset) File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/pandas/core/indexes/datetimes.py", line 2009, in _generate_regular_range dates = list(xdr) File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/pandas/tseries/offsets.py", line 2960, in generate_range end = start + (periods - 1) * offset File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/pandas/tseries/offsets.py", line 425, in __rmul__ return self.__mul__(someInt) File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/pandas/tseries/offsets.py", line 422, in __mul__ **self.kwds) File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/pandas/tseries/offsets.py", line 1671, in __init__ raise ValueError('N cannot be 0') ValueError: N cannot be 0 ``` #### Problem description If N is equal to periods then is not 0 as we can see, that make me think that probably there is something wrong in the code. #### Expected Output ```python Out[33]: DatetimeIndex(['2010-01-04'], dtype='datetime64[ns]', freq='WOM-1MON') ``` #### Output of ``pd.show_versions()`` <details> pd.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 3.6.4.final.0 python-bits: 64 OS: Darwin OS-release: 17.4.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: None LOCALE: es_ES.UTF-8 pandas: 0.22.0 pytest: 3.4.2 pip: 9.0.1 setuptools: 38.5.1 Cython: 0.27.3 numpy: 1.14.2 scipy: 1.0.0 pyarrow: 0.9.0 xarray: 0.10.2 IPython: 6.2.1 sphinx: 1.7.1 patsy: 0.5.0 dateutil: 2.7.0 pytz: 2018.3 blosc: None bottleneck: 1.2.1 tables: 3.4.2 numexpr: 2.6.4 feather: 0.4.0 matplotlib: 2.2.2 openpyxl: 2.5.1 xlrd: 1.1.0 xlwt: 1.2.0 xlsxwriter: 1.0.2 lxml: 4.2.0 bs4: 4.6.0 html5lib: 1.0.1 sqlalchemy: 1.2.5 pymysql: 0.8.0 psycopg2: None jinja2: 2.10 s3fs: 0.1.3 fastparquet: 0.1.4 pandas_gbq: None pandas_datareader: None </details>
Well the traceback here points exactly to the offending line of code - within the constructor there is an explicit check that you have more than one period which I've linked below for reference (`generate_periods` up one level in the stack subtracts one from `periods`) https://github.com/pandas-dev/pandas/blob/c4b4a81f56205082ec7f12bf77766e3b74d27c37/pandas/tseries/offsets.py#L1464 If you remove that assertion you get the value you are expecting. I'm not overly familiar with offsets though - @jbrockmendel any chance you know whether it makes sense to relax that assertion or not? This is one of those "it was like that when I got here" things. I'd guess that n==0 would cause trouble with incrementing, but not really sure. @mmngreco do you want to try a PR for this? Would need test cases to cover this and any other edge case you can think of Ok, I would like to try.
2018-03-30T14:10:52Z
[]
[]
Traceback (most recent call last): File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2910, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-31-ec0b4bad59c9>", line 1, in <module> pd.date_range('20100104', periods=1, freq='WOM-1MON') File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/pandas/core/indexes/datetimes.py", line 2057, in date_range closed=closed, **kwargs) File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/pandas/util/_decorators.py", line 118, in wrapper return func(*args, **kwargs) File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/pandas/core/indexes/datetimes.py", line 324, in __new__ ambiguous=ambiguous) File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/pandas/core/indexes/datetimes.py", line 531, in _generate index = _generate_regular_range(start, end, periods, offset) File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/pandas/core/indexes/datetimes.py", line 2009, in _generate_regular_range dates = list(xdr) File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/pandas/tseries/offsets.py", line 2960, in generate_range end = start + (periods - 1) * offset File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/pandas/tseries/offsets.py", line 425, in __rmul__ return self.__mul__(someInt) File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/pandas/tseries/offsets.py", line 422, in __mul__ **self.kwds) File "/Users/mmngreco/miniconda3/envs/pandas-dev/lib/python3.6/site-packages/pandas/tseries/offsets.py", line 1671, in __init__ raise ValueError('N cannot be 0') ValueError: N cannot be 0
11,824
pandas-dev/pandas
pandas-dev__pandas-20672
d5d5a718254f45b4bdc386c360c830df395ec02a
diff --git a/doc/source/whatsnew/v0.23.0.txt b/doc/source/whatsnew/v0.23.0.txt --- a/doc/source/whatsnew/v0.23.0.txt +++ b/doc/source/whatsnew/v0.23.0.txt @@ -1053,6 +1053,10 @@ Numeric - Bug in :meth:`Series.rank` and :meth:`DataFrame.rank` when ``ascending='False'`` failed to return correct ranks for infinity if ``NaN`` were present (:issue:`19538`) - Bug where ``NaN`` was returned instead of 0 by :func:`Series.pct_change` and :func:`DataFrame.pct_change` when ``fill_method`` is not ``None`` (:issue:`19873`) +Strings +^^^^^^^ +- Bug in :func:`Series.str.get` with a dictionary in the values and the index not in the keys, raising `KeyError` (:issue:`20671`) + Indexing ^^^^^^^^ diff --git a/pandas/core/strings.py b/pandas/core/strings.py --- a/pandas/core/strings.py +++ b/pandas/core/strings.py @@ -1663,7 +1663,12 @@ def str_get(arr, i): ------- items : Series/Index of objects """ - f = lambda x: x[i] if len(x) > i >= -len(x) else np.nan + def f(x): + if isinstance(x, dict): + return x.get(i) + elif len(x) > i >= -len(x): + return x[i] + return np.nan return _na_map(f, arr)
str.get fails if Series contains dict #### Code Sample, a copy-pastable example if possible ```python >>> s = pandas.Series([{0: 'a', 1: 'b'}]) >>> s 0 {0: 'a', 1: 'b'} dtype: object >>> s.str.get(-1) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/mgarcia/.anaconda3/lib/python3.6/site-packages/pandas/core/strings.py", line 1556, in get result = str_get(self._data, i) File "/home/mgarcia/.anaconda3/lib/python3.6/site-packages/pandas/core/strings.py", line 1264, in str_get return _na_map(f, arr) File "/home/mgarcia/.anaconda3/lib/python3.6/site-packages/pandas/core/strings.py", line 156, in _na_map return _map(f, arr, na_mask=True, na_value=na_result, dtype=dtype) File "/home/mgarcia/.anaconda3/lib/python3.6/site-packages/pandas/core/strings.py", line 171, in _map result = lib.map_infer_mask(arr, f, mask.view(np.uint8), convert) File "pandas/_libs/src/inference.pyx", line 1482, in pandas._libs.lib.map_infer_mask File "/home/mgarcia/.anaconda3/lib/python3.6/site-packages/pandas/core/strings.py", line 1263, in <lambda> f = lambda x: x[i] if len(x) > i >= -len(x) else np.nan KeyError: -1 ``` #### Problem description `str.get` is designed for strings, but also useful with other structures like lists, for which works fine. When the values of the Series contain a dict, `str.get` tries to get the key provided as an index from the dictionary and fails with a `KeyError`. I think it's more consistent with the rest of pandas to simply return `numpy.nan` when this happens. #### Expected Output ``` >>> s = pandas.Series([{0: 'a', 1: 'b'}]) >>> s 0 {0: 'a', 1: 'b'} dtype: object >>> s.str.get(-1) 0 NaN ``` #### Output of ``pd.show_versions()`` <details> >>> pandas.show_versions() INSTALLED VERSIONS ------------------ commit: fa231e8766e02610ae5a45e4b2bc90b6c7e9ee6f python: 3.6.4.final.0 python-bits: 64 OS: Linux OS-release: 4.8.13-100.fc23.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.utf8 LOCALE: en_GB.UTF-8 pandas: 0.23.0.dev0+740.gfa231e8.dirty pytest: 3.1.3 pip: 9.0.1 setuptools: 38.5.1 Cython: 0.27.3 numpy: 1.14.0 scipy: 1.0.0 pyarrow: 0.8.0 xarray: 0.10.0 IPython: 6.2.1 sphinx: 1.5 patsy: 0.5.0 dateutil: 2.6.1 pytz: 2018.3 blosc: None bottleneck: 1.2.1 tables: 3.4.2 numexpr: 2.6.4 feather: 0.4.0 matplotlib: 2.1.2 openpyxl: 2.5.0 xlrd: 1.1.0 xlwt: 1.3.0 xlsxwriter: 1.0.2 lxml: 4.1.1 bs4: 4.6.0 html5lib: 1.0.1 sqlalchemy: 1.2.1 pymysql: 0.8.0 psycopg2: None jinja2: 2.10 s3fs: 0.1.3 fastparquet: 0.1.4 pandas_gbq: None pandas_datareader: None </details>
2018-04-12T22:50:28Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/mgarcia/.anaconda3/lib/python3.6/site-packages/pandas/core/strings.py", line 1556, in get result = str_get(self._data, i) File "/home/mgarcia/.anaconda3/lib/python3.6/site-packages/pandas/core/strings.py", line 1264, in str_get return _na_map(f, arr) File "/home/mgarcia/.anaconda3/lib/python3.6/site-packages/pandas/core/strings.py", line 156, in _na_map return _map(f, arr, na_mask=True, na_value=na_result, dtype=dtype) File "/home/mgarcia/.anaconda3/lib/python3.6/site-packages/pandas/core/strings.py", line 171, in _map result = lib.map_infer_mask(arr, f, mask.view(np.uint8), convert) File "pandas/_libs/src/inference.pyx", line 1482, in pandas._libs.lib.map_infer_mask File "/home/mgarcia/.anaconda3/lib/python3.6/site-packages/pandas/core/strings.py", line 1263, in <lambda> f = lambda x: x[i] if len(x) > i >= -len(x) else np.nan KeyError: -1
11,838
pandas-dev/pandas
pandas-dev__pandas-20705
d04b7464dcc20051ef38ac2acda580de854d3e01
diff --git a/doc/source/whatsnew/v0.23.0.txt b/doc/source/whatsnew/v0.23.0.txt --- a/doc/source/whatsnew/v0.23.0.txt +++ b/doc/source/whatsnew/v0.23.0.txt @@ -1111,6 +1111,7 @@ I/O - Bug in :meth:`pandas.io.json.json_normalize` where subrecords are not properly normalized if any subrecords values are NoneType (:issue:`20030`) - Bug in ``usecols`` parameter in :func:`pandas.io.read_csv` and :func:`pandas.io.read_table` where error is not raised correctly when passing a string. (:issue:`20529`) - Bug in :func:`HDFStore.keys` when reading a file with a softlink causes exception (:issue:`20523`) +- Bug in :func:`HDFStore.select_column` where a key which is not a valid store raised an ``AttributeError`` instead of a ``KeyError`` (:issue:`17912`) Plotting ^^^^^^^^ diff --git a/pandas/io/pytables.py b/pandas/io/pytables.py --- a/pandas/io/pytables.py +++ b/pandas/io/pytables.py @@ -887,7 +887,10 @@ def remove(self, key, where=None, start=None, stop=None): where = _ensure_term(where, scope_level=1) try: s = self.get_storer(key) - except: + except KeyError: + # the key is not a valid store, re-raising KeyError + raise + except Exception: if where is not None: raise ValueError( @@ -899,9 +902,6 @@ def remove(self, key, where=None, start=None, stop=None): s._f_remove(recursive=True) return None - if s is None: - raise KeyError('No object named %s in the file' % key) - # remove the node if com._all_none(where, start, stop): s.group._f_remove(recursive=True) @@ -1094,7 +1094,8 @@ def get_storer(self, key): """ return the storer object for a key, raise if not in the file """ group = self.get_node(key) if group is None: - return None + raise KeyError('No object named {} in the file'.format(key)) + s = self._create_storer(group) s.infer_axes() return s
HDFStore.select_column #### Code Sample, a copy-pastable example if possible Let's select column from a non-existing dataframe in a HDFStore: ```python import pandas as pd store = pd.HDFStore('test.hdf5', mode='w') store.select_column('dummy', 'index') ``` #### Problem description We get an `AttributeError` because `get_storer` returns `None`: ``` Traceback (most recent call last): File "pandas_hdf5.py", line 4, in <module> store.select_column('dummy', 'index') File "[...]/site-packages/pandas/io/pytables.py", line 778, in select_column return self.get_storer(key).read_column(column=column, **kwargs) AttributeError: 'NoneType' object has no attribute 'read_column' ``` Is this intended? #### Expected Output The docstring says: ```python """ Exceptions ---------- raises KeyError if the column is not found (or key is not a valid store) raises ValueError if the column can not be extracted individually (it is part of a data block) """ ``` Shouldn't I expect a `KeyError`, then? It could be just this simple patch: ``` - return self.get_storer(key).read_column(column=column, **kwargs) + storer = self.get_storer(key) + if storer is None: + raise KeyError('{} not in {}'.format(key, self)) + return storer.read_column(column=column, **kwargs) ``` or should `get_storer` raise en exception in the first place? I'm new to Pandas/PyTables so I don't have the big picture. From a caller perspective, I could to check first that the dataframe is in the store: ```python store = pd.HDFStore('test.hdf5', mode='w') if 'dummy' in store: store.select_column('dummy', 'index') ``` but I'd rather "ask forgiveness not permission", ```python store = pd.HDFStore('test.hdf5', mode='w') try: store.select_column('dummy', 'index') except AttributeError: [...] ``` so I should catch `AttributeError` but I'm not sure this exception being thrown is a design choice. I hope I'm being constructive and I don't sound like I'm nitpicking. #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.5.3.final.0 python-bits: 64 OS: Linux OS-release: 4.9.0-4-amd64 machine: x86_64 processor: byteorder: little LC_ALL: None LANG: fr_FR.UTF-8 LOCALE: fr_FR.UTF-8 pandas: 0.20.3 pytest: 3.2.3 pip: 9.0.1 setuptools: 36.6.0 Cython: None numpy: 1.13.3 scipy: 0.19.1 xarray: None IPython: None sphinx: None patsy: None dateutil: 2.6.1 pytz: 2017.2 blosc: None bottleneck: None tables: 3.4.2 numexpr: 2.6.4 feather: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: 0.999999999 sqlalchemy: None pymysql: None psycopg2: None jinja2: 2.9.6 s3fs: None pandas_gbq: None pandas_datareader: None </details>
Agree this looks buggy, I would probably push the exception down to `get_storer` and see if any tests break, docstring _says_ it raises. Want to do a PR? https://github.com/pandas-dev/pandas/blob/5687f9e8f63c325249caabf0c8b7f0bee0a12f09/pandas/io/pytables.py#L1095 I might try to give it a shot. The error in get_storer would be a `KeyError`, right? Would this be fine? ```python def get_storer(self, key): """ return the storer object for a key, raise if not in the file """ group = self.get_node(key) if group is None: - return None + raise KeyError('No {} node in {}'.format(key, self)) s = self._create_storer(group) s.infer_axes() return s ```
2018-04-15T15:01:41Z
[]
[]
Traceback (most recent call last): File "pandas_hdf5.py", line 4, in <module> store.select_column('dummy', 'index') File "[...]/site-packages/pandas/io/pytables.py", line 778, in select_column return self.get_storer(key).read_column(column=column, **kwargs) AttributeError: 'NoneType' object has no attribute 'read_column'
11,846
pandas-dev/pandas
pandas-dev__pandas-20846
b02c69ac7309ccf63a17471b25475bf0c0ebe3c3
diff --git a/doc/source/whatsnew/v0.23.0.txt b/doc/source/whatsnew/v0.23.0.txt --- a/doc/source/whatsnew/v0.23.0.txt +++ b/doc/source/whatsnew/v0.23.0.txt @@ -523,6 +523,7 @@ Other Enhancements library. (:issue:`20564`) - Added new writer for exporting Stata dta files in version 117, ``StataWriter117``. This format supports exporting strings with lengths up to 2,000,000 characters (:issue:`16450`) - :func:`to_hdf` and :func:`read_hdf` now accept an ``errors`` keyword argument to control encoding error handling (:issue:`20835`) +- :func:`date_range` now returns a linearly spaced ``DatetimeIndex`` if ``start``, ``stop``, and ``periods`` are specified, but ``freq`` is not. (:issue:`20808`) .. _whatsnew_0230.api_breaking: diff --git a/pandas/core/indexes/datetimes.py b/pandas/core/indexes/datetimes.py --- a/pandas/core/indexes/datetimes.py +++ b/pandas/core/indexes/datetimes.py @@ -358,7 +358,8 @@ def __new__(cls, data=None, msg = 'periods must be a number, got {periods}' raise TypeError(msg.format(periods=periods)) - if data is None and freq is None: + if data is None and freq is None \ + and com._any_none(periods, start, end): raise ValueError("Must provide freq argument if no data is " "supplied") @@ -466,9 +467,9 @@ def __new__(cls, data=None, @classmethod def _generate(cls, start, end, periods, name, freq, tz=None, normalize=False, ambiguous='raise', closed=None): - if com._count_not_none(start, end, periods) != 2: - raise ValueError('Of the three parameters: start, end, and ' - 'periods, exactly two must be specified') + if com._count_not_none(start, end, periods, freq) != 3: + raise ValueError('Of the four parameters: start, end, periods, ' + 'and freq, exactly three must be specified') _normalized = True @@ -566,23 +567,30 @@ def _generate(cls, start, end, periods, name, freq, if end.tz is None and start.tz is not None: start = start.replace(tzinfo=None) - if _use_cached_range(freq, _normalized, start, end): - index = cls._cached_range(start, end, periods=periods, - freq=freq, name=name) + if freq is not None: + if _use_cached_range(freq, _normalized, start, end): + index = cls._cached_range(start, end, periods=periods, + freq=freq, name=name) + else: + index = _generate_regular_range(start, end, periods, freq) + + if tz is not None and getattr(index, 'tz', None) is None: + index = conversion.tz_localize_to_utc(_ensure_int64(index), + tz, + ambiguous=ambiguous) + index = index.view(_NS_DTYPE) + + # index is localized datetime64 array -> have to convert + # start/end as well to compare + if start is not None: + start = start.tz_localize(tz).asm8 + if end is not None: + end = end.tz_localize(tz).asm8 else: - index = _generate_regular_range(start, end, periods, freq) - - if tz is not None and getattr(index, 'tz', None) is None: - index = conversion.tz_localize_to_utc(_ensure_int64(index), tz, - ambiguous=ambiguous) - index = index.view(_NS_DTYPE) - - # index is localized datetime64 array -> have to convert - # start/end as well to compare - if start is not None: - start = start.tz_localize(tz).asm8 - if end is not None: - end = end.tz_localize(tz).asm8 + index = tools.to_datetime(np.linspace(start.value, + end.value, periods)) + if tz is not None: + index = index.tz_localize('UTC').tz_convert(tz) if not left_closed and len(index) and index[0] == start: index = index[1:] @@ -2565,13 +2573,15 @@ def _generate_regular_range(start, end, periods, freq): return data -def date_range(start=None, end=None, periods=None, freq='D', tz=None, +def date_range(start=None, end=None, periods=None, freq=None, tz=None, normalize=False, name=None, closed=None, **kwargs): """ Return a fixed frequency DatetimeIndex. - Exactly two of the three parameters `start`, `end` and `periods` - must be specified. + Of the three parameters `start`, `end`, `periods`, and `freq` exactly + three must be specified. If `freq` is omitted, the resulting DatetimeIndex + will have `periods` linearly spaced elements between `start` and `end` + (closed on both sides). Parameters ---------- @@ -2613,7 +2623,7 @@ def date_range(start=None, end=None, periods=None, freq='D', tz=None, -------- **Specifying the values** - The next three examples generate the same `DatetimeIndex`, but vary + The next four examples generate the same `DatetimeIndex`, but vary the combination of `start`, `end` and `periods`. Specify `start` and `end`, with the default daily frequency. @@ -2637,6 +2647,13 @@ def date_range(start=None, end=None, periods=None, freq='D', tz=None, '2017-12-29', '2017-12-30', '2017-12-31', '2018-01-01'], dtype='datetime64[ns]', freq='D') + Specify `start`, `end`, and `periods`; the frequency is generated + automatically (linearly spaced). + + >>> pd.date_range(start='2018-04-24', end='2018-04-27', periods=3) + DatetimeIndex(['2018-04-24 00:00:00', '2018-04-25 12:00:00', + '2018-04-27 00:00:00'], freq=None) + **Other Parameters** Changed the `freq` (frequency) to ``'M'`` (month end frequency). @@ -2687,6 +2704,10 @@ def date_range(start=None, end=None, periods=None, freq='D', tz=None, DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='D') """ + + if freq is None and com._any_none(periods, start, end): + freq = 'D' + return DatetimeIndex(start=start, end=end, periods=periods, freq=freq, tz=tz, normalize=normalize, name=name, closed=closed, **kwargs)
ENH: date_range not working as it intuitively should when specifying start, end, and periods #### Code Sample, a copy-pastable example if possible ```python >>> start = pd.Timestamp('2008-01-02 07:51:37.999477') >>> end = start + pd.Timedelta('2 hours') >>> pd.date_range(start, end, periods=1000) # Intuitively a linearly spaced time series Traceback (most recent call last): File "<ipython-input-69-2304a28824c6>", line 1, in <module> pd.date_range(start, end, periods=1000) File "E:\Anaconda3\lib\site-packages\pandas\core\indexes\datetimes.py", line 2057, in date_range closed=closed, **kwargs) File "E:\Anaconda3\lib\site-packages\pandas\util\_decorators.py", line 118, in wrapper return func(*args, **kwargs) File "E:\Anaconda3\lib\site-packages\pandas\core\indexes\datetimes.py", line 324, in __new__ ambiguous=ambiguous) File "E:\Anaconda3\lib\site-packages\pandas\core\indexes\datetimes.py", line 421, in _generate raise ValueError('Of the three parameters: start, end, and ' ValueError: Of the three parameters: start, end, and periods, exactly two must be specified ``` #### Problem description I need a DatetimeIndex object to later use as index in a Series. DatetimeIndex should start at `start`, end at `end` and have a fixed number of elements (1000). Intuitively, this should work with `pd.date_range`, but it doesn't, and I haven't found a good explanation about why this is the case. I have found a workaround on Stackoverflow (https://stackoverflow.com/questions/25796030/how-can-i-use-pandas-date-range-to-obtain-a-time-series-with-n-specified-perio) that does work: ```python >>> start = pd.Timestamp('2008-01-02 07:51:37.999477') >>> end = start + pd.Timedelta('2 hours') >>> pd.to_datetime(np.linspace(start.value, end.value, 1000)) DatetimeIndex(['2008-01-02 07:51:37.999476992', '2008-01-02 07:51:45.206684160', '2008-01-02 07:51:52.413891328', '2008-01-02 07:51:59.621098496', '2008-01-02 07:52:06.828305920', '2008-01-02 07:52:14.035513088', '2008-01-02 07:52:21.242720256', '2008-01-02 07:52:28.449927424', '2008-01-02 07:52:35.657134592', '2008-01-02 07:52:42.864341760', ... '2008-01-02 09:50:33.134612224', '2008-01-02 09:50:40.341819392', '2008-01-02 09:50:47.549026560', '2008-01-02 09:50:54.756233728', '2008-01-02 09:51:01.963440896', '2008-01-02 09:51:09.170648064', '2008-01-02 09:51:16.377855488', '2008-01-02 09:51:23.585062656', '2008-01-02 09:51:30.792269824', '2008-01-02 09:51:37.999476992'], dtype='datetime64[ns]', length=1000, freq=None) ``` #### Expected Output ```python >>> start = pd.Timestamp('2008-01-02 07:51:37.999477') >>> end = start + pd.Timedelta('2 hours') >>> pd.date_range(start, end, periods=1000) DatetimeIndex(['2008-01-02 07:51:37.999476992', '2008-01-02 07:51:45.206684160', '2008-01-02 07:51:52.413891328', '2008-01-02 07:51:59.621098496', '2008-01-02 07:52:06.828305920', '2008-01-02 07:52:14.035513088', '2008-01-02 07:52:21.242720256', '2008-01-02 07:52:28.449927424', '2008-01-02 07:52:35.657134592', '2008-01-02 07:52:42.864341760', ... '2008-01-02 09:50:33.134612224', '2008-01-02 09:50:40.341819392', '2008-01-02 09:50:47.549026560', '2008-01-02 09:50:54.756233728', '2008-01-02 09:51:01.963440896', '2008-01-02 09:51:09.170648064', '2008-01-02 09:51:16.377855488', '2008-01-02 09:51:23.585062656', '2008-01-02 09:51:30.792269824', '2008-01-02 09:51:37.999476992'], dtype='datetime64[ns]', length=1000, freq=None) ``` #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.6.4.final.0 python-bits: 64 OS: Windows OS-release: 7 machine: AMD64 processor: Intel64 Family 6 Model 44 Stepping 2, GenuineIntel byteorder: little LC_ALL: None LANG: en LOCALE: None.None pandas: 0.22.0 pytest: 3.3.2 pip: 9.0.1 setuptools: 38.4.0 Cython: 0.27.3 numpy: 1.14.2 scipy: 1.0.1 pyarrow: None xarray: None IPython: 6.2.1 sphinx: 1.6.6 patsy: 0.5.0 dateutil: 2.6.1 pytz: 2017.3 blosc: None bottleneck: 1.2.1 tables: 3.4.2 numexpr: 2.6.4 feather: None matplotlib: 2.1.2 openpyxl: 2.4.10 xlrd: 1.1.0 xlwt: 1.3.0 xlsxwriter: 1.0.2 lxml: 4.1.1 bs4: 4.6.0 html5lib: 0.9999999 sqlalchemy: 1.2.1 pymysql: None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
I suppose if freq is NOT specified then you could accept all three and give a linspace repr. What breaks if you do that? If freq is specified then this should for sure raise. The idea of the error is simply to be helpful in telling you that you may have overspecified the args. Your workaround from SO is a pretty reasonable solution, not sure we should support this. I definitely would not want to change the default behavior, but suppose could with with something like `freq=None` or `freq='interpolate'` I agree to definetely don't change the default behaviour. As I see, the default `freq` is 'D', so this: ```python pd.date_range(start, end, periods=1000) ``` would not work, because it is the same as ```python pd.date_range(start, end, periods=1000, freq='D') ``` which really should not work. However, if the user explicitly sets `freq=None`, the linspace behaviour would be practical: ```python pd.date_range(start, end, periods=1000, freq=None) ``` I suggest a simple change in the `date_range` function like so: ```python def date_range(start=None, end=None, periods=None, freq='D', tz=None, normalize=False, name=None, closed=None, **kwargs): """ ... """ # Return a linearly spaced DatetimeIndex if `freq` is not set, but `start`, `end`, and `periods` are if start and end and periods and not freq: di = tools.to_datetime(np.linspace(start, end, periods), **kwargs) if name: di.name = name return di return DatetimeIndex(start=start, end=end, periods=periods, freq=freq, tz=tz, normalize=normalize, name=name, closed=closed, **kwargs) ``` together with appropriate changes in the docstring and test functions. This would provide the desired behaviour, while not changing anything else. I am not yet a contributor, so I cannot implement this myself (unless I am made one :upside_down_face:) Because the change is really just a convenience feature of the `date_range` function, I don't think it would be wise to implement this directly in the DatetimeIndex constructor, or in another function, like `bdate_range`. FWI, we could change the default `freq` to `None`, and document that it's `'D'` when only two of star, end, and freq are specified. That way `pd.date_range(start, end, periods=100)` will work. > I am not yet a contributor, so I cannot implement this myself (unless I am made one 🙃) Anyone can make a pull request: http://pandas-docs.github.io/pandas-docs-travis/contributing.html That's a good idea, I like it much better. > Anyone can make a pull request Oh okay I didn't know that (never done this before), then I am going to try to implement it :)
2018-04-27T15:14:38Z
[]
[]
Traceback (most recent call last): File "<ipython-input-69-2304a28824c6>", line 1, in <module> pd.date_range(start, end, periods=1000) File "E:\Anaconda3\lib\site-packages\pandas\core\indexes\datetimes.py", line 2057, in date_range closed=closed, **kwargs) File "E:\Anaconda3\lib\site-packages\pandas\util\_decorators.py", line 118, in wrapper return func(*args, **kwargs) File "E:\Anaconda3\lib\site-packages\pandas\core\indexes\datetimes.py", line 324, in __new__ ambiguous=ambiguous) File "E:\Anaconda3\lib\site-packages\pandas\core\indexes\datetimes.py", line 421, in _generate raise ValueError('Of the three parameters: start, end, and ' ValueError: Of the three parameters: start, end, and periods, exactly two must be specified
11,870
pandas-dev/pandas
pandas-dev__pandas-20933
d15c104d0596454c289ba48906a397be45dda959
diff --git a/doc/source/indexing.rst b/doc/source/indexing.rst --- a/doc/source/indexing.rst +++ b/doc/source/indexing.rst @@ -96,7 +96,7 @@ of multi-axis indexing. .. versionadded:: 0.18.1 - See more at :ref:`Selection by Position <indexing.integer>`, + See more at :ref:`Selection by Position <indexing.integer>`, :ref:`Advanced Indexing <advanced>` and :ref:`Advanced Hierarchical <advanced.advanced_hierarchical>`. @@ -125,7 +125,7 @@ Basics As mentioned when introducing the data structures in the :ref:`last section <basics>`, the primary function of indexing with ``[]`` (a.k.a. ``__getitem__`` for those familiar with implementing class behavior in Python) is selecting out -lower-dimensional slices. The following table shows return type values when +lower-dimensional slices. The following table shows return type values when indexing pandas objects with ``[]``: .. csv-table:: @@ -235,7 +235,7 @@ as an attribute: - The attribute will not be available if it conflicts with an existing method name, e.g. ``s.min`` is not allowed. - Similarly, the attribute will not be available if it conflicts with any of the following list: ``index``, - ``major_axis``, ``minor_axis``, ``items``, ``labels``. + ``major_axis``, ``minor_axis``, ``items``. - In any of these cases, standard indexing will still work, e.g. ``s['1']``, ``s['min']``, and ``s['index']`` will access the corresponding element or column. @@ -888,10 +888,10 @@ Boolean indexing .. _indexing.boolean: Another common operation is the use of boolean vectors to filter the data. -The operators are: ``|`` for ``or``, ``&`` for ``and``, and ``~`` for ``not``. +The operators are: ``|`` for ``or``, ``&`` for ``and``, and ``~`` for ``not``. These **must** be grouped by using parentheses, since by default Python will -evaluate an expression such as ``df.A > 2 & df.B < 3`` as -``df.A > (2 & df.B) < 3``, while the desired evaluation order is +evaluate an expression such as ``df.A > 2 & df.B < 3`` as +``df.A > (2 & df.B) < 3``, while the desired evaluation order is ``(df.A > 2) & (df.B < 3)``. Using a boolean vector to index a Series works exactly as in a NumPy ndarray: @@ -944,8 +944,8 @@ and :ref:`Advanced Indexing <advanced>` you may select along more than one axis Indexing with isin ------------------ -Consider the :meth:`~Series.isin` method of ``Series``, which returns a boolean -vector that is true wherever the ``Series`` elements exist in the passed list. +Consider the :meth:`~Series.isin` method of ``Series``, which returns a boolean +vector that is true wherever the ``Series`` elements exist in the passed list. This allows you to select rows where one or more columns have values you want: .. ipython:: python @@ -1666,7 +1666,7 @@ Set an index .. _indexing.set_index: -DataFrame has a :meth:`~DataFrame.set_index` method which takes a column name +DataFrame has a :meth:`~DataFrame.set_index` method which takes a column name (for a regular ``Index``) or a list of column names (for a ``MultiIndex``). To create a new, re-indexed DataFrame: @@ -1707,9 +1707,9 @@ the index in-place (without creating a new object): Reset the index ~~~~~~~~~~~~~~~ -As a convenience, there is a new function on DataFrame called -:meth:`~DataFrame.reset_index` which transfers the index values into the -DataFrame's columns and sets a simple integer index. +As a convenience, there is a new function on DataFrame called +:meth:`~DataFrame.reset_index` which transfers the index values into the +DataFrame's columns and sets a simple integer index. This is the inverse operation of :meth:`~DataFrame.set_index`.
Update docs on reserved attributes #### Code Sample, a copy-pastable example if possible ```python >>> t = pd.DataFrame({'foo': [1,2], 'labels': [3,4], 'bar': [5,6]}) >>> t.foo 0 1 1 2 Name: foo, dtype: int64 >>> t.bar 0 5 1 6 Name: bar, dtype: int64 >>> t.labels Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/mrg/git/xdash/env/lib/python2.7/site-packages/pandas/core/generic.py", line 3077, in __getattr__ return object.__getattribute__(self, name) AttributeError: 'DataFrame' object has no attribute 'labels' ``` #### Problem description I would expect the `labels` column to be accessible as an attribute on the DataFrame, like `t.foo` and `t.bar`. Instead, `t.labels` gives an AttributeError. I eventually found the relevant section of the docs, which notes that `index`, `major_axis`, `minor_axis`, `items`, and `labels` are reserved. http://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute-access #### Expected Output Given the limitation, I would expect a warning at DataFrame creation time that the `labels` column will not be accessible as an attribute. I see that this issue has been raised before (#8082, #8100) and closed, but I saw no warning. It looks like the only change was to expand the documentation (9b12ccbcf2bc5893dcca262c81ac5dc28096c682). The suggestion from @jtratner [on 7 Sep 2014](https://github.com/pandas-dev/pandas/pull/8100#issuecomment-54756388) looked good to me: ``` UserWarning: Using reserved column name `labels` will be inaccessible by `getattr` calls - you must use `[]` instead. ``` #### Output of ``pd.show_versions()`` <details> [paste the output of ``pd.show_versions()`` here below this line] INSTALLED VERSIONS ------------------ commit: None python: 2.7.10.final.0 python-bits: 64 OS: Darwin OS-release: 17.4.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: None.None pandas: 0.20.3 pytest: None pip: 9.0.1 setuptools: 36.4.0 Cython: None numpy: 1.13.1 scipy: None xarray: None IPython: None sphinx: None patsy: None dateutil: 2.6.1 pytz: 2017.2 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: 4.6.0 html5lib: 0.999999999 sqlalchemy: None pymysql: None psycopg2: None jinja2: 2.9.6 s3fs: None pandas_gbq: None pandas_datareader: 0.5.0 </details>
On master, `labels` goes through for me. ``` In [1]: import pandas as pd In [2]: t = pd.DataFrame({'foo': [1,2], 'labels': [3,4], 'bar': [5,6]}) In [3]: t.labels Out[3]: 0 3 1 4 Name: labels, dtype: int64 ``` Did this change recently? If so, we should update the docs. I don't think we would do a warning for this (so e.g. `index`). The `.` accessing is a convenience for interactive use. We wouldn't want to force people using these column names to catch warnings every time they make a series / dataframe. Fair enough. I can see that not everyone will use the `.` access, and for them the warning would be an annoyance. Now that I'm aware of the issue, it shouldn't catch me out again. Interesting that `t.labels` works on master. I was initially running 0.20.3, but I get the same behaviour (AttributeError) from 0.22.0. Added this as a docs issues. We should update the reserved attr names to be the ones that we're using. I can take a stab at it. 👍 thanks @sharad-vm. Let us know if you get stuck.
2018-05-02T21:14:13Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/mrg/git/xdash/env/lib/python2.7/site-packages/pandas/core/generic.py", line 3077, in __getattr__ return object.__getattribute__(self, name) AttributeError: 'DataFrame' object has no attribute 'labels'
11,881
pandas-dev/pandas
pandas-dev__pandas-20938
ce4ab828d882a0c50f2f63921621ccae0d14b5ae
diff --git a/doc/source/whatsnew/v0.23.0.txt b/doc/source/whatsnew/v0.23.0.txt --- a/doc/source/whatsnew/v0.23.0.txt +++ b/doc/source/whatsnew/v0.23.0.txt @@ -956,6 +956,7 @@ Deprecations retain the previous behavior, use a list instead of a tuple (:issue:`18314`) - ``Series.valid`` is deprecated. Use :meth:`Series.dropna` instead (:issue:`18800`). - :func:`read_excel` has deprecated the ``skip_footer`` parameter. Use ``skipfooter`` instead (:issue:`18836`) +- :meth:`ExcelFile.parse` has deprecated ``sheetname`` in favor of ``sheet_name`` for consistency with :func:`read_excel` (:issue:`20920`). - The ``is_copy`` attribute is deprecated and will be removed in a future version (:issue:`18801`). - ``IntervalIndex.from_intervals`` is deprecated in favor of the :class:`IntervalIndex` constructor (:issue:`19263`) - ``DataFrame.from_items`` is deprecated. Use :func:`DataFrame.from_dict` instead, or ``DataFrame.from_dict(OrderedDict())`` if you wish to preserve the key order (:issue:`17320`, :issue:`17312`) diff --git a/pandas/io/excel.py b/pandas/io/excel.py --- a/pandas/io/excel.py +++ b/pandas/io/excel.py @@ -303,20 +303,11 @@ def read_excel(io, convert_float=True, **kwds): - # Can't use _deprecate_kwarg since sheetname=None has a special meaning - if is_integer(sheet_name) and sheet_name == 0 and 'sheetname' in kwds: - warnings.warn("The `sheetname` keyword is deprecated, use " - "`sheet_name` instead", FutureWarning, stacklevel=2) - sheet_name = kwds.pop("sheetname") - elif 'sheetname' in kwds: - raise TypeError("Cannot specify both `sheet_name` and `sheetname`. " - "Use just `sheet_name`") - if not isinstance(io, ExcelFile): io = ExcelFile(io, engine=engine) - return io._parse_excel( - sheetname=sheet_name, + return io.parse( + sheet_name=sheet_name, header=header, names=names, index_col=index_col, @@ -435,7 +426,16 @@ def parse(self, docstring for more info on accepted parameters """ - return self._parse_excel(sheetname=sheet_name, + # Can't use _deprecate_kwarg since sheetname=None has a special meaning + if is_integer(sheet_name) and sheet_name == 0 and 'sheetname' in kwds: + warnings.warn("The `sheetname` keyword is deprecated, use " + "`sheet_name` instead", FutureWarning, stacklevel=2) + sheet_name = kwds.pop("sheetname") + elif 'sheetname' in kwds: + raise TypeError("Cannot specify both `sheet_name` " + "and `sheetname`. Use just `sheet_name`") + + return self._parse_excel(sheet_name=sheet_name, header=header, names=names, index_col=index_col, @@ -489,7 +489,7 @@ def _excel2num(x): return i in usecols def _parse_excel(self, - sheetname=0, + sheet_name=0, header=0, names=None, index_col=None, @@ -585,14 +585,14 @@ def _parse_cell(cell_contents, cell_typ): ret_dict = False # Keep sheetname to maintain backwards compatibility. - if isinstance(sheetname, list): - sheets = sheetname + if isinstance(sheet_name, list): + sheets = sheet_name ret_dict = True - elif sheetname is None: + elif sheet_name is None: sheets = self.sheet_names ret_dict = True else: - sheets = [sheetname] + sheets = [sheet_name] # handle same-type duplicates. sheets = list(OrderedDict.fromkeys(sheets).keys())
ExcelFile.parse() and pd.read_xlsx() have different behavior for "sheetname" argument #### Code Sample, a copy-pastable example if possible * `pd.read_excel()` ```python >>> import pandas as pd >>> pd.read_excel('sampledata.xlsx', sheet_name='Sheet2') a b c 0 this is sheet2 >>> pd.read_excel('sampledata.xlsx', sheetname='Sheet2') /Users/<myname>/.pyenv/versions/miniconda3-latest/envs/py36/envs/py36/lib/python3.6/site-packages/pandas/util/_decorators.py:118: FutureWarning: The `sheetname` keyword is deprecated, use `sheet_name` instead return func(*args, **kwargs) a b c 0 this is sheet2 ``` * `ExcelFile.parse()` ```python >>> import pandas as pd >>> xlsx_file=pd.ExcelFile('sampledata.xlsx') >>> xlsx_file.sheet_names ['Sheet1', 'Sheet2', 'Sheet3'] >>> xlsx_file.parse(sheet_name='Sheet2') a b c 0 this is sheet2 >>> xlsx_file.parse(sheetname='Sheet2') Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/<myname>/.pyenv/versions/miniconda3-latest/envs/py36/envs/py36/lib/python3.6/site-packages/pandas/io/excel.py", line 327, in parse **kwds) TypeError: _parse_excel() got multiple values for keyword argument 'sheetname' ``` #### Problem description * The document says ExcelFile.parse() is "Equivalent to read_excel(ExcelFile, ...)", but when using argument `sheetname`,which is deprecated, these two gives different results. * pd.read_excel() works with `FutureWarning`, but ExcelFile.parse() gives `TypeError` instead. #### Expected Output ExcelFile.parse() should raise `FutureWarning` and use the value of `sheetname` as that of `sheet_name` #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.6.4.final.0 python-bits: 64 OS: Darwin OS-release: 17.5.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: ja_JP.UTF-8 LOCALE: ja_JP.UTF-8 pandas: 0.22.0 pytest: 3.3.2 pip: 9.0.1 setuptools: 38.4.0 Cython: 0.27.3 numpy: 1.14.0 scipy: 1.0.0 pyarrow: None xarray: None IPython: 6.2.1 sphinx: 1.6.6 patsy: 0.5.0 dateutil: 2.6.1 pytz: 2017.3 blosc: None bottleneck: 1.2.1 tables: 3.4.2 numexpr: 2.6.4 feather: None matplotlib: 2.1.2 openpyxl: 2.4.10 xlrd: 1.1.0 xlwt: 1.2.0 xlsxwriter: 1.0.2 lxml: 4.1.1 bs4: 4.6.0 html5lib: 1.0.1 sqlalchemy: 1.2.1 pymysql: None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
you are welcome to submit a fix to this, though ``sheetname`` is going to be removed in the next version.
2018-05-03T01:02:09Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/<myname>/.pyenv/versions/miniconda3-latest/envs/py36/envs/py36/lib/python3.6/site-packages/pandas/io/excel.py", line 327, in parse **kwds) TypeError: _parse_excel() got multiple values for keyword argument 'sheetname'
11,882
pandas-dev/pandas
pandas-dev__pandas-20946
28dbae9f306ade549eb1edd5484b3e1da758bcdb
diff --git a/doc/source/api.rst b/doc/source/api.rst --- a/doc/source/api.rst +++ b/doc/source/api.rst @@ -1632,6 +1632,8 @@ IntervalIndex Components IntervalIndex.length IntervalIndex.values IntervalIndex.is_non_overlapping_monotonic + IntervalIndex.get_loc + IntervalIndex.get_indexer .. _api.multiindex: diff --git a/doc/source/whatsnew/v0.23.0.txt b/doc/source/whatsnew/v0.23.0.txt --- a/doc/source/whatsnew/v0.23.0.txt +++ b/doc/source/whatsnew/v0.23.0.txt @@ -1245,6 +1245,7 @@ Indexing - Bug in ``Series.is_unique`` where extraneous output in stderr is shown if Series contains objects with ``__ne__`` defined (:issue:`20661`) - Bug in ``.loc`` assignment with a single-element list-like incorrectly assigns as a list (:issue:`19474`) - Bug in partial string indexing on a ``Series/DataFrame`` with a monotonic decreasing ``DatetimeIndex`` (:issue:`19362`) +- Bug in :meth:`IntervalIndex.get_loc` and :meth:`IntervalIndex.get_indexer` when used with an :class:`IntervalIndex` containing a single interval (:issue:`17284`, :issue:`20921`) MultiIndex ^^^^^^^^^^ diff --git a/pandas/core/indexes/interval.py b/pandas/core/indexes/interval.py --- a/pandas/core/indexes/interval.py +++ b/pandas/core/indexes/interval.py @@ -159,20 +159,22 @@ class IntervalIndex(IntervalMixin, Index): Attributes ---------- - left - right closed - mid + is_non_overlapping_monotonic + left length + mid + right values - is_non_overlapping_monotonic Methods ------- + contains from_arrays - from_tuples from_breaks - contains + from_tuples + get_indexer + get_loc Examples --------- @@ -938,8 +940,11 @@ def _searchsorted_monotonic(self, label, side, exclude_label=False): if isinstance(label, IntervalMixin): raise NotImplementedError + # GH 20921: "not is_monotonic_increasing" for the second condition + # instead of "is_monotonic_decreasing" to account for single element + # indexes being both increasing and decreasing if ((side == 'left' and self.left.is_monotonic_increasing) or - (side == 'right' and self.left.is_monotonic_decreasing)): + (side == 'right' and not self.left.is_monotonic_increasing)): sub_idx = self.right if self.open_right or exclude_label: label = _get_next_label(label)
BUG: IntervalIndex.get_loc fails when there is only one entry #### Code Sample, a copy-pastable example if possible ```python >>> import pandas as pd >>> pd.IntervalIndex.from_tuples([(1,100)]).get_loc(50) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/imre/code/pandas/pandas/core/indexes/interval.py", line 1049, in get_loc raise KeyError(original_key) KeyError: 50 ``` #### Problem description 50 is contained in the interval (1, 100), so this should not raise `KeyError`. #### Expected Output 0 #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: c4da79b5b322c73d8e61d1cb98ac4ab1e2438b40 python: 3.6.3.final.0 python-bits: 64 OS: Linux OS-release: 4.13.0-39-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.23.0.dev0+824.gc4da79b5b pytest: None pip: 10.0.1 setuptools: 39.1.0 Cython: 0.28.2 numpy: 1.14.3 scipy: None pyarrow: None xarray: None IPython: None sphinx: None patsy: None dateutil: 2.7.2 pytz: 2018.4 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: None sqlalchemy: None pymysql: None psycopg2: None jinja2: None s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
xref https://github.com/pandas-dev/pandas/issues/17284#issuecomment-325890615 Not exactly a dupe of that issue, but the same fix will probably resolve both of these.
2018-05-04T00:25:09Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/imre/code/pandas/pandas/core/indexes/interval.py", line 1049, in get_loc raise KeyError(original_key) KeyError: 50
11,885
pandas-dev/pandas
pandas-dev__pandas-20959
bd4332f4bff135d4119291f66e98f76cc5f9a80e
diff --git a/doc/source/whatsnew/v0.23.0.txt b/doc/source/whatsnew/v0.23.0.txt --- a/doc/source/whatsnew/v0.23.0.txt +++ b/doc/source/whatsnew/v0.23.0.txt @@ -1320,6 +1320,7 @@ Groupby/Resample/Rolling - Bug in :func:`DataFrame.resample` that dropped timezone information (:issue:`13238`) - Bug in :func:`DataFrame.groupby` where transformations using ``np.all`` and ``np.any`` were raising a ``ValueError`` (:issue:`20653`) - Bug in :func:`DataFrame.resample` where ``ffill``, ``bfill``, ``pad``, ``backfill``, ``fillna``, ``interpolate``, and ``asfreq`` were ignoring ``loffset``. (:issue:`20744`) +- Bug in :func:`DataFrame.groupby` when applying a function that has mixed data types and the user supplied function can fail on the grouping column (:issue:`20949`) Sparse ^^^^^^ diff --git a/pandas/core/groupby/groupby.py b/pandas/core/groupby/groupby.py --- a/pandas/core/groupby/groupby.py +++ b/pandas/core/groupby/groupby.py @@ -6,6 +6,7 @@ import warnings import copy from textwrap import dedent +from contextlib import contextmanager from pandas.compat import ( zip, range, lzip, @@ -549,6 +550,16 @@ def f(self): return attr +@contextmanager +def _group_selection_context(groupby): + """ + set / reset the _group_selection_context + """ + groupby._set_group_selection() + yield groupby + groupby._reset_group_selection() + + class _GroupBy(PandasObject, SelectionMixin): _group_selection = None _apply_whitelist = frozenset([]) @@ -696,26 +707,32 @@ def _reset_group_selection(self): each group regardless of whether a group selection was previously set. """ if self._group_selection is not None: - self._group_selection = None # GH12839 clear cached selection too when changing group selection + self._group_selection = None self._reset_cache('_selected_obj') def _set_group_selection(self): """ Create group based selection. Used when selection is not passed directly but instead via a grouper. + + NOTE: this should be paired with a call to _reset_group_selection """ grp = self.grouper - if self.as_index and getattr(grp, 'groupings', None) is not None and \ - self.obj.ndim > 1: - ax = self.obj._info_axis - groupers = [g.name for g in grp.groupings - if g.level is None and g.in_axis] + if not (self.as_index and + getattr(grp, 'groupings', None) is not None and + self.obj.ndim > 1 and + self._group_selection is None): + return + + ax = self.obj._info_axis + groupers = [g.name for g in grp.groupings + if g.level is None and g.in_axis] - if len(groupers): - self._group_selection = ax.difference(Index(groupers)).tolist() - # GH12839 clear selected obj cache when group selection changes - self._reset_cache('_selected_obj') + if len(groupers): + # GH12839 clear selected obj cache when group selection changes + self._group_selection = ax.difference(Index(groupers)).tolist() + self._reset_cache('_selected_obj') def _set_result_index_ordered(self, result): # set the result index on the passed values object and @@ -781,10 +798,10 @@ def _make_wrapper(self, name): type(self).__name__)) raise AttributeError(msg) - # need to setup the selection - # as are not passed directly but in the grouper self._set_group_selection() + # need to setup the selection + # as are not passed directly but in the grouper f = getattr(self._selected_obj, name) if not isinstance(f, types.MethodType): return self.apply(lambda self: getattr(self, name)) @@ -897,7 +914,22 @@ def f(g): # ignore SettingWithCopy here in case the user mutates with option_context('mode.chained_assignment', None): - return self._python_apply_general(f) + try: + result = self._python_apply_general(f) + except Exception: + + # gh-20949 + # try again, with .apply acting as a filtering + # operation, by excluding the grouping column + # This would normally not be triggered + # except if the udf is trying an operation that + # fails on *some* columns, e.g. a numeric operation + # on a string grouper column + + with _group_selection_context(self): + return self._python_apply_general(f) + + return result def _python_apply_general(self, f): keys, values, mutated = self.grouper.apply(f, self._selected_obj, @@ -1275,9 +1307,9 @@ def mean(self, *args, **kwargs): except GroupByError: raise except Exception: # pragma: no cover - self._set_group_selection() - f = lambda x: x.mean(axis=self.axis, **kwargs) - return self._python_agg_general(f) + with _group_selection_context(self): + f = lambda x: x.mean(axis=self.axis, **kwargs) + return self._python_agg_general(f) @Substitution(name='groupby') @Appender(_doc_template) @@ -1293,13 +1325,12 @@ def median(self, **kwargs): raise except Exception: # pragma: no cover - self._set_group_selection() - def f(x): if isinstance(x, np.ndarray): x = Series(x) return x.median(axis=self.axis, **kwargs) - return self._python_agg_general(f) + with _group_selection_context(self): + return self._python_agg_general(f) @Substitution(name='groupby') @Appender(_doc_template) @@ -1336,9 +1367,9 @@ def var(self, ddof=1, *args, **kwargs): if ddof == 1: return self._cython_agg_general('var', **kwargs) else: - self._set_group_selection() f = lambda x: x.var(ddof=ddof, **kwargs) - return self._python_agg_general(f) + with _group_selection_context(self): + return self._python_agg_general(f) @Substitution(name='groupby') @Appender(_doc_template) @@ -1384,6 +1415,7 @@ def f(self, **kwargs): kwargs['numeric_only'] = numeric_only if 'min_count' not in kwargs: kwargs['min_count'] = min_count + self._set_group_selection() try: return self._cython_agg_general( @@ -1453,11 +1485,11 @@ def ohlc(self): @Appender(DataFrame.describe.__doc__) def describe(self, **kwargs): - self._set_group_selection() - result = self.apply(lambda x: x.describe(**kwargs)) - if self.axis == 1: - return result.T - return result.unstack() + with _group_selection_context(self): + result = self.apply(lambda x: x.describe(**kwargs)) + if self.axis == 1: + return result.T + return result.unstack() @Substitution(name='groupby') @Appender(_doc_template) @@ -1778,13 +1810,12 @@ def ngroup(self, ascending=True): .cumcount : Number the rows in each group. """ - self._set_group_selection() - - index = self._selected_obj.index - result = Series(self.grouper.group_info[0], index) - if not ascending: - result = self.ngroups - 1 - result - return result + with _group_selection_context(self): + index = self._selected_obj.index + result = Series(self.grouper.group_info[0], index) + if not ascending: + result = self.ngroups - 1 - result + return result @Substitution(name='groupby') def cumcount(self, ascending=True): @@ -1835,11 +1866,10 @@ def cumcount(self, ascending=True): .ngroup : Number the groups themselves. """ - self._set_group_selection() - - index = self._selected_obj.index - cumcounts = self._cumcount_array(ascending=ascending) - return Series(cumcounts, index) + with _group_selection_context(self): + index = self._selected_obj.index + cumcounts = self._cumcount_array(ascending=ascending) + return Series(cumcounts, index) @Substitution(name='groupby') @Appender(_doc_template) @@ -3768,7 +3798,6 @@ def nunique(self, dropna=True): @Appender(Series.describe.__doc__) def describe(self, **kwargs): - self._set_group_selection() result = self.apply(lambda x: x.describe(**kwargs)) if self.axis == 1: return result.T @@ -4411,6 +4440,7 @@ def transform(self, func, *args, **kwargs): return self._transform_general(func, *args, **kwargs) obj = self._obj_with_exclusions + # nuiscance columns if not result.columns.equals(obj.columns): return self._transform_general(func, *args, **kwargs)
pandas.core.groupby.GroupBy.apply fails #### Code Sample: ```python >>> df = pd.DataFrame({'A': 'a a b'.split(), 'B': [1,2,3], 'C': [4,6, 5]}) >>> g = df.groupby('A') >>> g.apply(lambda x: x / x.sum()) ``` #### Problem description Applying a function to a grouped data frame fails. The code above is the example code from the official pandas documentation: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.core.groupby.GroupBy.apply.html Output to the above code: ```python /usr/local/lib/python2.7/dist-packages/pandas/core/computation/check.py:17: UserWarning: The installed version of numexpr 2.4.3 is not supported in pandas and will be not be used The minimum supported version is 2.4.6 ver=ver, min_ver=_MIN_NUMEXPR_VERSION), UserWarning) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python2.7/dist-packages/pandas/core/groupby.py", line 805, in apply return self._python_apply_general(f) File "/usr/local/lib/python2.7/dist-packages/pandas/core/groupby.py", line 809, in _python_apply_general self.axis) File "/usr/local/lib/python2.7/dist-packages/pandas/core/groupby.py", line 1969, in apply res = f(group) File "<stdin>", line 1, in <lambda> File "/usr/local/lib/python2.7/dist-packages/pandas/core/ops.py", line 1262, in f return self._combine_series(other, na_op, fill_value, axis, level) File "/usr/local/lib/python2.7/dist-packages/pandas/core/frame.py", line 3944, in _combine_series try_cast=try_cast) File "/usr/local/lib/python2.7/dist-packages/pandas/core/frame.py", line 3958, in _combine_series_infer try_cast=try_cast) File "/usr/local/lib/python2.7/dist-packages/pandas/core/frame.py", line 3981, in _combine_match_columns try_cast=try_cast) File "/usr/local/lib/python2.7/dist-packages/pandas/core/internals.py", line 3435, in eval return self.apply('eval', **kwargs) File "/usr/local/lib/python2.7/dist-packages/pandas/core/internals.py", line 3329, in apply applied = getattr(b, f)(**kwargs) File "/usr/local/lib/python2.7/dist-packages/pandas/core/internals.py", line 1377, in eval result = get_result(other) File "/usr/local/lib/python2.7/dist-packages/pandas/core/internals.py", line 1346, in get_result result = func(values, other) File "/usr/local/lib/python2.7/dist-packages/pandas/core/ops.py", line 1216, in na_op yrav.fill(yrav.item()) ValueError: can only convert an array of size 1 to a Python scalar ``` The error can be 'fixed' by applying another command to the grouped object first: ```python >>> g.sum() B C A a 3 10 b 3 5 >>> g.apply(lambda x: x / x.sum()) B C 0 0.333333 0.4 1 0.666667 0.6 2 1.000000 1.0 ``` #### Expected Output ```python >>> g.apply(lambda x: x / x.sum()) B C 0 0.333333 0.4 1 0.666667 0.6 2 1.000000 1.0 ``` #### Output of ``pd.show_versions()`` <details> >>> pd.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 2.7.12.final.0 python-bits: 64 OS: Linux OS-release: 4.4.0-122-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: en_US.utf8 LANG: en_US.UTF-8 LOCALE: None.None pandas: 0.22.0 pytest: 2.8.7 pip: 9.0.1 setuptools: 20.7.0 Cython: 0.23.4 numpy: 1.11.0 scipy: 0.17.0 pyarrow: None xarray: None IPython: 5.5.0 sphinx: None patsy: 0.4.1 dateutil: 2.4.2 pytz: 2014.10 blosc: None bottleneck: None tables: 3.2.2 numexpr: 2.4.3 feather: None matplotlib: 1.5.1 openpyxl: 2.3.0 xlrd: 0.9.4 xlwt: 0.7.5 xlsxwriter: None lxml: 3.5.0 bs4: None html5lib: 1.0.1 sqlalchemy: 1.0.11 pymysql: 0.7.2.None psycopg2: 2.6.1 (dt dec mx pq3 ext lo64) jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None >>> </details>
Thanks for the bug report. Hmm interesting. FWIW when I remove numexpr I can't get this to run at all, regardless of whether or not I run another agg function first. Numexpr may be a red herring. From what I can tell the problem occurs at the following line of code: https://github.com/pandas-dev/pandas/blob/ef019faa06f762c8c203985a11108731384b2dae/pandas/core/groupby/groupby.py#L5063 `sdata` when run without another agg function first includes the Grouping as part of the data and throws here, causing it to go down another path. `sdata` comes from `_selected_obj`. For agg functions like `sum`, `mean`, etc... they have a call to `_set_group_selection` which takes care of setting the appropriately cached value for `_selected_obj`. I suppose a quick fix is to add a call to that at the beginning of `apply`, though I can't tell from the code alone why that isn't done across the board cc @jreback for any insight Here's another example that fails with 0.23rc2 (and in 0.22.0 as well), based on code from `pandas\core\indexes\datetimes.py` in `test_agg_timezone_round_trip`: ``` In [1]: import pandas as pd In [2]: pd.__version__ Out[2]: '0.23.0rc2' In [3]: dates = [pd.Timestamp("2016-01-0%d 12:00:00" % i, tz='US/Pacific') ...: for i in range(1, 5)] ...: df = pd.DataFrame({'A': ['a', 'b'] * 2, 'B': dates}) ...: grouped = df.groupby('A') ...: In [4]: df Out[4]: A B 0 a 2016-01-01 12:00:00-08:00 1 b 2016-01-02 12:00:00-08:00 2 a 2016-01-03 12:00:00-08:00 3 b 2016-01-04 12:00:00-08:00 In [5]: grouped.apply(lambda x: x.iloc[0])[0] --------------------------------------------------------------------------- KeyError Traceback (most recent call last) C:\EclipseWorkspaces\LiClipseWorkspace\pandas-dev\pandas36\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance) 3062 try: -> 3063 return self._engine.get_loc(key) 3064 except KeyError: C:\EclipseWorkspaces\LiClipseWorkspace\pandas-dev\pandas36\pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas\_libs\index.c:5720)() 138 --> 139 cpdef get_loc(self, object val): 140 if is_definitely_invalid_key(val): C:\EclipseWorkspaces\LiClipseWorkspace\pandas-dev\pandas36\pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas\_libs\index.c:5566)() 160 try: --> 161 return self.mapping.get_item(val) 162 except (TypeError, ValueError): C:\EclipseWorkspaces\LiClipseWorkspace\pandas-dev\pandas36\pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas\_libs\hashtable.c:22442)() 1491 -> 1492 cpdef get_item(self, object val): 1493 cdef khiter_t k C:\EclipseWorkspaces\LiClipseWorkspace\pandas-dev\pandas36\pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas\_libs\hashtable.c:22396)() 1499 else: -> 1500 raise KeyError(val) 1501 KeyError: 0 During handling of the above exception, another exception occurred: KeyError Traceback (most recent call last) <ipython-input-5-2b16555d6e05> in <module>() ----> 1 grouped.apply(lambda x: x.iloc[0])[0] C:\EclipseWorkspaces\LiClipseWorkspace\pandas-dev\pandas36\pandas\core\frame.py in __getitem__(self, key) 2685 return self._getitem_multilevel(key) 2686 else: -> 2687 return self._getitem_column(key) 2688 2689 def _getitem_column(self, key): C:\EclipseWorkspaces\LiClipseWorkspace\pandas-dev\pandas36\pandas\core\frame.py in _getitem_column(self, key) 2692 # get column 2693 if self.columns.is_unique: -> 2694 return self._get_item_cache(key) 2695 2696 # duplicate columns & possible reduce dimensionality C:\EclipseWorkspaces\LiClipseWorkspace\pandas-dev\pandas36\pandas\core\generic.py in _get_item_cache(self, item) 2485 res = cache.get(item) 2486 if res is None: -> 2487 values = self._data.get(item) 2488 res = self._box_item_values(item, values) 2489 cache[item] = res C:\EclipseWorkspaces\LiClipseWorkspace\pandas-dev\pandas36\pandas\core\internals.py in get(self, item, fastpath) 4113 4114 if not isna(item): -> 4115 loc = self.items.get_loc(item) 4116 else: 4117 indexer = np.arange(len(self.items))[isna(self.items)] C:\EclipseWorkspaces\LiClipseWorkspace\pandas-dev\pandas36\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance) 3063 return self._engine.get_loc(key) 3064 except KeyError: -> 3065 return self._engine.get_loc(self._maybe_cast_indexer(key)) 3066 3067 indexer = self.get_indexer([key], method=method, tolerance=tolerance) C:\EclipseWorkspaces\LiClipseWorkspace\pandas-dev\pandas36\pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas\_libs\index.c:5720)() 137 util.set_value_at(arr, loc, value) 138 --> 139 cpdef get_loc(self, object val): 140 if is_definitely_invalid_key(val): 141 raise TypeError("'{val}' is an invalid key".format(val=val)) C:\EclipseWorkspaces\LiClipseWorkspace\pandas-dev\pandas36\pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas\_libs\index.c:5566)() 159 160 try: --> 161 return self.mapping.get_item(val) 162 except (TypeError, ValueError): 163 raise KeyError(val) C:\EclipseWorkspaces\LiClipseWorkspace\pandas-dev\pandas36\pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas\_libs\hashtable.c:22442)() 1490 sizeof(uint32_t)) # flags 1491 -> 1492 cpdef get_item(self, object val): 1493 cdef khiter_t k 1494 if val != val or val is None: C:\EclipseWorkspaces\LiClipseWorkspace\pandas-dev\pandas36\pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas\_libs\hashtable.c:22396)() 1498 return self.table.vals[k] 1499 else: -> 1500 raise KeyError(val) 1501 1502 cpdef set_item(self, object key, Py_ssize_t val): KeyError: 0 ``` However, if you do the following, it works: ``` In [6]: grouped.nth(0)['B'].iloc[0] Out[6]: Timestamp('2016-01-01 12:00:00-0800', tz='US/Pacific') In [7]: grouped.apply(lambda x: x.iloc[0])[0] Out[7]: Timestamp('2016-01-01 12:00:00-0800', tz='US/Pacific') ``` So doing one operation (in this case `nth`) prior to the `apply` then makes the `apply` work. @Dr-Irv seems related. Some code below illustrating what I think is going on: ```python >>> grouped.apply(lambda x: x.iloc[0])[0] # KeyError as indicator KeyError >>> grouped._set_group_selection() >>> grouped.apply(lambda x: x.iloc[0])[0] # Works now, as 'A' was not part of data Timestamp('2016-01-01 12:00:00-0800', tz='US/Pacific') >>> grouped._reset_group_selection() # Clear out the group selection >>> grouped.apply(lambda x: x.iloc[0])[0] # Back to failing KeyError ``` Unfortunately just adding this call before `_python_apply_general` broke other tests where the grouping was supposed to be part of the returned object (at least according to the tests). Reviewing in more detail hope to have a PR soon this didn't work even in 0.20.3. not sure how we don't have a test for it though. @Dr-Irv your example is a separate issue. pls make a new report for that one.
2018-05-05T14:29:27Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python2.7/dist-packages/pandas/core/groupby.py", line 805, in apply return self._python_apply_general(f) File "/usr/local/lib/python2.7/dist-packages/pandas/core/groupby.py", line 809, in _python_apply_general self.axis) File "/usr/local/lib/python2.7/dist-packages/pandas/core/groupby.py", line 1969, in apply res = f(group) File "<stdin>", line 1, in <lambda> File "/usr/local/lib/python2.7/dist-packages/pandas/core/ops.py", line 1262, in f return self._combine_series(other, na_op, fill_value, axis, level) File "/usr/local/lib/python2.7/dist-packages/pandas/core/frame.py", line 3944, in _combine_series try_cast=try_cast) File "/usr/local/lib/python2.7/dist-packages/pandas/core/frame.py", line 3958, in _combine_series_infer try_cast=try_cast) File "/usr/local/lib/python2.7/dist-packages/pandas/core/frame.py", line 3981, in _combine_match_columns try_cast=try_cast) File "/usr/local/lib/python2.7/dist-packages/pandas/core/internals.py", line 3435, in eval return self.apply('eval', **kwargs) File "/usr/local/lib/python2.7/dist-packages/pandas/core/internals.py", line 3329, in apply applied = getattr(b, f)(**kwargs) File "/usr/local/lib/python2.7/dist-packages/pandas/core/internals.py", line 1377, in eval result = get_result(other) File "/usr/local/lib/python2.7/dist-packages/pandas/core/internals.py", line 1346, in get_result result = func(values, other) File "/usr/local/lib/python2.7/dist-packages/pandas/core/ops.py", line 1216, in na_op yrav.fill(yrav.item()) ValueError: can only convert an array of size 1 to a Python scalar
11,887
pandas-dev/pandas
pandas-dev__pandas-21093
c85ab083919b59ce84c220d5baf7d34ff4a0bcf2
diff --git a/doc/source/whatsnew/v0.23.1.txt b/doc/source/whatsnew/v0.23.1.txt --- a/doc/source/whatsnew/v0.23.1.txt +++ b/doc/source/whatsnew/v0.23.1.txt @@ -46,8 +46,6 @@ Documentation Changes Bug Fixes ~~~~~~~~~ -- tab completion on :class:`Index` in IPython no longer outputs deprecation warnings (:issue:`21125`) - Groupby/Resample/Rolling ^^^^^^^^^^^^^^^^^^^^^^^^ @@ -101,3 +99,9 @@ Reshaping - Bug in :func:`concat` where error was raised in concatenating :class:`Series` with numpy scalar and tuple names (:issue:`21015`) - + +Other +^^^^^ + +- Tab completion on :class:`Index` in IPython no longer outputs deprecation warnings (:issue:`21125`) +- Bug preventing pandas from being importable with -OO optimization (:issue:`21071`) diff --git a/pandas/tseries/offsets.py b/pandas/tseries/offsets.py --- a/pandas/tseries/offsets.py +++ b/pandas/tseries/offsets.py @@ -1090,12 +1090,17 @@ def apply(self, other): class CustomBusinessMonthEnd(_CustomBusinessMonth): - __doc__ = _CustomBusinessMonth.__doc__.replace('[BEGIN/END]', 'end') + # TODO(py27): Replace condition with Subsitution after dropping Py27 + if _CustomBusinessMonth.__doc__: + __doc__ = _CustomBusinessMonth.__doc__.replace('[BEGIN/END]', 'end') _prefix = 'CBM' class CustomBusinessMonthBegin(_CustomBusinessMonth): - __doc__ = _CustomBusinessMonth.__doc__.replace('[BEGIN/END]', 'beginning') + # TODO(py27): Replace condition with Subsitution after dropping Py27 + if _CustomBusinessMonth.__doc__: + __doc__ = _CustomBusinessMonth.__doc__.replace('[BEGIN/END]', + 'beginning') _prefix = 'CBMS' diff --git a/pandas/util/_decorators.py b/pandas/util/_decorators.py --- a/pandas/util/_decorators.py +++ b/pandas/util/_decorators.py @@ -4,7 +4,7 @@ import types import warnings from textwrap import dedent, wrap -from functools import wraps, update_wrapper +from functools import wraps, update_wrapper, WRAPPER_ASSIGNMENTS def deprecate(name, alternative, version, alt_name=None, @@ -20,18 +20,18 @@ def deprecate(name, alternative, version, alt_name=None, Parameters ---------- name : str - Name of function to deprecate - alternative : str - Name of function to use instead + Name of function to deprecate. + alternative : func + Function to use instead. version : str - Version of pandas in which the method has been deprecated + Version of pandas in which the method has been deprecated. alt_name : str, optional - Name to use in preference of alternative.__name__ + Name to use in preference of alternative.__name__. klass : Warning, default FutureWarning stacklevel : int, default 2 msg : str - The message to display in the warning. - Default is '{name} is deprecated. Use {alt_name} instead.' + The message to display in the warning. + Default is '{name} is deprecated. Use {alt_name} instead.' """ alt_name = alt_name or alternative.__name__ @@ -39,25 +39,26 @@ def deprecate(name, alternative, version, alt_name=None, warning_msg = msg or '{} is deprecated, use {} instead'.format(name, alt_name) - @wraps(alternative) + # adding deprecated directive to the docstring + msg = msg or 'Use `{alt_name}` instead.'.format(alt_name=alt_name) + msg = '\n '.join(wrap(msg, 70)) + + @Substitution(version=version, msg=msg) + @Appender(alternative.__doc__) def wrapper(*args, **kwargs): + """ + .. deprecated:: %(version)s + + %(msg)s + + """ warnings.warn(warning_msg, klass, stacklevel=stacklevel) return alternative(*args, **kwargs) - # adding deprecated directive to the docstring - msg = msg or 'Use `{alt_name}` instead.'.format(alt_name=alt_name) - tpl = dedent(""" - .. deprecated:: {version} - - {msg} - - {rest} - """) - rest = getattr(wrapper, '__doc__', '') - docstring = tpl.format(version=version, - msg='\n '.join(wrap(msg, 70)), - rest=dedent(rest)) - wrapper.__doc__ = docstring + # Since we are using Substitution to create the required docstring, + # remove that from the attributes that should be assigned to the wrapper + assignments = tuple(x for x in WRAPPER_ASSIGNMENTS if x != '__doc__') + update_wrapper(wrapper, alternative, assigned=assignments) return wrapper
pandas is no longer importable with -OO optimization #### Code Sample, a copy-pastable example if possible In your shell: ``` $ python -OO -c 'import pandas' Traceback (most recent call last): File "<string>", line 1, in <module> File "/Users/shoyer/miniconda3/envs/xarray-py36/lib/python3.6/site-packages/pandas/__init__.py", line 42, in <module> from pandas.core.api import * File "/Users/shoyer/miniconda3/envs/xarray-py36/lib/python3.6/site-packages/pandas/core/api.py", line 10, in <module> from pandas.core.groupby.groupby import Grouper File "/Users/shoyer/miniconda3/envs/xarray-py36/lib/python3.6/site-packages/pandas/core/groupby/__init__.py", line 2, in <module> from pandas.core.groupby.groupby import ( File "/Users/shoyer/miniconda3/envs/xarray-py36/lib/python3.6/site-packages/pandas/core/groupby/groupby.py", line 46, in <module> from pandas.core.index import (Index, MultiIndex, File "/Users/shoyer/miniconda3/envs/xarray-py36/lib/python3.6/site-packages/pandas/core/index.py", line 2, in <module> from pandas.core.indexes.api import * File "/Users/shoyer/miniconda3/envs/xarray-py36/lib/python3.6/site-packages/pandas/core/indexes/api.py", line 4, in <module> from pandas.core.indexes.base import (Index, File "/Users/shoyer/miniconda3/envs/xarray-py36/lib/python3.6/site-packages/pandas/core/indexes/base.py", line 7, in <module> from pandas._libs import (lib, index as libindex, tslib as libts, File "pandas/_libs/index.pyx", line 28, in init pandas._libs.index File "pandas/_libs/tslibs/period.pyx", line 59, in init pandas._libs.tslibs.period File "/Users/shoyer/miniconda3/envs/xarray-py36/lib/python3.6/site-packages/pandas/tseries/offsets.py", line 1092, in <module> class CustomBusinessMonthEnd(_CustomBusinessMonth): File "/Users/shoyer/miniconda3/envs/xarray-py36/lib/python3.6/site-packages/pandas/tseries/offsets.py", line 1093, in CustomBusinessMonthEnd __doc__ = _CustomBusinessMonth.__doc__.replace('[BEGIN/END]', 'end') AttributeError: 'NoneType' object has no attribute 'replace' ``` #### Problem description `-OO` optimization strips out docstrings, which may give a minor performance boost (I honestly don't know). Nonetheless, users requested that xarray import properly properly with the `-OO` flag (https://github.com/pydata/xarray/issues/1706), so we added a regression test that caught this in the latest pandas release (https://github.com/pydata/xarray/pull/1708). #### Expected Output Pandas should be imported without any errors. #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.6.4.final.0 python-bits: 64 OS: Darwin OS-release: 17.4.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.22.0 pytest: 3.5.0 pip: 9.0.1 setuptools: 39.0.1 Cython: None numpy: 1.14.2 scipy: None pyarrow: None xarray: None IPython: 6.3.0 sphinx: None patsy: None dateutil: 2.7.2 pytz: 2018.3 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: None sqlalchemy: None pymysql: None psycopg2: None jinja2: None s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
Hmm OK. Just running locally it looks like it could be fixed adding a condition in 3 places that assume we have a docstring, but don't if you run with those flags. Just out of curiosity do you only have this in your travis configuration or have you placed it somewhere in your unit testing? Think it would be easier to track if we had the latter but off the top of my head not sure how to do that - curious if you have any insight You could probably test this with a Python subprocess, but I didn’t bother for xarray so it’s just in our Travis config.
2018-05-16T21:26:01Z
[]
[]
Traceback (most recent call last): File "<string>", line 1, in <module> File "/Users/shoyer/miniconda3/envs/xarray-py36/lib/python3.6/site-packages/pandas/__init__.py", line 42, in <module> from pandas.core.api import * File "/Users/shoyer/miniconda3/envs/xarray-py36/lib/python3.6/site-packages/pandas/core/api.py", line 10, in <module> from pandas.core.groupby.groupby import Grouper File "/Users/shoyer/miniconda3/envs/xarray-py36/lib/python3.6/site-packages/pandas/core/groupby/__init__.py", line 2, in <module> from pandas.core.groupby.groupby import ( File "/Users/shoyer/miniconda3/envs/xarray-py36/lib/python3.6/site-packages/pandas/core/groupby/groupby.py", line 46, in <module> from pandas.core.index import (Index, MultiIndex, File "/Users/shoyer/miniconda3/envs/xarray-py36/lib/python3.6/site-packages/pandas/core/index.py", line 2, in <module> from pandas.core.indexes.api import * File "/Users/shoyer/miniconda3/envs/xarray-py36/lib/python3.6/site-packages/pandas/core/indexes/api.py", line 4, in <module> from pandas.core.indexes.base import (Index, File "/Users/shoyer/miniconda3/envs/xarray-py36/lib/python3.6/site-packages/pandas/core/indexes/base.py", line 7, in <module> from pandas._libs import (lib, index as libindex, tslib as libts, File "pandas/_libs/index.pyx", line 28, in init pandas._libs.index File "pandas/_libs/tslibs/period.pyx", line 59, in init pandas._libs.tslibs.period File "/Users/shoyer/miniconda3/envs/xarray-py36/lib/python3.6/site-packages/pandas/tseries/offsets.py", line 1092, in <module> class CustomBusinessMonthEnd(_CustomBusinessMonth): File "/Users/shoyer/miniconda3/envs/xarray-py36/lib/python3.6/site-packages/pandas/tseries/offsets.py", line 1093, in CustomBusinessMonthEnd __doc__ = _CustomBusinessMonth.__doc__.replace('[BEGIN/END]', 'end') AttributeError: 'NoneType' object has no attribute 'replace'
11,910
pandas-dev/pandas
pandas-dev__pandas-21164
cea0a81b3d1ade61a5c662458dd8edc135dc94f6
diff --git a/doc/source/whatsnew/v0.23.1.txt b/doc/source/whatsnew/v0.23.1.txt --- a/doc/source/whatsnew/v0.23.1.txt +++ b/doc/source/whatsnew/v0.23.1.txt @@ -97,6 +97,7 @@ I/O - Bug in IO methods specifying ``compression='zip'`` which produced uncompressed zip archives (:issue:`17778`, :issue:`21144`) - Bug in :meth:`DataFrame.to_stata` which prevented exporting DataFrames to buffers and most file-like objects (:issue:`21041`) +- Bug when :meth:`pandas.io.json.json_normalize` was called with ``None`` values in nested levels in JSON (:issue:`21158`) - Bug in :meth:`DataFrame.to_csv` and :meth:`Series.to_csv` causes encoding error when compression and encoding are specified (:issue:`21241`, :issue:`21118`) - Bug in :meth:`read_stata` and :class:`StataReader` which did not correctly decode utf-8 strings on Python 3 from Stata 14 files (dta version 118) (:issue:`21244`) - diff --git a/pandas/io/json/normalize.py b/pandas/io/json/normalize.py --- a/pandas/io/json/normalize.py +++ b/pandas/io/json/normalize.py @@ -80,7 +80,7 @@ def nested_to_record(ds, prefix="", sep=".", level=0): if level != 0: # so we skip copying for top level, common case v = new_d.pop(k) new_d[newkey] = v - if v is None: # pop the key if the value is None + elif v is None: # pop the key if the value is None new_d.pop(k) continue else:
json_normalize gives KeyError in 0.23 #### Code Sample, a copy-pastable example if possible ```python import json from pandas import show_versions from pandas.io.json import json_normalize print(show_versions()) with open('test.json', 'r') as infile: d = json.load(infile) normed = json_normalize(d) ``` The `test.json` file is rather lengthy, with a structure similar to: ```json { "subject": { "pairs": { "A1-A2": { "atlases": { "avg.corrected": { "region": null, "x": 49.151580810546875, "y": -33.148521423339844, "z": 27.572303771972656 } } } } } } ``` This minimal version is enough to show the error below. #### Problem description This problem is *new* in pandas 0.23. I get the following traceback: Traceback: ```pytb Traceback (most recent call last): File "test.py", line 10, in <module> normed = json_normalize(d) File "/Users/depalati/miniconda3/lib/python3.6/site-packages/pandas/io/json/normalize.py", line 203, in json_normalize data = nested_to_record(data, sep=sep) File "/Users/depalati/miniconda3/lib/python3.6/site-packages/pandas/io/json/normalize.py", line 88, in nested_to_record new_d.update(nested_to_record(v, newkey, sep, level + 1)) File "/Users/depalati/miniconda3/lib/python3.6/site-packages/pandas/io/json/normalize.py", line 88, in nested_to_record new_d.update(nested_to_record(v, newkey, sep, level + 1)) File "/Users/depalati/miniconda3/lib/python3.6/site-packages/pandas/io/json/normalize.py", line 88, in nested_to_record new_d.update(nested_to_record(v, newkey, sep, level + 1)) File "/Users/depalati/miniconda3/lib/python3.6/site-packages/pandas/io/json/normalize.py", line 84, in nested_to_record new_d.pop(k) KeyError: 'region' ``` Note that running the same code on pandas 0.22 does not result in any errors. I suspect this could be related to #20399. #### Expected Output Expected output is a flattened `DataFrame` without any errors. #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.6.4.final.0 python-bits: 64 OS: Darwin OS-release: 16.7.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.23.0 pytest: 3.5.1 pip: 9.0.1 setuptools: 38.4.0 Cython: None numpy: 1.14.2 scipy: None pyarrow: None xarray: 0.10.3 IPython: 6.3.1 sphinx: 1.7.2 patsy: None dateutil: 2.7.2 pytz: 2018.3 blosc: None bottleneck: None tables: 3.4.2 numexpr: 2.6.4 feather: None matplotlib: 2.2.2 openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: 4.6.0 html5lib: 1.0.1 sqlalchemy: 1.2.7 pymysql: None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
I couldn't reproduce your error with the information provide (was getting others) - can you please update it so the example can be fully copy/pasted to reproduce? I'm not sure what errors you are getting. Here's a version with the JSON contents directly in the Python file as a dict: ```python from pandas import show_versions from pandas.io.json import json_normalize print(show_versions()) d = { "subject": { "pairs": { "A1-A2": { "atlases": { "avg.corrected": { "region": None, "x": 49.151580810546875, "y": -33.148521423339844, "z": 27.572303771972656 } } } } } } normed = json_normalize(d) print(normed) ``` This results in the same error. Running his code I have the same error as well. https://github.com/pandas-dev/pandas/blob/master/pandas/io/json/normalize.py#L79 I think the problem is here. If I add two print statements: ``` if not isinstance(v, dict): print("cond1: %s" % (level != 0)) print("cond2: %s" % (v is None)) if level != 0: # so we skip copying for top level, common case print(new_d) v = new_d.pop(k) new_d[newkey] = v if v is None: # pop the key if the value is None print(new_d) new_d.pop(k) continue ``` I get the following printout: cond1: True cond2: True {'region': None, 'x': 49.151580810546875, 'y': -33.148521423339844, 'z': 27.572303771972656} {'x': 49.151580810546875, 'y': -33.148521423339844, 'z': 27.572303771972656, 'subject.pairs.A1-A2.atlases.avg.corrected.region': None} So new_d is getting popped twice which causes an error on the second time? I added a continue in the code: if level != 0: # so we skip copying for top level, common case v = new_d.pop(k) new_d[newkey] = v continue and the code looks to run fine. Also as mivade pointed out these lines of code were changed in #20399 https://github.com/pandas-dev/pandas/pull/20399/files#diff-9c654764f5f21c8e9d58d9ebf14de86dR83
2018-05-22T04:39:53Z
[]
[]
Traceback (most recent call last): File "test.py", line 10, in <module> normed = json_normalize(d) File "/Users/depalati/miniconda3/lib/python3.6/site-packages/pandas/io/json/normalize.py", line 203, in json_normalize data = nested_to_record(data, sep=sep) File "/Users/depalati/miniconda3/lib/python3.6/site-packages/pandas/io/json/normalize.py", line 88, in nested_to_record new_d.update(nested_to_record(v, newkey, sep, level + 1)) File "/Users/depalati/miniconda3/lib/python3.6/site-packages/pandas/io/json/normalize.py", line 88, in nested_to_record new_d.update(nested_to_record(v, newkey, sep, level + 1)) File "/Users/depalati/miniconda3/lib/python3.6/site-packages/pandas/io/json/normalize.py", line 88, in nested_to_record new_d.update(nested_to_record(v, newkey, sep, level + 1)) File "/Users/depalati/miniconda3/lib/python3.6/site-packages/pandas/io/json/normalize.py", line 84, in nested_to_record new_d.pop(k) KeyError: 'region'
11,918
pandas-dev/pandas
pandas-dev__pandas-21187
b36b451a74bc16d7ea64c158a3cd33fbfb504068
diff --git a/doc/source/whatsnew/v0.23.2.txt b/doc/source/whatsnew/v0.23.2.txt --- a/doc/source/whatsnew/v0.23.2.txt +++ b/doc/source/whatsnew/v0.23.2.txt @@ -81,6 +81,7 @@ Bug Fixes **Categorical** +- Bug in rendering :class:`Series` with ``Categorical`` dtype in rare conditions under Python 2.7 (:issue:`21002`) - **Timezones** diff --git a/pandas/_libs/hashing.pyx b/pandas/_libs/hashing.pyx --- a/pandas/_libs/hashing.pyx +++ b/pandas/_libs/hashing.pyx @@ -8,8 +8,7 @@ import numpy as np from numpy cimport ndarray, uint8_t, uint32_t, uint64_t from util cimport _checknull -from cpython cimport (PyString_Check, - PyBytes_Check, +from cpython cimport (PyBytes_Check, PyUnicode_Check) from libc.stdlib cimport malloc, free @@ -62,9 +61,7 @@ def hash_object_array(ndarray[object] arr, object key, object encoding='utf8'): cdef list datas = [] for i in range(n): val = arr[i] - if PyString_Check(val): - data = <bytes>val.encode(encoding) - elif PyBytes_Check(val): + if PyBytes_Check(val): data = <bytes>val elif PyUnicode_Check(val): data = <bytes>val.encode(encoding) diff --git a/pandas/util/testing.py b/pandas/util/testing.py --- a/pandas/util/testing.py +++ b/pandas/util/testing.py @@ -553,6 +553,28 @@ def _valid_locales(locales, normalize): # Stdout / stderr decorators +@contextmanager +def set_defaultencoding(encoding): + """ + Set default encoding (as given by sys.getdefaultencoding()) to the given + encoding; restore on exit. + + Parameters + ---------- + encoding : str + """ + if not PY2: + raise ValueError("set_defaultencoding context is only available " + "in Python 2.") + orig = sys.getdefaultencoding() + reload(sys) # noqa:F821 + sys.setdefaultencoding(encoding) + try: + yield + finally: + sys.setdefaultencoding(orig) + + def capture_stdout(f): """ Decorator to capture stdout in a buffer so that it can be checked
Rendering Series[Categorical] raises UnicodeDecodeError calling repr() on a Series with categorical-dtype can raise UnicodeDecodeError under certain conditions. These conditions appear to include: - The series must have length at least 61 (Note: `pd.get_option('max_rows') == 60`) - python2 - sys.getdefaultencoding() == 'ascii' Reproduce with: ``` from pandas.core.base import StringMixin class County(StringMixin): name = u'San Sebastián' state = u'PR' def __unicode__(self): return self.name + u', ' + self.state cat = pd.Categorical([County() for n in range(61)]) idx = pd.Index(cat) ser = idx.to_series() >>> ser Traceback (most recent call last): File "<stdin>", line 1, in <module> File "pandas/core/base.py", line 82, in __repr__ return str(self) File "pandas/core/base.py", line 62, in __str__ return self.__bytes__() File "pandas/core/base.py", line 74, in __bytes__ return self.__unicode__().encode(encoding, 'replace') File "pandas/core/series.py", line 1233, in __unicode__ max_rows=max_rows, length=show_dimensions) File "pandas/core/series.py", line 1276, in to_string max_rows=max_rows) File "pandas/io/formats/format.py", line 187, in __init__ self._chk_truncate() File "pandas/io/formats/format.py", line 201, in _chk_truncate series.iloc[-row_num:])) File "pandas/core/reshape/concat.py", line 225, in concat copy=copy, sort=sort) File "pandas/core/reshape/concat.py", line 378, in __init__ self.new_axes = self._get_new_axes() File "pandas/core/reshape/concat.py", line 458, in _get_new_axes new_axes[self.axis] = self._get_concat_axis() File "pandas/core/reshape/concat.py", line 511, in _get_concat_axis concat_axis = _concat_indexes(indexes) File "pandas/core/reshape/concat.py", line 529, in _concat_indexes return indexes[0].append(indexes[1:]) File "pandas/core/indexes/base.py", line 2126, in append return self._concat(to_concat, name) File "pandas/core/indexes/category.py", line 771, in _concat return CategoricalIndex._concat_same_dtype(self, to_concat, name) File "pandas/core/indexes/category.py", line 778, in _concat_same_dtype to_concat = [self._is_dtype_compat(c) for c in to_concat] File "pandas/core/indexes/category.py", line 232, in _is_dtype_compat if not other.is_dtype_equal(self): File "pandas/core/arrays/categorical.py", line 2242, in is_dtype_equal return hash(self.dtype) == hash(other.dtype) File "pandas/core/dtypes/dtypes.py", line 181, in __hash__ return int(self._hash_categories(self.categories, self.ordered)) File "pandas/core/dtypes/dtypes.py", line 250, in _hash_categories cat_array = hash_array(np.asarray(categories), categorize=False) File "pandas/core/util/hashing.py", line 296, in hash_array hash_key, encoding) File "pandas/_libs/hashing.pyx", line 66, in pandas._libs.hashing.hash_object_array data = <bytes>val.encode(encoding) UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position 11: ordinal not in range(128) ``` It tentatively looks like the issue is in `_libs.hashing.hash_object_array`: ``` if PyString_Check(val): data = <bytes>val.encode(encoding) elif PyBytes_Check(val): data = <bytes>val elif PyUnicode_Check(val): data = <bytes>val.encode(encoding) ``` When we get here, `val` is already a `str` in _both py2 and py3_, so we go down the `if PyString_Check(val):` branch. But when it tries to `encode` a `str` in py2, it first will try to decode with `sys.getdefaultencoding()`, which raises. So my best guess is that the `PyString_Check` branch just doesn't belong. I'll take a look for related issues.
2018-05-24T02:25:08Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "pandas/core/base.py", line 82, in __repr__ return str(self) File "pandas/core/base.py", line 62, in __str__ return self.__bytes__() File "pandas/core/base.py", line 74, in __bytes__ return self.__unicode__().encode(encoding, 'replace') File "pandas/core/series.py", line 1233, in __unicode__ max_rows=max_rows, length=show_dimensions) File "pandas/core/series.py", line 1276, in to_string max_rows=max_rows) File "pandas/io/formats/format.py", line 187, in __init__ self._chk_truncate() File "pandas/io/formats/format.py", line 201, in _chk_truncate series.iloc[-row_num:])) File "pandas/core/reshape/concat.py", line 225, in concat copy=copy, sort=sort) File "pandas/core/reshape/concat.py", line 378, in __init__ self.new_axes = self._get_new_axes() File "pandas/core/reshape/concat.py", line 458, in _get_new_axes new_axes[self.axis] = self._get_concat_axis() File "pandas/core/reshape/concat.py", line 511, in _get_concat_axis concat_axis = _concat_indexes(indexes) File "pandas/core/reshape/concat.py", line 529, in _concat_indexes return indexes[0].append(indexes[1:]) File "pandas/core/indexes/base.py", line 2126, in append return self._concat(to_concat, name) File "pandas/core/indexes/category.py", line 771, in _concat return CategoricalIndex._concat_same_dtype(self, to_concat, name) File "pandas/core/indexes/category.py", line 778, in _concat_same_dtype to_concat = [self._is_dtype_compat(c) for c in to_concat] File "pandas/core/indexes/category.py", line 232, in _is_dtype_compat if not other.is_dtype_equal(self): File "pandas/core/arrays/categorical.py", line 2242, in is_dtype_equal return hash(self.dtype) == hash(other.dtype) File "pandas/core/dtypes/dtypes.py", line 181, in __hash__ return int(self._hash_categories(self.categories, self.ordered)) File "pandas/core/dtypes/dtypes.py", line 250, in _hash_categories cat_array = hash_array(np.asarray(categories), categorize=False) File "pandas/core/util/hashing.py", line 296, in hash_array hash_key, encoding) File "pandas/_libs/hashing.pyx", line 66, in pandas._libs.hashing.hash_object_array data = <bytes>val.encode(encoding) UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position 11: ordinal not in range(128)
11,923
pandas-dev/pandas
pandas-dev__pandas-21321
d79203af0552e73933e6f80f4284ac2697372eaa
diff --git a/doc/source/whatsnew/v0.23.1.txt b/doc/source/whatsnew/v0.23.1.txt --- a/doc/source/whatsnew/v0.23.1.txt +++ b/doc/source/whatsnew/v0.23.1.txt @@ -132,3 +132,4 @@ Bug Fixes **Other** - Tab completion on :class:`Index` in IPython no longer outputs deprecation warnings (:issue:`21125`) +- Bug preventing pandas being used on Windows without C++ redistributable installed (:issue:`21106`) diff --git a/setup.py b/setup.py --- a/setup.py +++ b/setup.py @@ -453,10 +453,10 @@ def pxd(name): return pjoin('pandas', name + '.pxd') -# args to ignore warnings if is_platform_windows(): extra_compile_args = [] else: + # args to ignore warnings extra_compile_args = ['-Wno-unused-function'] lib_depends = lib_depends + ['pandas/_libs/src/numpy_helper.h', @@ -733,7 +733,7 @@ def pxd(name): maintainer=AUTHOR, version=versioneer.get_version(), packages=find_packages(include=['pandas', 'pandas.*']), - package_data={'': ['data/*', 'templates/*'], + package_data={'': ['data/*', 'templates/*', '_libs/*.dll'], 'pandas.tests.io': ['data/legacy_hdf/*.h5', 'data/legacy_pickle/*/*.pickle', 'data/legacy_msgpack/*/*.msgpack',
Pandas 0.23.0 gives ImportError: DLL load failed Installed pandas not able to import with: ``` ImportError: DLL load failed: The specified module could not be found. ``` As far as we know, this happens if you install with pip on Windows 32bit machines (if you have another case, please comment below with specifying your OS, Python version, how you installed pandas, ..). **Workaround for now is to keep your version at pandas 0.22.0.** (or to install using conda, or to install VS tools for C++, see https://github.com/pandas-dev/pandas/issues/21106#issuecomment-391459521) We will fix this problem for 0.23.1. --- original post: #### Code Sample, a copy-pastable example if possible ```python import pandas Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\lfletcher\AppData\Local\Programs\Python\Python36-32\lib\site-pa ckages\pandas\__init__.py", line 42, in <module> from pandas.core.api import * File "C:\Users\lfletcher\AppData\Local\Programs\Python\Python36-32\lib\site-pa ckages\pandas\core\api.py", line 10, in <module> from pandas.core.groupby.groupby import Grouper File "C:\Users\lfletcher\AppData\Local\Programs\Python\Python36-32\lib\site-pa ckages\pandas\core\groupby\__init__.py", line 2, in <module> from pandas.core.groupby.groupby import ( File "C:\Users\lfletcher\AppData\Local\Programs\Python\Python36-32\lib\site-pa ckages\pandas\core\groupby\groupby.py", line 49, in <module> from pandas.core.frame import DataFrame File "C:\Users\lfletcher\AppData\Local\Programs\Python\Python36-32\lib\site-pa ckages\pandas\core\frame.py", line 74, in <module> from pandas.core.series import Series File "C:\Users\lfletcher\AppData\Local\Programs\Python\Python36-32\lib\site-pa ckages\pandas\core\series.py", line 3978, in <module> Series._add_series_or_dataframe_operations() File "C:\Users\lfletcher\AppData\Local\Programs\Python\Python36-32\lib\site-pa ckages\pandas\core\generic.py", line 8891, in _add_series_or_dataframe_operation s from pandas.core import window as rwindow File "C:\Users\lfletcher\AppData\Local\Programs\Python\Python36-32\lib\site-pa ckages\pandas\core\window.py", line 36, in <module> import pandas._libs.window as _window ImportError: DLL load failed: The specified module could not be found.
How'd you install pandas? I used pip install pandas On 5/17/18, Tom Augspurger <notifications@github.com> wrote: > How'd you install pandas? > > -- > You are receiving this because you authored the thread. > Reply to this email directly or view it on GitHub: > https://github.com/pandas-dev/pandas/issues/21106#issuecomment-389951948 the version is 0.23.0 On 5/17/18, Manish <manishkumar.bobbili3@gmail.com> wrote: > I used pip install pandas > > On 5/17/18, Tom Augspurger <notifications@github.com> wrote: >> How'd you install pandas? >> >> -- >> You are receiving this because you authored the thread. >> Reply to this email directly or view it on GitHub: >> https://github.com/pandas-dev/pandas/issues/21106#issuecomment-389951948 > Can you paste the output from your pip install? when i installed from pip it successfully installed. I didnt see any errors On 5/17/18, Tom Augspurger <notifications@github.com> wrote: > Can you paste the output from your pip install? > > -- > You are receiving this because you authored the thread. > Reply to this email directly or view it on GitHub: > https://github.com/pandas-dev/pandas/issues/21106#issuecomment-389954577 And what was the output? You can uninstall and reinstall to get the log, if you don't have it anymore. On Thu, May 17, 2018 at 1:49 PM, manish59 <notifications@github.com> wrote: > when i installed from pip it successfully installed. I didnt see any errors > > On 5/17/18, Tom Augspurger <notifications@github.com> wrote: > > Can you paste the output from your pip install? > > > > -- > > You are receiving this because you authored the thread. > > Reply to this email directly or view it on GitHub: > > https://github.com/pandas-dev/pandas/issues/21106#issuecomment-389954577 > > — > You are receiving this because you commented. > Reply to this email directly, view it on GitHub > <https://github.com/pandas-dev/pandas/issues/21106#issuecomment-389970033>, > or mute the thread > <https://github.com/notifications/unsubscribe-auth/ABQHIhnYGqVV7gVU6UpLsqcbfqlWGofsks5tzcYogaJpZM4UDf0A> > . > Collecting pandas Using cached https://files.pythonhosted.org/packages/a2/f1/9c90efc7a128c3336bca8ceb38374c2ba97b90d590e3bb9a2cca1c87fda9/pandas-0.23.0-cp36-cp36m-win32.whl Requirement already satisfied: pytz>=2011k in c:\users\lfletcher\appdata\local\programs\python\python36-32\lib\site-packages (from pandas) Requirement already satisfied: numpy>=1.9.0 in c:\users\lfletcher\appdata\local\programs\python\python36-32\lib\site-packages (from pandas) Requirement already satisfied: python-dateutil>=2.5.0 in c:\users\lfletcher\appdata\local\programs\python\python36-32\lib\site-packages (from pandas) Requirement already satisfied: six>=1.5 in c:\users\lfletcher\appdata\local\programs\python\python36-32\lib\site-packages (from python-dateutil>=2.5.0->pandas) Installing collected packages: pandas Successfully installed pandas-0.23.0 On 5/17/18, Manish <manishkumar.bobbili3@gmail.com> wrote: > when i installed from pip it successfully installed. I didnt see any errors > > On 5/17/18, Tom Augspurger <notifications@github.com> wrote: >> Can you paste the output from your pip install? >> >> -- >> You are receiving this because you authored the thread. >> Reply to this email directly or view it on GitHub: >> https://github.com/pandas-dev/pandas/issues/21106#issuecomment-389954577 > How did you install python? You seem to be on 32 bit windows which is less tested, but I just tried with a clean conda environment and it worked fine ``` set CONDA_FORCE_32BIT=1 conda create -n py36_32 python=3.6 numpy -y activate py36_32 pip install pandas python -c "import pandas" ``` You might also provide your versions of Pip, setuptools and NumPy. On Thu, May 17, 2018 at 2:45 PM, chris-b1 <notifications@github.com> wrote: > How did you install python? You seem to be on 32 bit windows which is less > tested, but I just tried with a clean conda environment and it worked fine > > set CONDA_FORCE_32BIT=1 > conda create -n py36_32 python=3.6 numpy -y > activate py36_32 > pip install pandas > python -c 'import pandas' > > — > You are receiving this because you commented. > Reply to this email directly, view it on GitHub > <https://github.com/pandas-dev/pandas/issues/21106#issuecomment-389986723>, > or mute the thread > <https://github.com/notifications/unsubscribe-auth/ABQHIkQTekIg93m6JwZMqdUyWqn1qo2Gks5tzdN1gaJpZM4UDf0A> > . > I have the same problem > pip 10.0.1 > python 3.6 > NumPy 1.14.3 What platform? How did you install python? On Mon, May 21, 2018, 5:57 PM marcelo <notifications@github.com> wrote: > I have the same problem > > pip 10.0.1 > python 3.6 > NumPy 1.14.3 > > — > You are receiving this because you commented. > Reply to this email directly, view it on GitHub > <https://github.com/pandas-dev/pandas/issues/21106#issuecomment-390807539>, > or mute the thread > <https://github.com/notifications/unsubscribe-auth/AB1b_BlekLdJj094H7KnItpXnlKPnqS8ks5t00ZygaJpZM4UDf0A> > . > Installation of pandas 0.22.0 seemed to help some of my students Yes, this issue is apparently with 0.23 wheels. If people could post their Python (installer, 32 or 64 bit), pip, & NumPy info we may be able to track this down. On Tue, May 22, 2018 at 9:19 AM, Abador <notifications@github.com> wrote: > Install version pandas 0.22.0 it seemed to help some of my students > > — > You are receiving this because you commented. > Reply to this email directly, view it on GitHub > <https://github.com/pandas-dev/pandas/issues/21106#issuecomment-391007800>, > or mute the thread > <https://github.com/notifications/unsubscribe-auth/ABQHIpXhMz71zFW-ajVVTiDs0YU1HK-0ks5t1B5igaJpZM4UDf0A> > . > I can confirm this issue is due to 0.23 Uninstall then reinstall 0.22 ``` pip uninstall pandas pip install pandas==0.22 ``` @asangansi can you please give the additional information as mentioned here https://github.com/pandas-dev/pandas/issues/21106#issuecomment-391013339. That would be helpful. As far as I can tell most of my students have libraries similar to this(copy from pyCharm settings): et-xmlfile 1.0.1 jdcal 1.4 1.4 numpy 1.14.3 1.14.3 openpyxl 2.5.3 2.5.3 pandas 0.23.0 0.23.0 pip 9.0.1 10.0.1 python-dateutil 2.7.3 2.7.3 pytz 2018.4 2018.4 setuptools 28.8.0 39.2.0 six 1.11.0 1.11.0 xlrd 1.1.0 1.1.0 Python 3.6 Project in PyCharm 2018.1.1 Not a whole lot to go on here, but @cgohlke do you have any guesses? FWIW, `_window.pyx` is the first C++ pyx file in https://github.com/pandas-dev/pandas/blob/1abfd1bfdb26e9f444b4f44ffbcd2e37026e6497/setup.py#L334 Here's another failed attempt to repro, using a python.org binary. ```cmd # download, unzip, cd to root of https://www.python.org/ftp/python/3.6.2/python-3.6.2-embed-win32.zip rm python36._pth curl https://bootstrap.pypa.io/get-pip.py > get-pip.py python get-pip.py python -m pip install pandas python >>> import pandas >>> ``` c++ is probably the issue, guessing missing the runtime DLL, though I'm not sure the best fix. From what I recall c++ wasn't particularly necessary for that change so could revert back to `c` for `0.23.1` Could someone one this issue try install the VS 2015 Redistributable and see if that fixes it for you? https://www.microsoft.com/en-us/download/details.aspx?id=48145 PR was #19549 The missing DLL is most probably `MSVCP140.DLL`, the MSVC C++ runtime library. It is part of the [Microsoft Visual C++ Redistributable for Visual Studio 2015/2017](https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads). Some projects, e.g. matplotlib, include this DLL in the binary wheels. we have used c++ for quite some time But we were not using libcpp in cython code before. @jreback might that be a difference with previous c++ code of msgpack? That's right, msgpack only depends on libc, where the window extension is utilizing the c++ std library. When i degraded my pandas version to 0.22 it was solved On Thu, May 24, 2018 at 7:13 AM chris-b1 <notifications@github.com> wrote: > That's right, msgpack only depends on libc, where the window extension is > utilizing the c++ std library. > > — > You are receiving this because you authored the thread. > Reply to this email directly, view it on GitHub > <https://github.com/pandas-dev/pandas/issues/21106#issuecomment-391729860>, > or mute the thread > <https://github.com/notifications/unsubscribe-auth/APQD9Kz2BtVMjaPrDqN-DUt3NG4OLywDks5t1r_tgaJpZM4UDf0A> > . > -- @chris-b1 can you see what mpl is doing? maybe need a directive in setup.py? or the wheeel building step @cgohlke is this something you want to do? (including the binaries? similar as matplotlib) (since we are using your wheels to upload to pypi) same here: ```` Traceback (most recent call last): File "C:\Program Files (x86)\Python36-32\lib\site-packages\pandas\__init__.py", line 42, in <module> from pandas.core.api import * File "C:\Program Files (x86)\Python36-32\lib\site-packages\pandas\core\api.py", line 10, in <module> from pandas.core.groupby.groupby import Grouper File "C:\Program Files (x86)\Python36-32\lib\site-packages\pandas\core\groupby\__init__.py", line 2, in <module> from pandas.core.groupby.groupby import ( File "C:\Program Files (x86)\Python36-32\lib\site-packages\pandas\core\groupby\groupby.py", line 49, in <module> from pandas.core.frame import DataFrame File "C:\Program Files (x86)\Python36-32\lib\site-packages\pandas\core\frame.py", line 74, in <module> from pandas.core.series import Series File "C:\Program Files (x86)\Python36-32\lib\site-packages\pandas\core\series.py", line 3978, in <module> Series._add_series_or_dataframe_operations() File "C:\Program Files (x86)\Python36-32\lib\site-packages\pandas\core\generic.py", line 8891, in _add_series_or_dataframe_operations from pandas.core import window as rwindow File "C:\Program Files (x86)\Python36-32\lib\site-packages\pandas\core\window.py", line 36, in <module> import pandas._libs.window as _window ImportError: DLL load failed: The specified module could not be found. PS C:\Users\xxx\Dropbox\xxx> ```` version 23 fail. version 22 works. When i installed pandas 0.23 version i got same error. But when i installed the version to 0.22 it worked. Just saying try these option it might work On Sun, May 27, 2018 at 10:12 PM sionking <notifications@github.com> wrote: > same here: > > Traceback (most recent call last): > File "C:\Program Files (x86)\Python36-32\lib\site-packages\pandas\__init__.py", line 42, in <module> > from pandas.core.api import * > File "C:\Program Files (x86)\Python36-32\lib\site-packages\pandas\core\api.py", line 10, in <module> > from pandas.core.groupby.groupby import Grouper > File "C:\Program Files (x86)\Python36-32\lib\site-packages\pandas\core\groupby\__init__.py", line 2, in <module> > from pandas.core.groupby.groupby import ( > File "C:\Program Files (x86)\Python36-32\lib\site-packages\pandas\core\groupby\groupby.py", line 49, in <module> > from pandas.core.frame import DataFrame > File "C:\Program Files (x86)\Python36-32\lib\site-packages\pandas\core\frame.py", line 74, in <module> > from pandas.core.series import Series > File "C:\Program Files (x86)\Python36-32\lib\site-packages\pandas\core\series.py", line 3978, in <module> > Series._add_series_or_dataframe_operations() > File "C:\Program Files (x86)\Python36-32\lib\site-packages\pandas\core\generic.py", line 8891, in _add_series_or_dataframe_operations > from pandas.core import window as rwindow > File "C:\Program Files (x86)\Python36-32\lib\site-packages\pandas\core\window.py", line 36, in <module> > import pandas._libs.window as _window > ImportError: DLL load failed: The specified module could not be found. > PS C:\Users\xxx\Dropbox\xxx> > > — > You are receiving this because you authored the thread. > Reply to this email directly, view it on GitHub > <https://github.com/pandas-dev/pandas/issues/21106#issuecomment-392420818>, > or mute the thread > <https://github.com/notifications/unsubscribe-auth/APQD9AUAgiw77S7I9l-PqQ6ZNYcARIR6ks5t24c9gaJpZM4UDf0A> > . > -- Any updates on this? (somebody who can look at fixing the wheel building?) Otherwise we can also revert the PR (it was only a performance improvement) *for 0.23.1*, but keep it in master so have more time to fix the wheel building for 0.24.0. Could someone reporting on this issue (@manish59, @sionking, @asangansi, @abador, @mezitax ) please confirm that installing the redistributable fixes this for 0.23? Every windows machine I have access to already has it installed. I'll look at what matplotlib does later today.
2018-06-05T01:03:57Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\lfletcher\AppData\Local\Programs\Python\Python36-32\lib\site-pa ckages\pandas\__init__.py", line 42, in <module>
11,953
pandas-dev/pandas
pandas-dev__pandas-21540
5fbb683712ce0312e35e06152cf8410c33cee330
diff --git a/doc/source/whatsnew/v0.23.2.txt b/doc/source/whatsnew/v0.23.2.txt --- a/doc/source/whatsnew/v0.23.2.txt +++ b/doc/source/whatsnew/v0.23.2.txt @@ -65,7 +65,7 @@ Bug Fixes **I/O** - Bug in :func:`read_csv` that caused it to incorrectly raise an error when ``nrows=0``, ``low_memory=True``, and ``index_col`` was not ``None`` (:issue:`21141`) -- +- Bug in :func:`json_normalize` when formatting the ``record_prefix`` with integer columns (:issue:`21536`) - **Plotting** diff --git a/pandas/io/json/normalize.py b/pandas/io/json/normalize.py --- a/pandas/io/json/normalize.py +++ b/pandas/io/json/normalize.py @@ -170,6 +170,11 @@ def json_normalize(data, record_path=None, meta=None, 3 Summit 1234 John Kasich Ohio OH 4 Cuyahoga 1337 John Kasich Ohio OH + >>> data = {'A': [1, 2]} + >>> json_normalize(data, 'A', record_prefix='Prefix.') + Prefix.0 + 0 1 + 1 2 """ def _pull_field(js, spec): result = js @@ -259,7 +264,8 @@ def _recursive_extract(data, path, seen_meta, level=0): result = DataFrame(records) if record_prefix is not None: - result.rename(columns=lambda x: record_prefix + x, inplace=True) + result = result.rename( + columns=lambda x: "{p}{c}".format(p=record_prefix, c=x)) # Data types, a problem for k, v in compat.iteritems(meta_vals):
json_normalize throws `TypeError` with array of values and `record_prefix` #### Code Sample, a copy-pastable example if possible ```python from pandas.io.json import json_normalize df = json_normalize({'A': [1, 2]}, 'A', record_prefix='Prefix.') print(df) ``` #### Problem description The above code throws a `TypeError`: ``` Traceback (most recent call last): File "c:\Users\levu\Desktop\tmp\json_normalize\main.py", line 3, in <module> df = json_normalize({'A': [1, 2]}, 'A', record_prefix='Prefix.') File "C:\Python36\lib\site-packages\pandas\io\json\normalize.py", line 262, in json_normalize result.rename(columns=lambda x: record_prefix + x, inplace=True) File "C:\Python36\lib\site-packages\pandas\util\_decorators.py", line 187, in wrapper return func(*args, **kwargs) File "C:\Python36\lib\site-packages\pandas\core\frame.py", line 3781, in rename return super(DataFrame, self).rename(**kwargs) File "C:\Python36\lib\site-packages\pandas\core\generic.py", line 973, in rename level=level) File "C:\Python36\lib\site-packages\pandas\core\internals.py", line 3340, in rename_axis obj.set_axis(axis, _transform_index(self.axes[axis], mapper, level)) File "C:\Python36\lib\site-packages\pandas\core\internals.py", line 5298, in _transform_index items = [func(x) for x in index] File "C:\Python36\lib\site-packages\pandas\core\internals.py", line 5298, in <listcomp> items = [func(x) for x in index] File "C:\Python36\lib\site-packages\pandas\io\json\normalize.py", line 262, in <lambda> result.rename(columns=lambda x: record_prefix + x, inplace=True) TypeError: must be str, not int ``` I think line 262 in `normalize.py` should be: ``` result.rename(columns=lambda x: "{p}{c}".format(p=record_prefix,c=x), inplace=True) ``` because `x` can be integer. #### Expected Output | |Prefix.0| |-|-| |0|1| |1|2| #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.6.4.final.0 python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 62 Stepping 4, GenuineIntel byteorder: little LC_ALL: None LANG: None LOCALE: None.None pandas: 0.23.1 pytest: 3.6.1 pip: 10.0.1 setuptools: 28.8.0 Cython: None numpy: 1.14.2 scipy: None pyarrow: None xarray: None IPython: 6.3.1 sphinx: None patsy: None dateutil: 2.7.2 pytz: 2018.4 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: 4.6.0 html5lib: 1.0.1 sqlalchemy: None pymysql: None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
That indeed looks suspicious! PR to patch is welcome! cc @WillAyd @vuminhle : Marking this for `0.23.2`, as @vuminhle has already identified a potential fix, which we can easily check and patch if this actually works if no one picks this up.
2018-06-19T09:09:28Z
[]
[]
Traceback (most recent call last): File "c:\Users\levu\Desktop\tmp\json_normalize\main.py", line 3, in <module> df = json_normalize({'A': [1, 2]}, 'A', record_prefix='Prefix.') File "C:\Python36\lib\site-packages\pandas\io\json\normalize.py", line 262, in json_normalize result.rename(columns=lambda x: record_prefix + x, inplace=True) File "C:\Python36\lib\site-packages\pandas\util\_decorators.py", line 187, in wrapper return func(*args, **kwargs) File "C:\Python36\lib\site-packages\pandas\core\frame.py", line 3781, in rename return super(DataFrame, self).rename(**kwargs) File "C:\Python36\lib\site-packages\pandas\core\generic.py", line 973, in rename level=level) File "C:\Python36\lib\site-packages\pandas\core\internals.py", line 3340, in rename_axis obj.set_axis(axis, _transform_index(self.axes[axis], mapper, level)) File "C:\Python36\lib\site-packages\pandas\core\internals.py", line 5298, in _transform_index items = [func(x) for x in index] File "C:\Python36\lib\site-packages\pandas\core\internals.py", line 5298, in <listcomp> items = [func(x) for x in index] File "C:\Python36\lib\site-packages\pandas\io\json\normalize.py", line 262, in <lambda> result.rename(columns=lambda x: record_prefix + x, inplace=True) TypeError: must be str, not int
11,989
pandas-dev/pandas
pandas-dev__pandas-21541
2625759abeb78655558067d55a23c293628c3165
diff --git a/doc/source/whatsnew/v0.23.2.txt b/doc/source/whatsnew/v0.23.2.txt --- a/doc/source/whatsnew/v0.23.2.txt +++ b/doc/source/whatsnew/v0.23.2.txt @@ -60,6 +60,7 @@ Bug Fixes - Bug in :meth:`Index.get_indexer_non_unique` with categorical key (:issue:`21448`) - Bug in comparison operations for :class:`MultiIndex` where error was raised on equality / inequality comparison involving a MultiIndex with ``nlevels == 1`` (:issue:`21149`) +- Bug in :func:`DataFrame.duplicated` with a large number of columns causing a 'maximum recursion depth exceeded' (:issue:`21524`). - **I/O** diff --git a/pandas/core/sorting.py b/pandas/core/sorting.py --- a/pandas/core/sorting.py +++ b/pandas/core/sorting.py @@ -52,7 +52,21 @@ def _int64_cut_off(shape): return i return len(shape) - def loop(labels, shape): + def maybe_lift(lab, size): + # promote nan values (assigned -1 label in lab array) + # so that all output values are non-negative + return (lab + 1, size + 1) if (lab == -1).any() else (lab, size) + + labels = map(_ensure_int64, labels) + if not xnull: + labels, shape = map(list, zip(*map(maybe_lift, labels, shape))) + + labels = list(labels) + shape = list(shape) + + # Iteratively process all the labels in chunks sized so less + # than _INT64_MAX unique int ids will be required for each chunk + while True: # how many levels can be done without overflow: nlev = _int64_cut_off(shape) @@ -74,7 +88,7 @@ def loop(labels, shape): out[mask] = -1 if nlev == len(shape): # all levels done! - return out + break # compress what has been done so far in order to avoid overflow # to retain lexical ranks, obs_ids should be sorted @@ -83,16 +97,7 @@ def loop(labels, shape): labels = [comp_ids] + labels[nlev:] shape = [len(obs_ids)] + shape[nlev:] - return loop(labels, shape) - - def maybe_lift(lab, size): # pormote nan values - return (lab + 1, size + 1) if (lab == -1).any() else (lab, size) - - labels = map(_ensure_int64, labels) - if not xnull: - labels, shape = map(list, zip(*map(maybe_lift, labels, shape))) - - return loop(list(labels), list(shape)) + return out def get_compressed_ids(labels, sizes):
"maximum recursion depth exceeded" when calculating duplicates in big DataFrame (regression comparing to the old version) #### Code Sample, a copy-pastable example if possible I'm currently in the middle of upgrading old system from old pandas (0.12) to the new version (0.23.0). One of the parts of the system is duplicate columns detection in medium-sized DataFrames (~100 columns, few thousand rows). We were detecting it like this `dupes = df.T.duplicated()` and previously it worked but after the upgrade, it started failing. Simplest snippet to reproduce this locally ```python import numpy as np import pandas as pd data = {} for i in range(70): data['col_{0:02d}'.format(i)] = np.random.randint(0, 1000, 20000) df = pd.DataFrame(data) dupes = df.T.duplicated() print dupes ``` #### Problem description To the contrast of the note below, this issue isn't resolved by upgrading to the newest pandas. On the contrary, it is caused by such upgrade :) Old version I've copied below from 0.12 works on a snippet above ```python def old_duplicated(self, cols=None, take_last=False): """ Return boolean Series denoting duplicate rows, optionally only considering certain columns Parameters ---------- cols : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns take_last : boolean, default False Take the last observed row in a row. Defaults to the first row Returns ------- duplicated : Series """ # kludge for #1833 def _m8_to_i8(x): if issubclass(x.dtype.type, np.datetime64): return x.view(np.int64) return x if cols is None: values = list(_m8_to_i8(self.values.T)) else: if np.iterable(cols) and not isinstance(cols, basestring): if isinstance(cols, tuple): if cols in self.columns: values = [self[cols]] else: values = [_m8_to_i8(self[x].values) for x in cols] else: values = [_m8_to_i8(self[x].values) for x in cols] else: values = [self[cols]] keys = lib.fast_zip_fillna(values) duplicated = lib.duplicated(keys, take_last=take_last) return pd.Series(duplicated, index=self.index) ``` but the new one now fails with ``` Traceback (most recent call last): File "/home/modintsov/workspace/DataRobot/playground.py", line 56, in <module> dupes = df.T.duplicated() File "/home/modintsov/.virtualenvs/dev/local/lib/python2.7/site-packages/pandas/core/frame.py", line 4384, in duplicated ids = get_group_index(labels, shape, sort=False, xnull=False) File "/home/modintsov/.virtualenvs/dev/local/lib/python2.7/site-packages/pandas/core/sorting.py", line 95, in get_group_index return loop(list(labels), list(shape)) File "/home/modintsov/.virtualenvs/dev/local/lib/python2.7/site-packages/pandas/core/sorting.py", line 86, in loop return loop(labels, shape) ... many-many lines of the same... File "/home/modintsov/.virtualenvs/dev/local/lib/python2.7/site-packages/pandas/core/sorting.py", line 60, in loop stride = np.prod(shape[1:nlev], dtype='i8') File "/home/modintsov/.virtualenvs/dev/local/lib/python2.7/site-packages/numpy/core/fromnumeric.py", line 2566, in prod out=out, **kwargs) RuntimeError: maximum recursion depth exceeded ``` Which is obviously a regression. [this should explain **why** the current behaviour is a problem and why the expected output is a better solution.] **Note**: We receive a lot of issues on our GitHub tracker, so it is very possible that your issue has been posted before. Please check first before submitting so that we do not have to handle and close duplicates! **Note**: Many problems can be resolved by simply upgrading `pandas` to the latest version. Before submitting, please check if that solution works for you. If possible, you may want to check if `master` addresses this issue, but that is not necessary. For documentation-related issues, you can check the latest versions of the docs on `master` here: https://pandas-docs.github.io/pandas-docs-travis/ If the issue has not been resolved there, go ahead and file it in the issue tracker. #### Expected Output I expect no exception and return of bool Series. Example above in old pandas output this ``` col_00 False col_01 False col_02 False col_03 False col_04 False col_05 False col_06 False col_07 False col_08 False col_09 False col_10 False col_11 False col_12 False col_13 False col_14 False ... col_55 False col_56 False col_57 False col_58 False col_59 False col_60 False col_61 False col_62 False col_63 False col_64 False col_65 False col_66 False col_67 False col_68 False col_69 False Length: 70, dtype: bool ``` #### Output of ``pd.show_versions()`` <details> [paste the output of ``pd.show_versions()`` here below this line] pd.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 2.7.12.final.0 python-bits: 64 OS: Linux OS-release: 4.4.0-128-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: None.None pandas: 0.23.0 pytest: 3.5.1 pip: 9.0.1 setuptools: 39.2.0 Cython: 0.21 numpy: 1.14.3 scipy: 1.1.0 pyarrow: None xarray: None IPython: 5.5.0 sphinx: 1.5.5 patsy: 0.2.1 dateutil: 2.7.3 pytz: 2015.7 blosc: None bottleneck: None tables: None numexpr: 2.6.5 feather: None matplotlib: None openpyxl: None xlrd: 0.9.2 xlwt: 0.7.5 xlsxwriter: None lxml: None bs4: 4.6.0 html5lib: None sqlalchemy: 1.2.7 pymysql: None psycopg2: 2.7.3.2.dr2 (dt dec pq3 ext lo64) jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
I was unable to reproduce this on master - can you check there and see if that resolves your issue? @WillAyd Master works for me on Python 3.6 but I can reproduce issue under Python 2.7.15 (OP is using 2.7.12). Thanks @Liam3851 . Well in that case this is a recursive function call and I think the compatibility difference is that `sys.getrecursionlimit()` is at 3000 for Python3 and only 1000 for Python2. Tracing this call with this size DataFrame requires 2,223 recursive calls on my end, hence the failure. Can you see if increasing that limit in Python2 resolves the issue? @WillAyd OP's test case works on Python 2 with the system recursion limit increased to 3,000 as written. If I increase the number of columns in OP's test case from 20,000 to 30,000, that re-breaks Python 2 with the maximum recursion depth (perhaps as expected). However, at least on my box (Win7, 40 GB RAM free for process) increasing the number of columns from 20,000 to 30,000 causes Python 3 to crash completely (I think this was not expected, or at least I didn't expect it). Mostly I was wandering why it's written in this way? Tail recursion is a beautiful thing, but in a language without tail recursion optimization it can (imho, should...) be replaced with simple loop. That will be just as fast, consume less resources and will not depend on the recursion limit. Sorry for multiple edits of my previous comment, phone autocorrect decided he knows best what I'm trying to say :) I can't speak to the history of that code but if you have a way to optimize it to perform better, use less resources, avoid the recursion limit, etc... then PRs are always welcome! @WillAyd Well, I've never did any PR to pandas before (and only one one-liner to numpy...) so I've thought someone with more pandas-specific experience will be better here :) but I can certainly try
2018-06-19T09:12:43Z
[]
[]
Traceback (most recent call last): File "/home/modintsov/workspace/DataRobot/playground.py", line 56, in <module> dupes = df.T.duplicated() File "/home/modintsov/.virtualenvs/dev/local/lib/python2.7/site-packages/pandas/core/frame.py", line 4384, in duplicated ids = get_group_index(labels, shape, sort=False, xnull=False) File "/home/modintsov/.virtualenvs/dev/local/lib/python2.7/site-packages/pandas/core/sorting.py", line 95, in get_group_index return loop(list(labels), list(shape)) File "/home/modintsov/.virtualenvs/dev/local/lib/python2.7/site-packages/pandas/core/sorting.py", line 86, in loop return loop(labels, shape) ... many-many lines of the same... File "/home/modintsov/.virtualenvs/dev/local/lib/python2.7/site-packages/pandas/core/sorting.py", line 60, in loop stride = np.prod(shape[1:nlev], dtype='i8') File "/home/modintsov/.virtualenvs/dev/local/lib/python2.7/site-packages/numpy/core/fromnumeric.py", line 2566, in prod out=out, **kwargs) RuntimeError: maximum recursion depth exceeded
11,990
pandas-dev/pandas
pandas-dev__pandas-21590
c45bb0b5ae3b1d1671e78efce68a5ee6db034ea3
diff --git a/doc/source/whatsnew/v0.23.2.txt b/doc/source/whatsnew/v0.23.2.txt --- a/doc/source/whatsnew/v0.23.2.txt +++ b/doc/source/whatsnew/v0.23.2.txt @@ -54,6 +54,7 @@ Fixed Regressions - Fixed regression in :meth:`to_csv` when handling file-like object incorrectly (:issue:`21471`) - Bug in both :meth:`DataFrame.first_valid_index` and :meth:`Series.first_valid_index` raised for a row index having duplicate values (:issue:`21441`) +- Fixed regression in unary negative operations with object dtype (:issue:`21380`) - Bug in :meth:`Timestamp.ceil` and :meth:`Timestamp.floor` when timestamp is a multiple of the rounding frequency (:issue:`21262`) .. _whatsnew_0232.performance: diff --git a/pandas/core/generic.py b/pandas/core/generic.py --- a/pandas/core/generic.py +++ b/pandas/core/generic.py @@ -27,6 +27,7 @@ is_dict_like, is_re_compilable, is_period_arraylike, + is_object_dtype, pandas_dtype) from pandas.core.dtypes.cast import maybe_promote, maybe_upcast_putmask from pandas.core.dtypes.inference import is_hashable @@ -1117,7 +1118,8 @@ def __neg__(self): values = com._values_from_object(self) if is_bool_dtype(values): arr = operator.inv(values) - elif (is_numeric_dtype(values) or is_timedelta64_dtype(values)): + elif (is_numeric_dtype(values) or is_timedelta64_dtype(values) + or is_object_dtype(values)): arr = operator.neg(values) else: raise TypeError("Unary negative expects numeric dtype, not {}" @@ -1128,7 +1130,8 @@ def __pos__(self): values = com._values_from_object(self) if (is_bool_dtype(values) or is_period_arraylike(values)): arr = values - elif (is_numeric_dtype(values) or is_timedelta64_dtype(values)): + elif (is_numeric_dtype(values) or is_timedelta64_dtype(values) + or is_object_dtype(values)): arr = operator.pos(values) else: raise TypeError("Unary plus expects numeric dtype, not {}"
pandas 0.23 broke unary negative expression on Decimal data type #### Code Sample, a copy-pastable example if possible ```python import pandas as pd from decimal import Decimal as D series = pd.Series([D(1)]) print(series) print(-(series)) ``` #### Problem description I'm dealing with decimal data where exact representation is required, thus I use Python's Decimal type with pandas. With the update from 0.22 to 0.23, the unary negative expression broke. #### Expected Output (from 0.22) ``` >>> import pandas as pd >>> from decimal import Decimal as D >>> series = pd.Series([D(1)]) >>> print(series) 0 1 dtype: object >>> print(-(series)) 0 -1 dtype: object ``` #### Actual Output (from 0.23) ``` >>> import pandas as pd >>> from decimal import Decimal as D >>> series = pd.Series([D(1)]) >>> print(series) 0 1 dtype: object >>> print(-(series)) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "python3.6/site-packages/pandas/core/generic.py", line 1124, in __neg__ .format(values.dtype)) TypeError: Unary negative expects numeric dtype, not object ``` #### Workaround (in 0.23) Broadcasting against 0 has the expected effect: ``` >>> 0-series 0 -1 dtype: object >>> (0-series).iloc[0] Decimal('-1') ``` #### Output of ``pd.show_versions()`` <details> >>> pd.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 3.6.5.final.0 python-bits: 64 OS: Linux OS-release: 4.16.13-300.fc28.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.23.0 pytest: None pip: 9.0.3 setuptools: 38.5.1 Cython: None numpy: 1.14.4 scipy: 1.0.0 pyarrow: None xarray: None IPython: 6.2.1 sphinx: None patsy: 0.4.1 dateutil: 2.7.3 pytz: 2018.4 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: 2.1.0 openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: 0.999999999 sqlalchemy: 1.1.15 pymysql: None psycopg2: 2.7.3.2 (dt dec pq3 ext lo64) jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
@rbu Thanks for the report. I tagged it as a regression for now, we should further look into the reason for the change.
2018-06-22T07:54:40Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "python3.6/site-packages/pandas/core/generic.py", line 1124, in __neg__ .format(values.dtype)) TypeError: Unary negative expects numeric dtype, not object
12,001
pandas-dev/pandas
pandas-dev__pandas-21655
1cc547185b92073a3465ea105055d7791e9e6c48
diff --git a/doc/source/whatsnew/v0.23.2.txt b/doc/source/whatsnew/v0.23.2.txt --- a/doc/source/whatsnew/v0.23.2.txt +++ b/doc/source/whatsnew/v0.23.2.txt @@ -55,6 +55,7 @@ Fixed Regressions - Fixed regression in :meth:`to_csv` when handling file-like object incorrectly (:issue:`21471`) - Re-allowed duplicate level names of a ``MultiIndex``. Accessing a level that has a duplicate name by name still raises an error (:issue:`19029`). - Bug in both :meth:`DataFrame.first_valid_index` and :meth:`Series.first_valid_index` raised for a row index having duplicate values (:issue:`21441`) +- Fixed printing of DataFrames with hierarchical columns with long names (:issue:`21180`) - Fixed regression in :meth:`~DataFrame.reindex` and :meth:`~DataFrame.groupby` with a MultiIndex or multiple keys that contains categorical datetime-like values (:issue:`21390`). - Fixed regression in unary negative operations with object dtype (:issue:`21380`) diff --git a/pandas/io/formats/format.py b/pandas/io/formats/format.py --- a/pandas/io/formats/format.py +++ b/pandas/io/formats/format.py @@ -636,10 +636,14 @@ def to_string(self): mid = int(round(n_cols / 2.)) mid_ix = col_lens.index[mid] col_len = col_lens[mid_ix] - adj_dif -= (col_len + 1) # adjoin adds one + # adjoin adds one + adj_dif -= (col_len + 1) col_lens = col_lens.drop(mid_ix) n_cols = len(col_lens) - max_cols_adj = n_cols - self.index # subtract index column + # subtract index column + max_cols_adj = n_cols - self.index + # GH-21180. Ensure that we print at least two. + max_cols_adj = max(max_cols_adj, 2) self.max_cols_adj = max_cols_adj # Call again _chk_truncate to cut frame appropriately @@ -778,7 +782,7 @@ def space_format(x, y): str_columns = list(zip(*[[space_format(x, y) for y in x] for x in fmt_columns])) - if self.sparsify: + if self.sparsify and len(str_columns): str_columns = _sparsify(str_columns) str_columns = [list(x) for x in zip(*str_columns)]
MultiIndex `to_string` edge case Error after 0.23.0 upgrade #### Code example ```python import pandas as pd import numpy as np index = pd.date_range('1970', '2018', freq='A') data = np.random.randn(len(index)) columns1 = [ ['This is a long title with > 37 chars.'], ['cat'], ] columns2 = [ ['This is a loooooonger title with > 43 chars.'], ['dog'], ] df1 = pd.DataFrame(data=data, index=index, columns=columns1) df2 = pd.DataFrame(data=data, index=index, columns=columns2) df = pd.concat([df1, df2], axis=1) df.head() ``` #### Output (using pandas 0.23.0) ``` >>> df.head() Traceback (most recent call last): File "<console>", line 1, in <module> File "/home/david/.virtualenvs/thegrid-py3-venv/lib/python3.5/site-packages/pandas/core/base.py", line 82, in __repr__ return str(self) File "/home/david/.virtualenvs/thegrid-py3-venv/lib/python3.5/site-packages/pandas/core/base.py", line 61, in __str__ return self.__unicode__() File "/home/david/.virtualenvs/thegrid-py3-venv/lib/python3.5/site-packages/pandas/core/frame.py", line 663, in __unicode__ line_width=width, show_dimensions=show_dimensions) File "/home/david/.virtualenvs/thegrid-py3-venv/lib/python3.5/site-packages/pandas/core/frame.py", line 1968, in to_string formatter.to_string() File "/home/david/.virtualenvs/thegrid-py3-venv/lib/python3.5/site-packages/pandas/io/formats/format.py", line 648, in to_string strcols = self._to_str_columns() File "/home/david/.virtualenvs/thegrid-py3-venv/lib/python3.5/site-packages/pandas/io/formats/format.py", line 539, in _to_str_columns str_columns = self._get_formatted_column_labels(frame) File "/home/david/.virtualenvs/thegrid-py3-venv/lib/python3.5/site-packages/pandas/io/formats/format.py", line 782, in _get_formatted_column_labels str_columns = _sparsify(str_columns) File "/home/david/.virtualenvs/thegrid-py3-venv/lib/python3.5/site-packages/pandas/core/indexes/multi.py", line 2962, in _sparsify prev = pivoted[start] IndexError: list index out of range ``` #### Problem description After upgrading Pandas 0.22.0 to 0.23.0 I have experienced the above error. I have noticed that it is the length of the column values, `This is a long title with > 37 chars.` and `This is a loooooonger title with > 43 chars.`, that makes the difference. If I tweak the combined length of these to be <= 80 characters, there is no error, and output is as expected. #### Expected Output (using pandas 0.22.0) ``` >>> df.head() This is a long title with > 37 chars. \ cat 1970-12-31 -1.448415 1971-12-31 0.081324 1972-12-31 -0.018105 1973-12-31 0.902790 1974-12-31 0.668474 This is a loooooonger title with > 43 chars. dog 1970-12-31 -1.448415 1971-12-31 0.081324 1972-12-31 -0.018105 1973-12-31 0.902790 1974-12-31 0.668474 ``` #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.5.2.final.0 python-bits: 64 OS: Linux OS-release: 4.4.0-124-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_ZA.UTF-8 LOCALE: en_ZA.UTF-8 pandas: 0.23.0 pytest: None pip: 10.0.1 setuptools: 32.3.1 Cython: None numpy: 1.14.0 scipy: None pyarrow: None xarray: None IPython: None sphinx: None patsy: None dateutil: 2.6.1 pytz: 2018.3 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: None openpyxl: 2.5.3 xlrd: None xlwt: None xlsxwriter: 1.0.4 lxml: None bs4: None html5lib: None sqlalchemy: None pymysql: None psycopg2: 2.7.4 (dt dec pq3 ext lo64) jinja2: None s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
This doesn't raise for me (py36, and pandas master). What is `pd.options.display.max_colwidth`, `pd.options.display.wdith`, and `pd.options.display.max_columns`? @TomAugspurger Here my system pandas 0.23.0 output: ``` >>> import pandas as pd >>> pd.options.display.max_colwidth 50 >>> pd.options.display.width 80 >>> pd.options.display.max_columns 0 ``` 0.22.0 output: ``` >>> import pandas as pd >>> pd.options.display.max_colwidth 50 >>> pd.options.display.width 80 >>> pd.options.display.max_columns 20 ``` If I do the following it works in 0.23.0! ``` pd.set_option("max_columns", 20) ``` Did the default setting change in 0.23.0? Reading the docs show how [0.22](http://pandas.pydata.org/pandas-docs/version/0.22/options.html#available-options): > In case python/IPython is running in a terminal this can be set to 0 has been updated in [0.23](https://pandas.pydata.org/pandas-docs/stable/options.html#available-options) to: > In case Python/IPython is running in a terminal this is set to 0 by default. However, when switching back to 0.22.0 and manually changing the `max_columns` option to `0` doesn't result in raising the exception. :thinking: So it still doesn't explain why there would be an error raised when `max_columns` is set to `0`? cc @cbrnr if you have any ideas. I get an `AttributeError: module 'pandas._libs.tslibs.timezones' has no attribute 'tz_standardize'` when I test this with the latest master branch revision. Any ideas how to fix this? Using 0.23, I can reproduce the issue. You need to recompile the extension modules. Commands for your platform should be in the contributing docs. ________________________________ From: Clemens Brunner <notifications@github.com> Sent: Monday, May 28, 2018 1:48:25 AM To: pandas-dev/pandas Cc: Tom Augspurger; Mention Subject: Re: [pandas-dev/pandas] MultiIndex `to_string` edge case Error after 0.23.0 upgrade (#21180) I get an AttributeError: module 'pandas._libs.tslibs.timezones' has no attribute 'tz_standardize' when I test this with the latest master branch revision. Any ideas how to fix this? Using 0.23, I can reproduce the issue. — You are receiving this because you were mentioned. Reply to this email directly, view it on GitHub<https://github.com/pandas-dev/pandas/issues/21180#issuecomment-392435108>, or mute the thread<https://github.com/notifications/unsubscribe-auth/ABQHIikYuSBQuVOuVYnZ4mSdLRkxq_pCks5t2525gaJpZM4UKJe1>. Thanks, I forgot about that. Thankfully, it's not the [add one business](https://github.com/pandas-dev/pandas/commit/c9e8f59668b63738cccb913f837c529887097da1#diff-425b4da47d01dc33d86c5c697e196b70R629) (I get the same error when I revert this change). This will take a bit of work, since everything works in PyCharm but not in IPython (so debugging will be much slower for me since I'm not used to pdb at all)... Apparently, setting `pd.options.display.max_columns = 0` in 0.22 also results in this error. So the issue was not introduced by my change, which merely changed the default to 0. Hi @cbrnr > also results in this error. Probably you ment to say `does not`? I do agree, merely changing the default to 0 should not result in the unexpected error. No, I get the same error with pandas 0.22 if I first set `pd.options.display.max_columns = 0`. This means that this bug has been there for a while (I haven't tried older versions, but I suspect that they will behave similarly). I do not get the exception on pandas 0.22.0 with ```python import pandas as pd pd.options.display.max_columns = 0 import numpy as np index = pd.date_range('1970', '2018', freq='A') data = np.random.randn(len(index)) columns1 = [ ['This is a long title with > 37 chars.'], ['cat'], ] columns2 = [ ['This is a loooooonger title with > 43 chars.'], ['dog'], ] df1 = pd.DataFrame(data=data, index=index, columns=columns1) df2 = pd.DataFrame(data=data, index=index, columns=columns2) df = pd.concat([df1, df2], axis=1) df.head() ``` Though it occurs to me that this probably depends on the width of the terminal. not a regression, but still should fix. @TomAugspurger I just tried again, I do get the error with 0.22. How are you running this code? If you are not in interactive mode (e.g. IPython), you need to change the last line to `print(df.head())` in order to produce the output. I'm running this in IPython on macOS in a normal terminal (not Jupyter QtConsole) with 100x35 window size. @jreback could you please make a note when you're moving the milestone? This should be fixed for 0.23.1. i made a note and this does not need to block 0.23.1 it’s jot a regression pls don’t mark milestones unless ready to go @jreback This *is* a regression in user experience. It may be an existing bug, but code that was working before, is failing now, because we changed the default. So we should still fix that existing bug for 0.23.1. I cannot reproduce the error with the example in this issue, but I *do* see it with the example from https://github.com/pandas-dev/pandas/issues/21327 @jorisvandenbossche sure regressions happen, and we *should* fix them all. but unless this is fixed today, it will go in the next release. We can also change the default of max_columns back to 20 for now if we don't find the effort to fix the bugs Here's a failing unit test ```diff diff --git a/pandas/tests/io/formats/test_format.py b/pandas/tests/io/formats/test_format.py index f221df93d..52f83f093 100644 --- a/pandas/tests/io/formats/test_format.py +++ b/pandas/tests/io/formats/test_format.py @@ -305,6 +305,36 @@ class TestDataFrameFormatting(object): assert not has_truncated_repr(df) assert not has_expanded_repr(df) + def test_repr_multiindex(self): + # https://github.com/pandas-dev/pandas/issues/21180 + from unittest import mock + + def f(): + return os.terminal_size((118, 96)) + + terminal_size = os.terminal_size((118, 96)) + + p1 = mock.patch('pandas.io.formats.console.get_terminal_size', + return_value=terminal_size) + p2 = mock.patch('pandas.io.formats.format.get_terminal_size', + return_value=terminal_size) + index = pd.date_range('1970', '2018', freq='A') + data = np.random.randn(len(index)) + columns1 = [ + ['This is a long title with > 37 chars.'], + ['cat'], + ] + columns2 = [ + ['This is a loooooonger title with > 43 chars.'], + ['dog'], + ] + df1 = pd.DataFrame(data=data, index=index, columns=columns1) + df2 = pd.DataFrame(data=data, index=index, columns=columns2) + df = pd.concat([df1, df2], axis=1) + + with p1, p2: + repr(df.head()) + def test_repr_max_columns_max_rows(self): term_width, term_height = get_terminal_size() if term_width < 10 or term_height < 10: ``` If we don't have a fix for this, I would consider reverting the `pandas.options.display.max_columns` back to 20, and work on fixing this and possibly turning back to 0 for 0.24.0. Errors in the repr are really annoying, as you cannot even inspect the data properly to see what might be the reason something is not working. I'm going to try to fix it now. What's the expected behavior here? I can easily match the behavior of the non-MI case, ```python In [3]: s = pd.DataFrame({"A" * 41: [1, 2], 'B' * 41: [1, 2]}) In [4]: with p1, p2: ...: print(repr(s)) ...: ... 0 ... 1 ... [2 rows x 2 columns] ``` but that's not too useful...
2018-06-27T13:40:08Z
[]
[]
Traceback (most recent call last): File "<console>", line 1, in <module> File "/home/david/.virtualenvs/thegrid-py3-venv/lib/python3.5/site-packages/pandas/core/base.py", line 82, in __repr__ return str(self) File "/home/david/.virtualenvs/thegrid-py3-venv/lib/python3.5/site-packages/pandas/core/base.py", line 61, in __str__ return self.__unicode__() File "/home/david/.virtualenvs/thegrid-py3-venv/lib/python3.5/site-packages/pandas/core/frame.py", line 663, in __unicode__ line_width=width, show_dimensions=show_dimensions) File "/home/david/.virtualenvs/thegrid-py3-venv/lib/python3.5/site-packages/pandas/core/frame.py", line 1968, in to_string formatter.to_string() File "/home/david/.virtualenvs/thegrid-py3-venv/lib/python3.5/site-packages/pandas/io/formats/format.py", line 648, in to_string strcols = self._to_str_columns() File "/home/david/.virtualenvs/thegrid-py3-venv/lib/python3.5/site-packages/pandas/io/formats/format.py", line 539, in _to_str_columns str_columns = self._get_formatted_column_labels(frame) File "/home/david/.virtualenvs/thegrid-py3-venv/lib/python3.5/site-packages/pandas/io/formats/format.py", line 782, in _get_formatted_column_labels str_columns = _sparsify(str_columns) File "/home/david/.virtualenvs/thegrid-py3-venv/lib/python3.5/site-packages/pandas/core/indexes/multi.py", line 2962, in _sparsify prev = pivoted[start] IndexError: list index out of range
12,009
pandas-dev/pandas
pandas-dev__pandas-21674
dc45fbafef172e357cb5decdeab22de67160f5b7
diff --git a/doc/source/whatsnew/v0.24.0.txt b/doc/source/whatsnew/v0.24.0.txt --- a/doc/source/whatsnew/v0.24.0.txt +++ b/doc/source/whatsnew/v0.24.0.txt @@ -248,6 +248,8 @@ Timezones - Bug in :meth:`Series.truncate` with a tz-aware :class:`DatetimeIndex` which would cause a core dump (:issue:`9243`) - Bug in :class:`Series` constructor which would coerce tz-aware and tz-naive :class:`Timestamp`s to tz-aware (:issue:`13051`) - Bug in :class:`Index` with ``datetime64[ns, tz]`` dtype that did not localize integer data correctly (:issue:`20964`) +- Bug in :class:`DatetimeIndex` where constructing with an integer and tz would not localize correctly (:issue:`12619`) +- Bug in :func:`DataFrame.fillna` where a ``ValueError`` would raise when one column contained a ``datetime64[ns, tz]`` dtype (:issue:`15522`) Offsets ^^^^^^^ @@ -326,7 +328,7 @@ Sparse Reshaping ^^^^^^^^^ -- +- Bug in :func:`pandas.concat` when joining resampled DataFrames with timezone aware index (:issue:`13783`) - -
DataFrame.fillna() working on row vector instead of column vector? #### Code Sample, a copy-pastable example if possible ```python >>> df.head(5) time id bid bid_depth bid_depth_total \ 0 2017-02-27 11:34:31+00:00 105 148.0 497.0 216589.0 1 2017-02-27 11:34:35+00:00 105 NaN NaN NaN 2 2017-02-27 11:34:38+00:00 105 NaN NaN NaN 3 2017-02-27 11:34:40+00:00 105 NaN NaN NaN 4 2017-02-27 11:34:41+00:00 105 NaN NaN NaN bid_number offer offer_depth offer_depth_total offer_number open \ 0 243.0 148.1 14192.0 530373.0 503.0 147.5 1 NaN NaN 14272.0 530453.0 504.0 NaN 2 NaN NaN 14192.0 530373.0 503.0 NaN 3 NaN NaN 14272.0 530453.0 504.0 NaN 4 NaN NaN 14492.0 530673.0 505.0 NaN high low last change change_percent volume value trades 0 148.2 147.3 148.0 0.9 0.61 1286830.0 190224000.0 2112.0 1 NaN NaN NaN NaN NaN NaN NaN NaN 2 NaN NaN NaN NaN NaN NaN NaN NaN 3 NaN NaN NaN NaN NaN NaN NaN NaN 4 NaN NaN NaN NaN NaN NaN NaN NaN >>> df.fillna(method='pad') Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/lib/python3.6/site-packages/pandas/core/frame.py", line 2842, in fillna downcast=downcast, **kwargs) File "/usr/lib/python3.6/site-packages/pandas/core/generic.py", line 3250, in fillna downcast=downcast) File "/usr/lib/python3.6/site-packages/pandas/core/internals.py", line 3177, in interpolate return self.apply('interpolate', **kwargs) File "/usr/lib/python3.6/site-packages/pandas/core/internals.py", line 3056, in apply applied = getattr(b, f)(**kwargs) File "/usr/lib/python3.6/site-packages/pandas/core/internals.py", line 917, in interpolate downcast=downcast, mgr=mgr) File "/usr/lib/python3.6/site-packages/pandas/core/internals.py", line 956, in _interpolate_with_fill values = self._try_coerce_result(values) File "/usr/lib/python3.6/site-packages/pandas/core/internals.py", line 2448, in _try_coerce_result result = result.reshape(len(result)) ValueError: cannot reshape array of size 24311 into shape (1,) ``` #### Problem description msgpack of dataframe for replication: https://www.dropbox.com/s/5skf6v8x2vg103o/dataframe?dl=0 I'm a beginner so I can only guess at what is wrong, but it seems to be working on rows instead of the columns. I can loop through df.columns and do it series by series to end up with the expected output so it doesn't seem to me as if it is a problem with any of the columns. #### Expected Output Fill the columns of NaN's with prior value in column. #### Output of ``pd.show_versions()`` <details> commit: None python: 3.6.0.final.0 python-bits: 64 OS: Linux OS-release: 4.9.8-1-ARCH machine: x86_64 processor: byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.19.2 nose: None pip: 9.0.1 setuptools: 34.2.0 Cython: None numpy: 1.12.0 scipy: None statsmodels: None xarray: None IPython: None sphinx: None patsy: None dateutil: 2.6.0 pytz: 2016.10 blosc: None bottleneck: None tables: None numexpr: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: None httplib2: None apiclient: None sqlalchemy: 1.1.5 pymysql: None psycopg2: 2.6.2 (dt dec pq3 ext lo64) jinja2: None boto: None pandas_datareader: None </details>
can you show ``df.info()`` ```python >>> df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 24311 entries, 0 to 24310 Data columns (total 19 columns): time 24311 non-null datetime64[ns, UTC] id 24311 non-null int64 bid 1469 non-null float64 bid_depth 7988 non-null float64 bid_depth_total 11630 non-null float64 bid_number 10765 non-null float64 offer 1370 non-null float64 offer_depth 7864 non-null float64 offer_depth_total 10617 non-null float64 offer_number 9940 non-null float64 open 1085 non-null float64 high 1086 non-null float64 low 1085 non-null float64 last 1223 non-null float64 change 1223 non-null float64 change_percent 1223 non-null float64 volume 3697 non-null float64 value 3697 non-null float64 trades 3697 non-null float64 dtypes: datetime64[ns, UTC](1), float64(17), int64(1) memory usage: 3.5 MB ``` Something to do with datetimetz. Here's a simpler repro: ```python df = pd.DataFrame({'date': pd.date_range('2014-01-01', periods=5, tz='US/Central')}) df.fillna(method='pad') ValueError Traceback (most recent call last) <ipython-input-77-8f5ecb26a2f6> in <module>() ----> 1 df.fillna(method='pad') ``` yeah need to handle these in the Block correctly (the tz) @Matsalm easy way to do this is (though not super pretty) ``` In [20]: df = pd.DataFrame({'A':pd.date_range('20130101',periods=4,tz='US/Eastern'),'B':[1,2,np.nan,np.nan]}) In [21]: df Out[21]: A B 0 2013-01-01 00:00:00-05:00 1.0 1 2013-01-02 00:00:00-05:00 2.0 2 2013-01-03 00:00:00-05:00 NaN 3 2013-01-04 00:00:00-05:00 NaN In [23]: df[df.select_dtypes(exclude=['number']).columns].join(df.select_dtypes(include=['number']).fillna(method='pad')) Out[23]: A B 0 2013-01-01 00:00:00-05:00 1.0 1 2013-01-02 00:00:00-05:00 2.0 2 2013-01-03 00:00:00-05:00 2.0 3 2013-01-04 00:00:00-05:00 2.0 ``` Thank you
2018-06-29T06:14:20Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/lib/python3.6/site-packages/pandas/core/frame.py", line 2842, in fillna downcast=downcast, **kwargs) File "/usr/lib/python3.6/site-packages/pandas/core/generic.py", line 3250, in fillna downcast=downcast) File "/usr/lib/python3.6/site-packages/pandas/core/internals.py", line 3177, in interpolate return self.apply('interpolate', **kwargs) File "/usr/lib/python3.6/site-packages/pandas/core/internals.py", line 3056, in apply applied = getattr(b, f)(**kwargs) File "/usr/lib/python3.6/site-packages/pandas/core/internals.py", line 917, in interpolate downcast=downcast, mgr=mgr) File "/usr/lib/python3.6/site-packages/pandas/core/internals.py", line 956, in _interpolate_with_fill values = self._try_coerce_result(values) File "/usr/lib/python3.6/site-packages/pandas/core/internals.py", line 2448, in _try_coerce_result result = result.reshape(len(result)) ValueError: cannot reshape array of size 24311 into shape (1,)
12,012
pandas-dev/pandas
pandas-dev__pandas-21914
2b51c968ca1e16a7fb517968576f8a9ab47ce1ed
diff --git a/doc/make.py b/doc/make.py --- a/doc/make.py +++ b/doc/make.py @@ -363,6 +363,10 @@ def main(): sys.path.append(args.python_path) globals()['pandas'] = importlib.import_module('pandas') + # Set the matplotlib backend to the non-interactive Agg backend for all + # child processes. + os.environ['MPLBACKEND'] = 'module://matplotlib.backends.backend_agg' + builder = DocBuilder(args.num_jobs, not args.no_api, args.single, args.verbosity) getattr(builder, args.command)()
Default docs builds to a non-interactive matplotlib backend `python make.py html` fails on Mac OS in a virtualenv, using a Python interpreter installed with pyenv, because the interpreter isn't a framework build, and matplotlib defaults to using the macosx interactive backend, which requires a framework build of the interpreter. I think the docs build doesn't require an interactive backend and it should be safe to use Agg, which is available on all platforms. The failure looks like: ``` (pandas-dev) tsmith-0yhv2t:tsmith doc (master *)$ python make.py html Running Sphinx v1.7.5 Configuration error: There is a programable error in your configuration file: Traceback (most recent call last): File "/Users/tsmith/.pyenv/versions/3.6.4/envs/pandas-dev/lib/python3.6/site-packages/sphinx/config.py", line 161, in __init__ execfile_(filename, config) File "/Users/tsmith/.pyenv/versions/3.6.4/envs/pandas-dev/lib/python3.6/site-packages/sphinx/util/pycompat.py", line 150, in execfile_ exec_(code, _globals) File "conf.py", line 285, in <module> klass = getattr(importlib.import_module(mod), classname) File "/Users/tsmith/.pyenv/versions/3.6.4/envs/pandas-dev/lib/python3.6/importlib/__init__.py", line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>", line 994, in _gcd_import File "<frozen importlib._bootstrap>", line 971, in _find_and_load File "<frozen importlib._bootstrap>", line 955, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 665, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 678, in exec_module File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed File "/Users/tsmith/upstream/pandas/pandas/io/formats/style.py", line 34, in <module> import matplotlib.pyplot as plt File "/Users/tsmith/.pyenv/versions/3.6.4/envs/pandas-dev/lib/python3.6/site-packages/matplotlib/pyplot.py", line 115, in <module> _backend_mod, new_figure_manager, draw_if_interactive, _show = pylab_setup() File "/Users/tsmith/.pyenv/versions/3.6.4/envs/pandas-dev/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 62, in pylab_setup [backend_name], 0) File "/Users/tsmith/.pyenv/versions/3.6.4/envs/pandas-dev/lib/python3.6/site-packages/matplotlib/backends/backend_macosx.py", line 17, in <module> from matplotlib.backends import _macosx RuntimeError: Python is not installed as a framework. The Mac OS X backend will not be able to function correctly if Python is not installed as a framework. See the Python documentation for more information on installing Python as a framework on Mac OS X. Please either reinstall Python as a framework, or try one of the other backends. If you are using (Ana)Conda please install python.app and replace the use of 'python' with 'pythonw'. See 'Working with Matplotlib on OSX' in the Matplotlib FAQ for more information. ```
2018-07-14T16:56:55Z
[]
[]
Traceback (most recent call last): File "/Users/tsmith/.pyenv/versions/3.6.4/envs/pandas-dev/lib/python3.6/site-packages/sphinx/config.py", line 161, in __init__ execfile_(filename, config) File "/Users/tsmith/.pyenv/versions/3.6.4/envs/pandas-dev/lib/python3.6/site-packages/sphinx/util/pycompat.py", line 150, in execfile_ exec_(code, _globals) File "conf.py", line 285, in <module> klass = getattr(importlib.import_module(mod), classname) File "/Users/tsmith/.pyenv/versions/3.6.4/envs/pandas-dev/lib/python3.6/importlib/__init__.py", line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>", line 994, in _gcd_import File "<frozen importlib._bootstrap>", line 971, in _find_and_load File "<frozen importlib._bootstrap>", line 955, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 665, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 678, in exec_module File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed File "/Users/tsmith/upstream/pandas/pandas/io/formats/style.py", line 34, in <module> import matplotlib.pyplot as plt File "/Users/tsmith/.pyenv/versions/3.6.4/envs/pandas-dev/lib/python3.6/site-packages/matplotlib/pyplot.py", line 115, in <module> _backend_mod, new_figure_manager, draw_if_interactive, _show = pylab_setup() File "/Users/tsmith/.pyenv/versions/3.6.4/envs/pandas-dev/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 62, in pylab_setup [backend_name], 0) File "/Users/tsmith/.pyenv/versions/3.6.4/envs/pandas-dev/lib/python3.6/site-packages/matplotlib/backends/backend_macosx.py", line 17, in <module> from matplotlib.backends import _macosx RuntimeError: Python is not installed as a framework. The Mac OS X backend will not be able to function correctly if Python is not installed as a framework. See the Python documentation for more information on installing Python as a framework on Mac OS X. Please either reinstall Python as a framework, or try one of the other backends. If you are using (Ana)Conda please install python.app and replace the use of 'python' with 'pythonw'. See 'Working with Matplotlib on OSX' in the Matplotlib FAQ for more information.
12,036
pandas-dev/pandas
pandas-dev__pandas-21917
0480f4c183a95712cb8ceaf5682c5b8dd02e0f21
diff --git a/ci/doctests.sh b/ci/doctests.sh --- a/ci/doctests.sh +++ b/ci/doctests.sh @@ -21,7 +21,7 @@ if [ "$DOCTEST" ]; then # DataFrame / Series docstrings pytest --doctest-modules -v pandas/core/frame.py \ - -k"-assign -axes -combine -isin -itertuples -join -nlargest -nsmallest -nunique -pivot_table -quantile -query -reindex -reindex_axis -replace -round -set_index -stack -to_dict -to_stata" + -k"-axes -combine -isin -itertuples -join -nlargest -nsmallest -nunique -pivot_table -quantile -query -reindex -reindex_axis -replace -round -set_index -stack -to_dict -to_stata" if [ $? -ne "0" ]; then RET=1 diff --git a/pandas/core/frame.py b/pandas/core/frame.py --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -3273,7 +3273,7 @@ def assign(self, **kwargs): Parameters ---------- - kwargs : keyword, value pairs + **kwargs : dict of {str: callable or Series} The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not @@ -3283,7 +3283,7 @@ def assign(self, **kwargs): Returns ------- - df : DataFrame + DataFrame A new DataFrame with the new columns in addition to all the existing columns. @@ -3303,48 +3303,34 @@ def assign(self, **kwargs): Examples -------- - >>> df = pd.DataFrame({'A': range(1, 11), 'B': np.random.randn(10)}) + >>> df = pd.DataFrame({'temp_c': [17.0, 25.0]}, + ... index=['Portland', 'Berkeley']) + >>> df + temp_c + Portland 17.0 + Berkeley 25.0 Where the value is a callable, evaluated on `df`: - - >>> df.assign(ln_A = lambda x: np.log(x.A)) - A B ln_A - 0 1 0.426905 0.000000 - 1 2 -0.780949 0.693147 - 2 3 -0.418711 1.098612 - 3 4 -0.269708 1.386294 - 4 5 -0.274002 1.609438 - 5 6 -0.500792 1.791759 - 6 7 1.649697 1.945910 - 7 8 -1.495604 2.079442 - 8 9 0.549296 2.197225 - 9 10 -0.758542 2.302585 - - Where the value already exists and is inserted: - - >>> newcol = np.log(df['A']) - >>> df.assign(ln_A=newcol) - A B ln_A - 0 1 0.426905 0.000000 - 1 2 -0.780949 0.693147 - 2 3 -0.418711 1.098612 - 3 4 -0.269708 1.386294 - 4 5 -0.274002 1.609438 - 5 6 -0.500792 1.791759 - 6 7 1.649697 1.945910 - 7 8 -1.495604 2.079442 - 8 9 0.549296 2.197225 - 9 10 -0.758542 2.302585 - - Where the keyword arguments depend on each other - - >>> df = pd.DataFrame({'A': [1, 2, 3]}) - - >>> df.assign(B=df.A, C=lambda x:x['A']+ x['B']) - A B C - 0 1 1 2 - 1 2 2 4 - 2 3 3 6 + >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) + temp_c temp_f + Portland 17.0 62.6 + Berkeley 25.0 77.0 + + Alternatively, the same behavior can be achieved by directly + referencing an existing Series or sequence: + >>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32) + temp_c temp_f + Portland 17.0 62.6 + Berkeley 25.0 77.0 + + In Python 3.6+, you can create multiple columns within the same assign + where one of the columns depends on another one defined within the same + assign: + >>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32, + ... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9) + temp_c temp_f temp_k + Portland 17.0 62.6 290.15 + Berkeley 25.0 77.0 298.15 """ data = self.copy()
Make Series.shift always a copy? Right now, `Series.shift(0)` will just return the series. Shifting for all other periods induces a copy: ```python In [1]: import pandas as pd In [2]: a = pd.Series([1, 2]) In [3]: a.shift(1) is a Out[3]: False In [4]: a.shift(0) is a Out[4]: True ``` Should we defensively copy on `0` as well, for a consistent user experience? https://github.com/pandas-dev/pandas/blob/e669fae0762d901e61f7af84fc3b5181848d257d/pandas/core/generic.py#L8084-L8086 np.ndarray[object] - Timedelta raises ``` arr = np.array([pd.Timestamp.now(), pd.Timedelta('2D')]) >>> arr - pd.Timedelta('1D') Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: unsupported operand type(s) for -: 'numpy.ndarray' and 'Timedelta' ``` It should attempt to operate element-wise.
I suppose this is because of https://github.com/pandas-dev/pandas/blob/27ebb3e1e40513ad5f8919a5bbc7298e2e070a39/pandas/_libs/tslibs/timedeltas.pyx#L539-L544 Any idea what the "wrong" answer would be? (with timedelta.timedelta instead of Timedelta that seems to work just fine, so I assume with Timedelta it will be the same) No idea what the wrong answer would be. This should be easy to fix; if no one else picks it up I'll take care of it once the current PR queue settles down. Yes, PR with a fix is certainly welcome I think
2018-07-14T23:11:49Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: unsupported operand type(s) for -: 'numpy.ndarray' and 'Timedelta'
12,037
pandas-dev/pandas
pandas-dev__pandas-22054
71852da03994c7c79a4ba3a0f91c6d723be6a299
diff --git a/doc/source/whatsnew/v0.24.0.txt b/doc/source/whatsnew/v0.24.0.txt --- a/doc/source/whatsnew/v0.24.0.txt +++ b/doc/source/whatsnew/v0.24.0.txt @@ -642,6 +642,7 @@ Timedelta - Bug in :class:`Series` with numeric dtype when adding or subtracting an an array or ``Series`` with ``timedelta64`` dtype (:issue:`22390`) - Bug in :class:`Index` with numeric dtype when multiplying or dividing an array with dtype ``timedelta64`` (:issue:`22390`) - Bug in :class:`TimedeltaIndex` incorrectly allowing indexing with ``Timestamp`` object (:issue:`20464`) +- Fixed bug where subtracting :class:`Timedelta` from an object-dtyped array would raise ``TypeError`` (:issue:`21980`) - - diff --git a/pandas/_libs/tslibs/timedeltas.pyx b/pandas/_libs/tslibs/timedeltas.pyx --- a/pandas/_libs/tslibs/timedeltas.pyx +++ b/pandas/_libs/tslibs/timedeltas.pyx @@ -541,10 +541,12 @@ def _binary_op_method_timedeltalike(op, name): elif hasattr(other, 'dtype'): # nd-array like - if other.dtype.kind not in ['m', 'M']: - # raise rathering than letting numpy return wrong answer + if other.dtype.kind in ['m', 'M']: + return op(self.to_timedelta64(), other) + elif other.dtype.kind == 'O': + return np.array([op(self, x) for x in other]) + else: return NotImplemented - return op(self.to_timedelta64(), other) elif not _validate_ops_compat(other): return NotImplemented
np.ndarray[object] - Timedelta raises ``` arr = np.array([pd.Timestamp.now(), pd.Timedelta('2D')]) >>> arr - pd.Timedelta('1D') Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: unsupported operand type(s) for -: 'numpy.ndarray' and 'Timedelta' ``` It should attempt to operate element-wise.
I suppose this is because of https://github.com/pandas-dev/pandas/blob/27ebb3e1e40513ad5f8919a5bbc7298e2e070a39/pandas/_libs/tslibs/timedeltas.pyx#L539-L544 Any idea what the "wrong" answer would be? (with timedelta.timedelta instead of Timedelta that seems to work just fine, so I assume with Timedelta it will be the same) No idea what the wrong answer would be. This should be easy to fix; if no one else picks it up I'll take care of it once the current PR queue settles down. Yes, PR with a fix is certainly welcome I think Is this still an issue? I wasn't able to repro from master. > Is this still an issue? I wasn't able to repro from master. What platform etc? I still get it on OSX in both py27 and py37. OSX 10.11.6 with Python 3.6. I just pulled up a REPL and imported pandas from a compile I did yesterday from master and didn't get an exception from the example code posted. Specifically ```Python 3.6.6 (default, Jul 23 2018, 11:08:18) [GCC 4.2.1 Compatible Clang 6.0.0 (tags/RELEASE_600/final)] on darwin``` I also didn't see the issue from the latest install from pip either. Both times I just got ```python >>> arr = np.array([pd.Timestamp.now(), pd.Timedelta('2D')]) >>> arr array([Timestamp('2018-07-24 10:49:41.898067'), Timedelta('2 days 00:00:00')], dtype=object) ``` Did you try subtracting a `Timedelta` from `arr`? Ah! 🤦‍♂️ yea I missed that part in the example. I repro'd the bug with that on master and latest pip. So with this then how should I go about the fix? It's not operating element wise on the array because the timedeltas.pyx isn't returning that it is a timedelta correctly? or...? > how should I go about the fix? Take a look at the code block Joris quoted above. At the moment that lets 'm' and 'M' dtypes through but stops everything else. The fix will involve letting 'o' dtypes through (and making sure they are handled correctly)
2018-07-25T19:49:53Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: unsupported operand type(s) for -: 'numpy.ndarray' and 'Timedelta'
12,055
pandas-dev/pandas
pandas-dev__pandas-22169
3bcc2bb4e275efef6d4d4d87ac1d661aa4c2bdbc
diff --git a/doc/source/whatsnew/v0.23.5.txt b/doc/source/whatsnew/v0.23.5.txt --- a/doc/source/whatsnew/v0.23.5.txt +++ b/doc/source/whatsnew/v0.23.5.txt @@ -40,3 +40,7 @@ Bug Fixes - - + +**I/O** + +- Bug in :func:`read_csv` that caused it to raise ``OverflowError`` when trying to use 'inf' as ``na_value`` with integer index column (:issue:`17128`) diff --git a/pandas/core/algorithms.py b/pandas/core/algorithms.py --- a/pandas/core/algorithms.py +++ b/pandas/core/algorithms.py @@ -95,7 +95,7 @@ def _ensure_data(values, dtype=None): values = ensure_float64(values) return values, 'float64', 'float64' - except (TypeError, ValueError): + except (TypeError, ValueError, OverflowError): # if we are trying to coerce to a dtype # and it is incompat this will fall thru to here return ensure_object(values), 'object', 'object' @@ -429,7 +429,7 @@ def isin(comps, values): values = values.astype('int64', copy=False) comps = comps.astype('int64', copy=False) f = lambda x, y: htable.ismember_int64(x, y) - except (TypeError, ValueError): + except (TypeError, ValueError, OverflowError): values = values.astype(object) comps = comps.astype(object)
OverflowError in read_csv when specifying certain na_values #### Code Sample, a copy-pastable example if possible ```python import pandas as pd from pandas.compat import StringIO data = StringIO("a,b,c\n1,2,3\n4,5,6\n7,8,9") na_values = ['-inf'] index_col = 0 df = pd.read_csv(data, na_values=na_values, index_col=index_col) ``` #### Problem description `read_csv()` fails with the following traceback when specifying certain `na_values` with `index_col`: ``` Traceback (most recent call last): File "run.py", line 9, in <module> df = pd.read_csv(data, na_values=na_values, index_col=index_col) File "/home/liauys/Code/pandas/pandas/io/parsers.py", line 660, in parser_f return _read(filepath_or_buffer, kwds) File "/home/liauys/Code/pandas/pandas/io/parsers.py", line 416, in _read data = parser.read(nrows) File "/home/liauys/Code/pandas/pandas/io/parsers.py", line 1010, in read ret = self._engine.read(nrows) File "/home/liauys/Code/pandas/pandas/io/parsers.py", line 1837, in read index, names = self._make_index(data, alldata, names) File "/home/liauys/Code/pandas/pandas/io/parsers.py", line 1347, in _make_index index = self._agg_index(index) File "/home/liauys/Code/pandas/pandas/io/parsers.py", line 1440, in _agg_index arr, _ = self._infer_types(arr, col_na_values | col_na_fvalues) File "/home/liauys/Code/pandas/pandas/io/parsers.py", line 1524, in _infer_types mask = algorithms.isin(values, list(na_values)) File "/home/liauys/Code/pandas/pandas/core/algorithms.py", line 408, in isin values, _, _ = _ensure_data(values, dtype=dtype) File "/home/liauys/Code/pandas/pandas/core/algorithms.py", line 74, in _ensure_data return _ensure_int64(values), 'int64', 'int64' File "pandas/_libs/algos_common_helper.pxi", line 3227, in pandas._libs.algos.ensure_int64 File "pandas/_libs/algos_common_helper.pxi", line 3232, in pandas._libs.algos.ensure_int64 OverflowError: cannot convert float infinity to integer ``` Any of the following makes the error go away: * The index column does contain the said NA value * Using `na_values` of `['inf']` instead of `['-inf']` * Not specifying index_col * Using version 0.19 or older #### Expected Output There should not be any error. #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 2.7.13.final.0 python-bits: 64 OS: Linux OS-release: 4.11.9-1-ARCH machine: x86_64 processor: byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: None.None pandas: 0.21.0.dev+316.gf2b0bdc9b pytest: None pip: 9.0.1 setuptools: 36.2.5 Cython: 0.26 numpy: 1.13.1 scipy: None pyarrow: None xarray: None IPython: 5.4.1 sphinx: None patsy: None dateutil: 2.6.1 pytz: 2017.2 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: None sqlalchemy: None pymysql: None psycopg2: None jinja2: None s3fs: None pandas_gbq: None pandas_datareader: None </details>
@YS-L : Thanks for the report! I'm not sure I follow you here: if upgrading makes the error go away, why are you filing this issue? Closing given your explanation. It seems like I was mislead by your comment. This issue is in fact reproducible on `master`, which I see now is what you were using. Sorry about that! Reopening.
2018-08-02T11:56:34Z
[]
[]
Traceback (most recent call last): File "run.py", line 9, in <module> df = pd.read_csv(data, na_values=na_values, index_col=index_col) File "/home/liauys/Code/pandas/pandas/io/parsers.py", line 660, in parser_f return _read(filepath_or_buffer, kwds) File "/home/liauys/Code/pandas/pandas/io/parsers.py", line 416, in _read data = parser.read(nrows) File "/home/liauys/Code/pandas/pandas/io/parsers.py", line 1010, in read ret = self._engine.read(nrows) File "/home/liauys/Code/pandas/pandas/io/parsers.py", line 1837, in read index, names = self._make_index(data, alldata, names) File "/home/liauys/Code/pandas/pandas/io/parsers.py", line 1347, in _make_index index = self._agg_index(index) File "/home/liauys/Code/pandas/pandas/io/parsers.py", line 1440, in _agg_index arr, _ = self._infer_types(arr, col_na_values | col_na_fvalues) File "/home/liauys/Code/pandas/pandas/io/parsers.py", line 1524, in _infer_types mask = algorithms.isin(values, list(na_values)) File "/home/liauys/Code/pandas/pandas/core/algorithms.py", line 408, in isin values, _, _ = _ensure_data(values, dtype=dtype) File "/home/liauys/Code/pandas/pandas/core/algorithms.py", line 74, in _ensure_data return _ensure_int64(values), 'int64', 'int64' File "pandas/_libs/algos_common_helper.pxi", line 3227, in pandas._libs.algos.ensure_int64 File "pandas/_libs/algos_common_helper.pxi", line 3232, in pandas._libs.algos.ensure_int64 OverflowError: cannot convert float infinity to integer
12,076
pandas-dev/pandas
pandas-dev__pandas-22261
4f11d1a9a9b02a37dbe109d8413cc75d73b92853
diff --git a/doc/source/whatsnew/v0.24.0.txt b/doc/source/whatsnew/v0.24.0.txt --- a/doc/source/whatsnew/v0.24.0.txt +++ b/doc/source/whatsnew/v0.24.0.txt @@ -693,7 +693,7 @@ Groupby/Resample/Rolling ``SeriesGroupBy`` when the grouping variable only contains NaNs and numpy version < 1.13 (:issue:`21956`). - Multiple bugs in :func:`pandas.core.Rolling.min` with ``closed='left'` and a datetime-like index leading to incorrect results and also segfault. (:issue:`21704`) -- +- Bug in :meth:`Resampler.apply` when passing postiional arguments to applied func (:issue:`14615`). Sparse ^^^^^^ diff --git a/pandas/core/resample.py b/pandas/core/resample.py --- a/pandas/core/resample.py +++ b/pandas/core/resample.py @@ -234,12 +234,15 @@ def pipe(self, func, *args, **kwargs): klass='DataFrame', versionadded='', axis='')) - def aggregate(self, arg, *args, **kwargs): + def aggregate(self, func, *args, **kwargs): self._set_binner() - result, how = self._aggregate(arg, *args, **kwargs) + result, how = self._aggregate(func, *args, **kwargs) if result is None: - result = self._groupby_and_aggregate(arg, + how = func + grouper = None + result = self._groupby_and_aggregate(how, + grouper, *args, **kwargs) @@ -852,7 +855,7 @@ def __init__(self, obj, *args, **kwargs): self._groupby.grouper.mutated = True self.groupby = copy.copy(parent.groupby) - def _apply(self, f, **kwargs): + def _apply(self, f, grouper=None, *args, **kwargs): """ dispatch to _upsample; we are stripping all of the _upsample kwargs and performing the original function call on the grouped object @@ -864,7 +867,7 @@ def func(x): if isinstance(f, compat.string_types): return getattr(x, f)(**kwargs) - return x.apply(f, **kwargs) + return x.apply(f, *args, **kwargs) result = self._groupby.apply(func) return self._wrap_result(result)
Unable to pass additional arguments to resample().apply() ```python import pandas as pd import numpy as np def stuff(vals, th): return np.mean(vals) rng = pd.date_range('1/1/2011', periods=72, freq='H') ts = pd.Series(np.random.randn(len(rng)), index=rng) df_res = ts.resample("D").apply(stuff, 10) ``` INSTALLED VERSIONS ------------------ commit: None python: 2.7.12.final.0 python-bits: 64 OS: Darwin OS-release: 16.1.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: en_US.UTF-8 LANG: en_US.UTF-8 LOCALE: None.None pandas: 0.19.1 nose: 1.3.0 pip: 9.0.0 setuptools: 28.7.1 Cython: 0.20.2 numpy: 1.11.2 scipy: 0.13.2 statsmodels: None xarray: None IPython: 5.1.0 sphinx: 1.4.8 patsy: None dateutil: 2.5.3 pytz: 2016.7 blosc: None bottleneck: None tables: 3.2.2 numexpr: 2.5.2 matplotlib: 1.3.1 openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: None httplib2: None apiclient: None sqlalchemy: 1.0.12 pymysql: None psycopg2: None jinja2: 2.8 boto: None pandas_datareader: None <details> In this version, it seems to be impossible to apply a function with an additional argument (which is not used in the example above): checking the Pandas 0.19.1 code, what happens is that the grouped argument of the function _groupby_and_aggregate gets the first value of the *args argument passed from the function aggregate, which is clearly wrong. Traceback (most recent call last): File "test.py", line 9, in <module> df_res = ts.resample("D").apply(stuff, 10) File "/usr/local/lib/python2.7/site-packages/pandas/tseries/resample.py", line 324, in aggregate **kwargs) File "/usr/local/lib/python2.7/site-packages/pandas/tseries/resample.py", line 405, in _groupby_and_aggregate result = grouped.apply(how, *args, **kwargs) File "/usr/local/lib/python2.7/site-packages/pandas/core/groupby.py", line 694, in apply return self._python_apply_general(f) File "/usr/local/lib/python2.7/site-packages/pandas/core/groupby.py", line 697, in _python_apply_general keys, values, mutated = self.grouper.apply(f, self._selected_obj, AttributeError: 'int' object has no attribute 'apply' </details>
hmm thought we had an issue for this already - yep looks like a bug if you'd like to submit a PR to fix would be great I will look at this today if no one else working on it?
2018-08-09T11:48:09Z
[]
[]
Traceback (most recent call last): File "test.py", line 9, in <module> df_res = ts.resample("D").apply(stuff, 10) File "/usr/local/lib/python2.7/site-packages/pandas/tseries/resample.py", line 324, in aggregate **kwargs) File "/usr/local/lib/python2.7/site-packages/pandas/tseries/resample.py", line 405, in _groupby_and_aggregate result = grouped.apply(how, *args, **kwargs) File "/usr/local/lib/python2.7/site-packages/pandas/core/groupby.py", line 694, in apply return self._python_apply_general(f) File "/usr/local/lib/python2.7/site-packages/pandas/core/groupby.py", line 697, in _python_apply_general keys, values, mutated = self.grouper.apply(f, self._selected_obj, AttributeError: 'int' object has no attribute 'apply'
12,091
pandas-dev/pandas
pandas-dev__pandas-22377
e7fca911872e29612bca77613d6e77468514acbe
diff --git a/doc/source/whatsnew/v0.24.0.txt b/doc/source/whatsnew/v0.24.0.txt --- a/doc/source/whatsnew/v0.24.0.txt +++ b/doc/source/whatsnew/v0.24.0.txt @@ -634,6 +634,7 @@ Numeric a ``TypeError`` was wrongly raised. For all three methods such calculation are now done correctly. (:issue:`16679`). - Bug in :class:`Series` comparison against datetime-like scalars and arrays (:issue:`22074`) - Bug in :class:`DataFrame` multiplication between boolean dtype and integer returning ``object`` dtype instead of integer dtype (:issue:`22047`,:issue:`22163`) +- Bug in :meth:`DataFrame.apply` where, when supplied with a string argument and additional positional or keyword arguments (e.g. ``df.apply('sum', min_count=1)``), a ``TypeError`` was wrongly raised (:issue:`22376`) - Strings diff --git a/pandas/core/apply.py b/pandas/core/apply.py --- a/pandas/core/apply.py +++ b/pandas/core/apply.py @@ -71,7 +71,9 @@ def __init__(self, obj, func, broadcast, raw, reduce, result_type, self.result_type = result_type # curry if needed - if kwds or args and not isinstance(func, np.ufunc): + if ((kwds or args) and + not isinstance(func, (np.ufunc, compat.string_types))): + def f(x): return func(x, *args, **kwds) else:
DataFrame.apply fails for string function arguments with additional positional or keyword arguments #### Code sample ```python import pandas as pd df = pd.DataFrame([[1, 2, 3], [1, 2, 3]]) df.apply('sum', axis=1, min_count=1) ``` #### Problem description When we use the ``DataFrame.apply`` method with a string function argument (e.g. 'sum') and provide additional positional or keyword arguments it fails with the following exception: ```python Traceback (most recent call last): File "<stdin>", line 1, in <module> File "<cut>/pandas/core/frame.py", line 6173, in apply return op.get_result() File "<cut>/pandas/core/apply.py", line 151, in get_result return self.apply_standard() File "<cut>/pandas/core/apply.py", line 257, in apply_standard self.apply_series_generator() File "<cut>/pandas/core/apply.py", line 286, in apply_series_generator results[i] = self.f(v) File "<cut>/pandas-dev/pandas/core/apply.py", line 78, in f return func(x, *args, **kwds) TypeError: ("'str' object is not callable", 'occurred at index 0') ``` but works just fine without additional arguments. The code above fails in master. #### Expected Output ```python >>> df.apply('sum', axis=1, min_count=1) 0 6 1 6 dtype: int64 ``` #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: 70e6f7c3ce7aca9a0ee08bacb2fe0ad85db02d88 python: 3.6.6.final.0 python-bits: 64 OS: Linux OS-release: 3.0.101-108.13.1.14249.0.PTF-default machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.24.0.dev0+469.g70e6f7c3c pytest: 3.7.1 pip: 10.0.1 setuptools: 40.0.0 Cython: 0.28.5 numpy: 1.15.0 scipy: 1.1.0 pyarrow: 0.9.0 xarray: 0.10.8 IPython: 6.5.0 sphinx: 1.7.6 patsy: 0.5.0 dateutil: 2.7.3 pytz: 2018.5 blosc: None bottleneck: 1.2.1 tables: 3.4.4 numexpr: 2.6.7 feather: 0.4.0 matplotlib: 2.2.3 openpyxl: 2.5.5 xlrd: 1.1.0 xlwt: 1.3.0 xlsxwriter: 1.0.5 lxml: 4.2.4 bs4: 4.6.3 html5lib: 1.0.1 sqlalchemy: 1.2.10 pymysql: 0.9.2 psycopg2: None jinja2: 2.10 s3fs: 0.1.5 fastparquet: None pandas_gbq: None pandas_datareader: None gcsfs: 0.1.1 </details>
2018-08-16T00:26:04Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "<cut>/pandas/core/frame.py", line 6173, in apply return op.get_result() File "<cut>/pandas/core/apply.py", line 151, in get_result return self.apply_standard() File "<cut>/pandas/core/apply.py", line 257, in apply_standard self.apply_series_generator() File "<cut>/pandas/core/apply.py", line 286, in apply_series_generator results[i] = self.f(v) File "<cut>/pandas-dev/pandas/core/apply.py", line 78, in f return func(x, *args, **kwds) TypeError: ("'str' object is not callable", 'occurred at index 0')
12,114
pandas-dev/pandas
pandas-dev__pandas-22394
b5d81cfe43eeccfc3641aa9578097f726da9ce9d
diff --git a/doc/source/whatsnew/v0.24.0.txt b/doc/source/whatsnew/v0.24.0.txt --- a/doc/source/whatsnew/v0.24.0.txt +++ b/doc/source/whatsnew/v0.24.0.txt @@ -711,7 +711,7 @@ Reshaping - Bug in :func:`get_dummies` with Unicode attributes in Python 2 (:issue:`22084`) - Bug in :meth:`DataFrame.replace` raises ``RecursionError`` when replacing empty lists (:issue:`22083`) - Bug in :meth:`Series.replace` and meth:`DataFrame.replace` when dict is used as the `to_replace` value and one key in the dict is is another key's value, the results were inconsistent between using integer key and using string key (:issue:`20656`) -- +- Bug in :meth:`DataFrame.drop_duplicates` for empty ``DataFrame`` which incorrectly raises an error (:issue:`20516`) Build Changes ^^^^^^^^^^^^^ diff --git a/pandas/core/frame.py b/pandas/core/frame.py --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -4335,6 +4335,9 @@ def drop_duplicates(self, subset=None, keep='first', inplace=False): ------- deduplicated : DataFrame """ + if self.empty: + return self.copy() + inplace = validate_bool_kwarg(inplace, 'inplace') duplicated = self.duplicated(subset, keep=keep) @@ -4369,6 +4372,9 @@ def duplicated(self, subset=None, keep='first'): from pandas.core.sorting import get_group_index from pandas._libs.hashtable import duplicated_int64, _SIZE_HINT_LIMIT + if self.empty: + return Series() + def f(vals): labels, shape = algorithms.factorize( vals, size_hint=min(len(self), _SIZE_HINT_LIMIT))
Calling drop_duplicates method for empty pandas dataframe throws error #### Code Sample ```python >>> pd.DataFrame().drop_duplicates() Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/analytical-monk/miniconda3/lib/python3.6/site-packages/pandas/core/frame.py", line 3098, in drop_duplicates duplicated = self.duplicated(subset, keep=keep) File "/home/analytical-monk/miniconda3/lib/python3.6/site-packages/pandas/core/frame.py", line 3144, in duplicated labels, shape = map(list, zip(*map(f, vals))) ValueError: not enough values to unpack (expected 2, got 0) ``` #### Problem description Currently, calling the drop_duplicates method for an empty dataframe object (simply pd.DataFrame()) throws an error. Ideally it should return back the empty dataframe just liked it does when at least one column is present. #### Expected Output ``` >>> pd.DataFrame().drop_duplicates() Empty DataFrame Columns: [] Index: [] ``` #### Output of ``pd.show_versions()`` <details> ``` >>> pd.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 3.6.1.final.0 python-bits: 64 OS: Linux OS-release: 4.8.0-58-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_IN LOCALE: en_IN.ISO8859-1 pandas: 0.20.3 pytest: None pip: 9.0.1 setuptools: 36.6.0 Cython: None numpy: 1.13.1 scipy: None xarray: None IPython: None sphinx: None patsy: None dateutil: 2.6.1 pytz: 2017.2 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: 4.6.0 html5lib: 1.0b10 sqlalchemy: 1.1.14 pymysql: None psycopg2: None jinja2: 2.9.6 s3fs: None pandas_gbq: None pandas_datareader: None ``` </details>
@TomAugspurger Opened this issue for the problem I'd mentioned in the gitter chat. Can I work on this issue? @TomAugspurger Please do! On Wed, Mar 28, 2018 at 1:35 PM, Arpit Solanki <notifications@github.com> wrote: > Can I work on this issue? @TomAugspurger > <https://github.com/TomAugspurger> > > — > You are receiving this because you were mentioned. > Reply to this email directly, view it on GitHub > <https://github.com/pandas-dev/pandas/issues/20516#issuecomment-376991195>, > or mute the thread > <https://github.com/notifications/unsubscribe-auth/ABQHIlMYlNyhe2x7TrsfjIMGzOm9Y4KJks5ti9gKgaJpZM4S-lLY> > . > @arpit1997 are you still working on this?
2018-08-17T02:56:14Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/analytical-monk/miniconda3/lib/python3.6/site-packages/pandas/core/frame.py", line 3098, in drop_duplicates duplicated = self.duplicated(subset, keep=keep) File "/home/analytical-monk/miniconda3/lib/python3.6/site-packages/pandas/core/frame.py", line 3144, in duplicated labels, shape = map(list, zip(*map(f, vals))) ValueError: not enough values to unpack (expected 2, got 0)
12,116
pandas-dev/pandas
pandas-dev__pandas-22436
fa47b8d95e4752d2687b0aee5942dcbb34f61362
diff --git a/doc/source/whatsnew/v0.24.0.txt b/doc/source/whatsnew/v0.24.0.txt --- a/doc/source/whatsnew/v0.24.0.txt +++ b/doc/source/whatsnew/v0.24.0.txt @@ -663,6 +663,7 @@ Indexing - Fixed ``DataFrame[np.nan]`` when columns are non-unique (:issue:`21428`) - Bug when indexing :class:`DatetimeIndex` with nanosecond resolution dates and timezones (:issue:`11679`) - Bug where indexing with a Numpy array containing negative values would mutate the indexer (:issue:`21867`) +- Bug where mixed indexes wouldn't allow integers for ``.at`` (:issue:`19860`) - ``Float64Index.get_loc`` now raises ``KeyError`` when boolean key passed. (:issue:`19087`) Missing diff --git a/pandas/core/indexes/base.py b/pandas/core/indexes/base.py --- a/pandas/core/indexes/base.py +++ b/pandas/core/indexes/base.py @@ -3125,8 +3125,8 @@ def get_value(self, series, key): iloc = self.get_loc(key) return s[iloc] except KeyError: - if (len(self) > 0 and - self.inferred_type in ['integer', 'boolean']): + if (len(self) > 0 + and (self.holds_integer() or self.is_boolean())): raise elif is_integer(key): return s[key] @@ -3139,7 +3139,7 @@ def get_value(self, series, key): return self._engine.get_value(s, k, tz=getattr(series.dtype, 'tz', None)) except KeyError as e1: - if len(self) > 0 and self.inferred_type in ['integer', 'boolean']: + if len(self) > 0 and (self.holds_integer() or self.is_boolean()): raise try: diff --git a/pandas/core/indexing.py b/pandas/core/indexing.py --- a/pandas/core/indexing.py +++ b/pandas/core/indexing.py @@ -2354,7 +2354,7 @@ def _convert_key(self, key, is_setter=False): raise ValueError("At based indexing on an integer index " "can only have integer indexers") else: - if is_integer(i): + if is_integer(i) and not ax.holds_integer(): raise ValueError("At based indexing on an non-integer " "index can only have non-integer " "indexers")
BUG?: .at not working on object indexes containing some integers Version 0.22.0 #### Problem description Using the .at - Method on an Index which contains Integers as well as str/objects raises an Error. This used to be possible using the ``.get_value()``-Method. As ``.at`` is the designated successor (#15269) the same behaviour should be supported. I also noticed that ``.get_value`` is approx. twice as fast as ``.at``. Is there a specific reason to stick with ``.at``? (see again #15269 for a speed comparison) #### Code Sample ```python import pandas as pd import numpy as np data = np.random.randn(10, 5) df = pd.DataFrame(data, columns=['a', 'b', 'c', 1, 2]) df.at[0, 1] ``` Raises: ```python Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/thielc/anaconda3/lib/python3.6/site-packages/pandas/core/indexing.py", line 1868, in __getitem__ key = self._convert_key(key) File "/home/thielc/anaconda3/lib/python3.6/site-packages/pandas/core/indexing.py", line 1915, in _convert_key raise ValueError("At based indexing on an non-integer " ValueError: At based indexing on an non-integer index can only have non-integer indexers ```
@c-thiel : Thanks for reporting this! I'm a little unclear as to what's being reported. Is this a regression from a previous version (you said this used to be possible), or is this a general API inconsistency that you're referring to? That aside, I do agree that the behavior does look strange. I don't think it is a regression from a previous version (test with 0.16, already broken there), but it is possible with `get_value`. However, this is deprecated, and we say people should use `.at` instead. So then `.at` should work correctly on this as well. The problem comes from here: https://github.com/pandas-dev/pandas/blob/572476f0a3652222c17458d418a107554580eaa5/pandas/core/indexing.py#L1907-L1916 where we do this check. But I agree the check looks to strict, as a mixed object index can indeed contain integers as well. Welcome to try to fix this (eg try removing this check, and see if some tests fail due to that). yeah I think prob ok to remove the else check; this ultimately goes thru ``.loc`` so indexing verfication can occur there @c-thiel indexing with mixed dtype indexes is simply going to be slow generally. @jorisvandenbossche Yes, this is what I was reffering to. @jreback : Regarding Performance, ``at`` is still much faster than ``loc``, especially when setting values. The setting-performance for single values is the main reason for me using the set_value and get_value functions. But also the ``get_value``, ``set_value`` functions are twice as fast as ``at`` : ```python import pandas as pd import numpy as np import time c = ['a', 'b', 'c', 'd', 'e'] data = np.random.rand(10000, 5) df = pd.DataFrame(data, columns=c) rows = np.random.randint(0, 9999, (100000,)) columns = np.random.choice(c, (100000,)) t = time.time() for row, column in zip(rows, columns): a = df.get_value(row, column) print(f'get_value: {time.time()-t}') t = time.time() for row, column in zip(rows, columns): a = df.at[row, column] print(f'at: {time.time()-t}') t = time.time() for row, column in zip(rows, columns): a = df.loc[row, column] print(f'loc: {time.time()-t}') t = time.time() for row, column in zip(rows, columns): df.at[row, column] = 4 print(f'set at: {time.time()-t}') t = time.time() for row, column in zip(rows, columns): df.loc[row, column] = 5 print(f'set loc: {time.time()-t}') t = time.time() for row, column in zip(rows, columns): df.set_value(row, column, 4) print(f'set_value: {time.time()-t}') ``` ``` get_value: 0.257692813873291 at: 0.52744460105896 loc: 0.7349758148193359 set at: 0.687880277633667 set loc: 11.664336204528809 set_value: 0.3008086681365967 ``` @c-thiel setting individual values in a loop is non-idiomatic. set_value/get_value were deprecated because they didn't properly handle *any* edge cases nor had any type safetly whatsoever. Correct is much much better then wrong but *slightly* faster.
2018-08-21T06:54:14Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/thielc/anaconda3/lib/python3.6/site-packages/pandas/core/indexing.py", line 1868, in __getitem__ key = self._convert_key(key) File "/home/thielc/anaconda3/lib/python3.6/site-packages/pandas/core/indexing.py", line 1915, in _convert_key raise ValueError("At based indexing on an non-integer " ValueError: At based indexing on an non-integer index can only have non-integer indexers
12,120
pandas-dev/pandas
pandas-dev__pandas-22647
f87fe147c7494f3db56f3de31aeda12f80ef9c67
diff --git a/doc/source/whatsnew/v0.24.0.txt b/doc/source/whatsnew/v0.24.0.txt --- a/doc/source/whatsnew/v0.24.0.txt +++ b/doc/source/whatsnew/v0.24.0.txt @@ -182,6 +182,7 @@ Other Enhancements - :func:`to_timedelta` now supports iso-formated timedelta strings (:issue:`21877`) - :class:`Series` and :class:`DataFrame` now support :class:`Iterable` in constructor (:issue:`2193`) - :class:`DatetimeIndex` gained :attr:`DatetimeIndex.timetz` attribute. Returns local time with timezone information. (:issue:`21358`) +- :meth:`round`, :meth:`ceil`, and meth:`floor` for :class:`DatetimeIndex` and :class:`Timestamp` now support an ``ambiguous`` argument for handling datetimes that are rounded to ambiguous times (:issue:`18946`) - :class:`Resampler` now is iterable like :class:`GroupBy` (:issue:`15314`). - :meth:`Series.resample` and :meth:`DataFrame.resample` have gained the :meth:`Resampler.quantile` (:issue:`15023`). - :meth:`Index.to_frame` now supports overriding column name(s) (:issue:`22580`). diff --git a/pandas/_libs/tslibs/nattype.pyx b/pandas/_libs/tslibs/nattype.pyx --- a/pandas/_libs/tslibs/nattype.pyx +++ b/pandas/_libs/tslibs/nattype.pyx @@ -477,6 +477,13 @@ class NaTType(_NaT): Parameters ---------- freq : a freq string indicating the rounding resolution + ambiguous : bool, 'NaT', default 'raise' + - bool contains flags to determine if time is dst or not (note + that this flag is only applicable for ambiguous fall dst dates) + - 'NaT' will return NaT for an ambiguous time + - 'raise' will raise an AmbiguousTimeError for an ambiguous time + + .. versionadded:: 0.24.0 Raises ------ @@ -489,6 +496,17 @@ class NaTType(_NaT): Parameters ---------- freq : a freq string indicating the flooring resolution + ambiguous : bool, 'NaT', default 'raise' + - bool contains flags to determine if time is dst or not (note + that this flag is only applicable for ambiguous fall dst dates) + - 'NaT' will return NaT for an ambiguous time + - 'raise' will raise an AmbiguousTimeError for an ambiguous time + + .. versionadded:: 0.24.0 + + Raises + ------ + ValueError if the freq cannot be converted """) ceil = _make_nat_func('ceil', # noqa:E128 """ @@ -497,6 +515,17 @@ class NaTType(_NaT): Parameters ---------- freq : a freq string indicating the ceiling resolution + ambiguous : bool, 'NaT', default 'raise' + - bool contains flags to determine if time is dst or not (note + that this flag is only applicable for ambiguous fall dst dates) + - 'NaT' will return NaT for an ambiguous time + - 'raise' will raise an AmbiguousTimeError for an ambiguous time + + .. versionadded:: 0.24.0 + + Raises + ------ + ValueError if the freq cannot be converted """) tz_convert = _make_nat_func('tz_convert', # noqa:E128 diff --git a/pandas/_libs/tslibs/timestamps.pyx b/pandas/_libs/tslibs/timestamps.pyx --- a/pandas/_libs/tslibs/timestamps.pyx +++ b/pandas/_libs/tslibs/timestamps.pyx @@ -656,7 +656,7 @@ class Timestamp(_Timestamp): return create_timestamp_from_ts(ts.value, ts.dts, ts.tzinfo, freq) - def _round(self, freq, rounder): + def _round(self, freq, rounder, ambiguous='raise'): if self.tz is not None: value = self.tz_localize(None).value else: @@ -668,10 +668,10 @@ class Timestamp(_Timestamp): r = round_ns(value, rounder, freq)[0] result = Timestamp(r, unit='ns') if self.tz is not None: - result = result.tz_localize(self.tz) + result = result.tz_localize(self.tz, ambiguous=ambiguous) return result - def round(self, freq): + def round(self, freq, ambiguous='raise'): """ Round the Timestamp to the specified resolution @@ -682,32 +682,61 @@ class Timestamp(_Timestamp): Parameters ---------- freq : a freq string indicating the rounding resolution + ambiguous : bool, 'NaT', default 'raise' + - bool contains flags to determine if time is dst or not (note + that this flag is only applicable for ambiguous fall dst dates) + - 'NaT' will return NaT for an ambiguous time + - 'raise' will raise an AmbiguousTimeError for an ambiguous time + + .. versionadded:: 0.24.0 Raises ------ ValueError if the freq cannot be converted """ - return self._round(freq, np.round) + return self._round(freq, np.round, ambiguous) - def floor(self, freq): + def floor(self, freq, ambiguous='raise'): """ return a new Timestamp floored to this resolution Parameters ---------- freq : a freq string indicating the flooring resolution + ambiguous : bool, 'NaT', default 'raise' + - bool contains flags to determine if time is dst or not (note + that this flag is only applicable for ambiguous fall dst dates) + - 'NaT' will return NaT for an ambiguous time + - 'raise' will raise an AmbiguousTimeError for an ambiguous time + + .. versionadded:: 0.24.0 + + Raises + ------ + ValueError if the freq cannot be converted """ - return self._round(freq, np.floor) + return self._round(freq, np.floor, ambiguous) - def ceil(self, freq): + def ceil(self, freq, ambiguous='raise'): """ return a new Timestamp ceiled to this resolution Parameters ---------- freq : a freq string indicating the ceiling resolution + ambiguous : bool, 'NaT', default 'raise' + - bool contains flags to determine if time is dst or not (note + that this flag is only applicable for ambiguous fall dst dates) + - 'NaT' will return NaT for an ambiguous time + - 'raise' will raise an AmbiguousTimeError for an ambiguous time + + .. versionadded:: 0.24.0 + + Raises + ------ + ValueError if the freq cannot be converted """ - return self._round(freq, np.ceil) + return self._round(freq, np.ceil, ambiguous) @property def tz(self): diff --git a/pandas/core/indexes/datetimelike.py b/pandas/core/indexes/datetimelike.py --- a/pandas/core/indexes/datetimelike.py +++ b/pandas/core/indexes/datetimelike.py @@ -99,6 +99,18 @@ class TimelikeOps(object): frequency like 'S' (second) not 'ME' (month end). See :ref:`frequency aliases <timeseries.offset_aliases>` for a list of possible `freq` values. + ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise' + - 'infer' will attempt to infer fall dst-transition hours based on + order + - bool-ndarray where True signifies a DST time, False designates + a non-DST time (note that this flag is only applicable for + ambiguous times) + - 'NaT' will return NaT where there are ambiguous times + - 'raise' will raise an AmbiguousTimeError if there are ambiguous + times + Only relevant for DatetimeIndex + + .. versionadded:: 0.24.0 Returns ------- @@ -168,7 +180,7 @@ class TimelikeOps(object): """ ) - def _round(self, freq, rounder): + def _round(self, freq, rounder, ambiguous): # round the local times values = _ensure_datetimelike_to_i8(self) result = round_ns(values, rounder, freq) @@ -180,19 +192,20 @@ def _round(self, freq, rounder): if 'tz' in attribs: attribs['tz'] = None return self._ensure_localized( - self._shallow_copy(result, **attribs)) + self._shallow_copy(result, **attribs), ambiguous + ) @Appender((_round_doc + _round_example).format(op="round")) - def round(self, freq, *args, **kwargs): - return self._round(freq, np.round) + def round(self, freq, ambiguous='raise'): + return self._round(freq, np.round, ambiguous) @Appender((_round_doc + _floor_example).format(op="floor")) - def floor(self, freq): - return self._round(freq, np.floor) + def floor(self, freq, ambiguous='raise'): + return self._round(freq, np.floor, ambiguous) @Appender((_round_doc + _ceil_example).format(op="ceil")) - def ceil(self, freq): - return self._round(freq, np.ceil) + def ceil(self, freq, ambiguous='raise'): + return self._round(freq, np.ceil, ambiguous) class DatetimeIndexOpsMixin(DatetimeLikeArrayMixin): @@ -264,7 +277,7 @@ def _evaluate_compare(self, other, op): except TypeError: return result - def _ensure_localized(self, result): + def _ensure_localized(self, result, ambiguous='raise'): """ ensure that we are re-localized @@ -274,6 +287,8 @@ def _ensure_localized(self, result): Parameters ---------- result : DatetimeIndex / i8 ndarray + ambiguous : str, bool, or bool-ndarray + default 'raise' Returns ------- @@ -284,7 +299,7 @@ def _ensure_localized(self, result): if getattr(self, 'tz', None) is not None: if not isinstance(result, ABCIndexClass): result = self._simple_new(result) - result = result.tz_localize(self.tz) + result = result.tz_localize(self.tz, ambiguous=ambiguous) return result def _box_values_as_index(self):
AmbiguousTimeError in floor() operation This is probably related to #18885 Given a DataFrame with a DST change on it: ```python df1=pd.DataFrame([pd.to_datetime('2017-10-29 02:00:00+02:00'), pd.to_datetime('2017-10-29 02:00:00+01:00'), pd.to_datetime('2017-10-29 03:00:00+01:00')],columns=['date']) df1['date'] = df1['date'].dt.tz_localize('UTC').dt.tz_convert('Europe/Madrid') df1['value'] = 1 ``` When we try to do a `floor()` or `ceil()` operation, we get an AmbiguousTimeError exception: ```python df1.date.dt.floor('H') ``` ### Expected output ``` 0 2017-10-29 02:00:00+02:00 1 2017-10-29 02:00:00+01:00 2 2017-10-29 03:00:00+01:00 ``` ### Actual output ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "(...)/venv/lib/python3.6/site-packages/pandas/core/accessor.py", line 115, in f return self._delegate_method(name, *args, **kwargs) File "(...)/venv/lib/python3.6/site-packages/pandas/core/indexes/accessors.py", line 131, in _delegate_method result = method(*args, **kwargs) File "(...)/venv/lib/python3.6/site-packages/pandas/core/indexes/datetimelike.py", line 118, in floor return self._round(freq, np.floor) File "(...)/venv/lib/python3.6/site-packages/pandas/core/indexes/datetimelike.py", line 110, in _round self._shallow_copy(result, **attribs)) File "(...)/venv/lib/python3.6/site-packages/pandas/core/indexes/datetimelike.py", line 230, in _ensure_localized result = result.tz_localize(self.tz) File "(...)/venv/lib/python3.6/site-packages/pandas/util/_decorators.py", line 118, in wrapper return func(*args, **kwargs) File "(...)/venv/lib/python3.6/site-packages/pandas/core/indexes/datetimes.py", line 1858, in tz_localize errors=errors) File "pandas/_libs/tslib.pyx", line 3593, in pandas._libs.tslib.tz_localize_to_utc pytz.exceptions.AmbiguousTimeError: Cannot infer dst time from Timestamp('2017-10-29 02:00:00'), try using the 'ambiguous' argument ```
yes there a number of issues related to this. the fix is all the same.
2018-09-09T06:48:32Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "(...)/venv/lib/python3.6/site-packages/pandas/core/accessor.py", line 115, in f return self._delegate_method(name, *args, **kwargs) File "(...)/venv/lib/python3.6/site-packages/pandas/core/indexes/accessors.py", line 131, in _delegate_method result = method(*args, **kwargs) File "(...)/venv/lib/python3.6/site-packages/pandas/core/indexes/datetimelike.py", line 118, in floor return self._round(freq, np.floor) File "(...)/venv/lib/python3.6/site-packages/pandas/core/indexes/datetimelike.py", line 110, in _round self._shallow_copy(result, **attribs)) File "(...)/venv/lib/python3.6/site-packages/pandas/core/indexes/datetimelike.py", line 230, in _ensure_localized result = result.tz_localize(self.tz) File "(...)/venv/lib/python3.6/site-packages/pandas/util/_decorators.py", line 118, in wrapper return func(*args, **kwargs) File "(...)/venv/lib/python3.6/site-packages/pandas/core/indexes/datetimes.py", line 1858, in tz_localize errors=errors) File "pandas/_libs/tslib.pyx", line 3593, in pandas._libs.tslib.tz_localize_to_utc pytz.exceptions.AmbiguousTimeError: Cannot infer dst time from Timestamp('2017-10-29 02:00:00'), try using the 'ambiguous' argument
12,151
pandas-dev/pandas
pandas-dev__pandas-22725
c8ce3d01e9ffafc24c6f9dd568cd9eb7e42c610c
diff --git a/pandas/core/strings.py b/pandas/core/strings.py --- a/pandas/core/strings.py +++ b/pandas/core/strings.py @@ -3,8 +3,9 @@ from pandas.compat import zip from pandas.core.dtypes.generic import ABCSeries, ABCIndex -from pandas.core.dtypes.missing import isna, notna +from pandas.core.dtypes.missing import isna from pandas.core.dtypes.common import ( + ensure_object, is_bool_dtype, is_categorical_dtype, is_object_dtype, @@ -36,114 +37,26 @@ _shared_docs = dict() -def _get_array_list(arr, others): - """ - Auxiliary function for :func:`str_cat` - - Parameters - ---------- - arr : ndarray - The left-most ndarray of the concatenation - others : list, ndarray, Series - The rest of the content to concatenate. If list of list-likes, - all elements must be passable to ``np.asarray``. - - Returns - ------- - list - List of all necessary arrays - """ - from pandas.core.series import Series - - if len(others) and isinstance(com.values_from_object(others)[0], - (list, np.ndarray, Series)): - arrays = [arr] + list(others) - else: - arrays = [arr, others] - - return [np.asarray(x, dtype=object) for x in arrays] - - -def str_cat(arr, others=None, sep=None, na_rep=None): +def cat_core(list_of_columns, sep): """ Auxiliary function for :meth:`str.cat` - If `others` is specified, this function concatenates the Series/Index - and elements of `others` element-wise. - If `others` is not being passed then all values in the Series are - concatenated in a single string with a given `sep`. - Parameters ---------- - others : list-like, or list of list-likes, optional - List-likes (or a list of them) of the same length as calling object. - If None, returns str concatenating strings of the Series. - sep : string or None, default None - If None, concatenates without any separator. - na_rep : string or None, default None - If None, NA in the series are ignored. + list_of_columns : list of numpy arrays + List of arrays to be concatenated with sep; + these arrays may not contain NaNs! + sep : string + The separator string for concatenating the columns Returns ------- - concat - ndarray containing concatenated results (if `others is not None`) - or str (if `others is None`) + nd.array + The concatenation of list_of_columns with sep """ - if sep is None: - sep = '' - - if others is not None: - arrays = _get_array_list(arr, others) - - n = _length_check(arrays) - masks = np.array([isna(x) for x in arrays]) - cats = None - - if na_rep is None: - na_mask = np.logical_or.reduce(masks, axis=0) - - result = np.empty(n, dtype=object) - np.putmask(result, na_mask, np.nan) - - notmask = ~na_mask - - tuples = zip(*[x[notmask] for x in arrays]) - cats = [sep.join(tup) for tup in tuples] - - result[notmask] = cats - else: - for i, x in enumerate(arrays): - x = np.where(masks[i], na_rep, x) - if cats is None: - cats = x - else: - cats = cats + sep + x - - result = cats - - return result - else: - arr = np.asarray(arr, dtype=object) - mask = isna(arr) - if na_rep is None and mask.any(): - if sep == '': - na_rep = '' - else: - return sep.join(arr[notna(arr)]) - return sep.join(np.where(mask, na_rep, arr)) - - -def _length_check(others): - n = None - for x in others: - try: - if n is None: - n = len(x) - elif len(x) != n: - raise ValueError('All arrays must be same length') - except TypeError: - raise ValueError('Must pass arrays containing strings to str_cat') - return n + list_with_sep = [sep] * (2 * len(list_of_columns) - 1) + list_with_sep[::2] = list_of_columns + return np.sum(list_with_sep, axis=0) def _na_map(f, arr, na_result=np.nan, dtype=object): @@ -2283,6 +2196,8 @@ def cat(self, others=None, sep=None, na_rep=None, join=None): if isinstance(others, compat.string_types): raise ValueError("Did you mean to supply a `sep` keyword?") + if sep is None: + sep = '' if isinstance(self._orig, Index): data = Series(self._orig, index=self._orig) @@ -2291,9 +2206,13 @@ def cat(self, others=None, sep=None, na_rep=None, join=None): # concatenate Series/Index with itself if no "others" if others is None: - result = str_cat(data, others=others, sep=sep, na_rep=na_rep) - return self._wrap_result(result, - use_codes=(not self._is_categorical)) + data = ensure_object(data) + na_mask = isna(data) + if na_rep is None and na_mask.any(): + data = data[~na_mask] + elif na_rep is not None and na_mask.any(): + data = np.where(na_mask, na_rep, data) + return sep.join(data) try: # turn anything in "others" into lists of Series @@ -2320,23 +2239,45 @@ def cat(self, others=None, sep=None, na_rep=None, join=None): "'outer'|'inner'|'right'`. The future default will " "be `join='left'`.", FutureWarning, stacklevel=2) + # if join is None, _get_series_list already force-aligned indexes + join = 'left' if join is None else join + # align if required - if join is not None: + if any(not data.index.equals(x.index) for x in others): # Need to add keys for uniqueness in case of duplicate columns others = concat(others, axis=1, join=(join if join == 'inner' else 'outer'), - keys=range(len(others))) + keys=range(len(others)), copy=False) data, others = data.align(others, join=join) others = [others[x] for x in others] # again list of Series - # str_cat discards index - res = str_cat(data, others=others, sep=sep, na_rep=na_rep) + all_cols = [ensure_object(x) for x in [data] + others] + na_masks = np.array([isna(x) for x in all_cols]) + union_mask = np.logical_or.reduce(na_masks, axis=0) + + if na_rep is None and union_mask.any(): + # no na_rep means NaNs for all rows where any column has a NaN + # only necessary if there are actually any NaNs + result = np.empty(len(data), dtype=object) + np.putmask(result, union_mask, np.nan) + + not_masked = ~union_mask + result[not_masked] = cat_core([x[not_masked] for x in all_cols], + sep) + elif na_rep is not None and union_mask.any(): + # fill NaNs with na_rep in case there are actually any NaNs + all_cols = [np.where(nm, na_rep, col) + for nm, col in zip(na_masks, all_cols)] + result = cat_core(all_cols, sep) + else: + # no NaNs - can just concatenate + result = cat_core(all_cols, sep) if isinstance(self._orig, Index): - res = Index(res, name=self._orig.name) + result = Index(result, name=self._orig.name) else: # Series - res = Series(res, index=data.index, name=self._orig.name) - return res + result = Series(result, index=data.index, name=self._orig.name) + return result _shared_docs['str_split'] = (""" Split strings around given separator/delimiter.
Improve TypeError message for str.cat Currently, ``` s = pd.Series(['a', 'b', 'c']) s.str.cat([1, 2, 3]) ``` yields ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\Axel Obermeier\eclipse-workspace\pddev\pandas\core\strings.py", line 2222, in cat res = str_cat(data, others=others, sep=sep, na_rep=na_rep) File "C:\Users\Axel Obermeier\eclipse-workspace\pddev\pandas\core\strings.py", line 111, in str_cat cats = [sep.join(tup) for tup in tuples] File "C:\Users\Axel Obermeier\eclipse-workspace\pddev\pandas\core\strings.py", line 111, in <listcomp> cats = [sep.join(tup) for tup in tuples] TypeError: sequence item 1: expected str instance, int found ``` IMO, this should be improved to have a better error message, and shallower stack trace.
2018-09-16T00:11:27Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\Axel Obermeier\eclipse-workspace\pddev\pandas\core\strings.py", line 2222, in cat res = str_cat(data, others=others, sep=sep, na_rep=na_rep) File "C:\Users\Axel Obermeier\eclipse-workspace\pddev\pandas\core\strings.py", line 111, in str_cat cats = [sep.join(tup) for tup in tuples] File "C:\Users\Axel Obermeier\eclipse-workspace\pddev\pandas\core\strings.py", line 111, in <listcomp> cats = [sep.join(tup) for tup in tuples] TypeError: sequence item 1: expected str instance, int found
12,164
pandas-dev/pandas
pandas-dev__pandas-22737
9e2039bad0112436e3d2adda721d40bb773f5a48
diff --git a/doc/source/whatsnew/v0.24.0.txt b/doc/source/whatsnew/v0.24.0.txt --- a/doc/source/whatsnew/v0.24.0.txt +++ b/doc/source/whatsnew/v0.24.0.txt @@ -577,6 +577,7 @@ Removal of prior version deprecations/changes - Removed the ``pandas.formats.style`` shim for :class:`pandas.io.formats.style.Styler` (:issue:`16059`) - :meth:`Categorical.searchsorted` and :meth:`Series.searchsorted` have renamed the ``v`` argument to ``value`` (:issue:`14645`) - :meth:`TimedeltaIndex.searchsorted`, :meth:`DatetimeIndex.searchsorted`, and :meth:`PeriodIndex.searchsorted` have renamed the ``key`` argument to ``value`` (:issue:`14645`) +- Removal of the previously deprecated module ``pandas.json`` (:issue:`19944`) .. _whatsnew_0240.performance: diff --git a/pandas/__init__.py b/pandas/__init__.py --- a/pandas/__init__.py +++ b/pandas/__init__.py @@ -61,9 +61,6 @@ # extension module deprecations from pandas.util._depr_module import _DeprecatedModule -json = _DeprecatedModule(deprmod='pandas.json', - moved={'dumps': 'pandas.io.json.dumps', - 'loads': 'pandas.io.json.loads'}) parser = _DeprecatedModule(deprmod='pandas.parser', removals=['na_values'], moved={'CParserError': 'pandas.errors.ParserError'}) diff --git a/pandas/json.py b/pandas/json.py deleted file mode 100644 --- a/pandas/json.py +++ /dev/null @@ -1,7 +0,0 @@ -# flake8: noqa - -import warnings -warnings.warn("The pandas.json module is deprecated and will be " - "removed in a future version. Please import from " - "pandas.io.json instead", FutureWarning, stacklevel=2) -from pandas._libs.json import dumps, loads
deprecation warning importing pandas (python2.7 only) #### Code Sample: ``` $mkvirtualenv pandas-deprecation-repro --python=python2.7 $workon pandas-deprecation-repro $pip install pandas $PYTHONWARNINGS=error::FutureWarning python -c "import pandas" Traceback (most recent call last): File "<string>", line 1, in <module> File "/Users/davidchudzicki/.virtualenvs/pandas-deprecation-repro/lib/python2.7/site-packages/pandas/__init__.py", line 84, in <module> from ._version import get_versions File "/Users/davidchudzicki/.virtualenvs/pandas-deprecation-repro/lib/python2.7/site-packages/pandas/_version.py", line 9, in <module> import json File "/Users/davidchudzicki/.virtualenvs/pandas-deprecation-repro/lib/python2.7/site-packages/pandas/json.py", line 6, in <module> "pandas.io.json instead", FutureWarning, stacklevel=2) FutureWarning: The pandas.json module is deprecated and will be removed in a future version. Please import from pandas.io.json instead ``` #### Problem description I help with a package that wants to run our tests with `PYTHONWARNINGS=error::FutureWarning`, so that we can learn about changes in our dependencies and can avoid passing on deprecation warnings to our users. When we turn this on, `import pandas` gives us an error. It looks like `_version.py` (autogenerated as part of your release process?) includes an `import json` that's interpreted (incorrectly) as referring to the old `pandas.json`. ``` $cat /Users/davidchudzicki/.virtualenvs/pandas-deprecation-repro/lib/python2.7/site-packages/pandas/_version.py # This file was generated by 'versioneer.py' (0.15) from # revision-control system data, or from the parent directory name of an # unpacked source archive. Distribution tarballs contain a pre-generated copy # of this file. from warnings import catch_warnings with catch_warnings(record=True): import json import sys version_json = ''' { "dirty": false, "error": null, "full-revisionid": "a00154dcfe5057cb3fd86653172e74b6893e337d", "version": "0.22.0" } ''' # END VERSION_JSON def get_versions(): return json.loads(version_json) ``` #### Output of ``pd.show_versions()`` ``` >>> import pandas as pd >>> pd.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 2.7.13.final.0 python-bits: 64 OS: Darwin OS-release: 16.5.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: None.None pandas: 0.22.0 pytest: None pip: 9.0.1 setuptools: 38.5.1 Cython: None numpy: 1.14.1 scipy: None pyarrow: None xarray: None IPython: None sphinx: None patsy: None dateutil: 2.6.1 pytz: 2018.3 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: None sqlalchemy: None pymysql: None psycopg2: None jinja2: None s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None ```
Huh. This only affects released versions. Adding a simplefilter to that `catch_warnings` block seemed to fix things for a local version. ```python from warnings import catch_warnings, simplefilter with catch_warnings(record=True): simplefilter('ignore', FutureWarning) import json import sys ``` these are going away soon anyhow (0.24). https://github.com/pandas-dev/pandas/pull/15537 I suppose you could edit this. Hey all - just checkin if this issue is closed? I am looking to pick something for a beginner. thank you! Is there a way to know an issue is fixed and closed? This issue is still open, but instead of fixing the warning with the solution mentioned above (https://github.com/pandas-dev/pandas/issues/19944#issuecomment-369576892), I think we would rather just remove the `pandas.json` module entirely for the next release (but PR welcome for that as well!) Hi there, is anyone currently working on this one? Can I get a try on this last suggestion from @jorisvandenbossche? Looks like no one is working on it, feel free to take it @vitoriahmc. Let us know if you need help getting started.
2018-09-17T22:15:15Z
[]
[]
Traceback (most recent call last): File "<string>", line 1, in <module> File "/Users/davidchudzicki/.virtualenvs/pandas-deprecation-repro/lib/python2.7/site-packages/pandas/__init__.py", line 84, in <module> from ._version import get_versions File "/Users/davidchudzicki/.virtualenvs/pandas-deprecation-repro/lib/python2.7/site-packages/pandas/_version.py", line 9, in <module> import json File "/Users/davidchudzicki/.virtualenvs/pandas-deprecation-repro/lib/python2.7/site-packages/pandas/json.py", line 6, in <module> "pandas.io.json instead", FutureWarning, stacklevel=2) FutureWarning: The pandas.json module is deprecated and will be removed in a future version. Please import from pandas.io.json instead
12,165
pandas-dev/pandas
pandas-dev__pandas-22804
91802fb0accde031c3b6aca040a8b533a193fef6
diff --git a/doc/source/whatsnew/v0.24.0.rst b/doc/source/whatsnew/v0.24.0.rst --- a/doc/source/whatsnew/v0.24.0.rst +++ b/doc/source/whatsnew/v0.24.0.rst @@ -1495,6 +1495,7 @@ Notice how we now instead output ``np.nan`` itself instead of a stringified form - Bug in :meth:`DataFrame.to_dict` when the resulting dict contains non-Python scalars in the case of numeric data (:issue:`23753`) - :func:`DataFrame.to_string()`, :func:`DataFrame.to_html()`, :func:`DataFrame.to_latex()` will correctly format output when a string is passed as the ``float_format`` argument (:issue:`21625`, :issue:`22270`) - Bug in :func:`read_csv` that caused it to raise ``OverflowError`` when trying to use 'inf' as ``na_value`` with integer index column (:issue:`17128`) +- Bug in :func:`json_normalize` that caused it to raise ``TypeError`` when two consecutive elements of ``record_path`` are dicts (:issue:`22706`) Plotting ^^^^^^^^ diff --git a/pandas/io/json/normalize.py b/pandas/io/json/normalize.py --- a/pandas/io/json/normalize.py +++ b/pandas/io/json/normalize.py @@ -229,6 +229,8 @@ def _pull_field(js, spec): meta_keys = [sep.join(val) for val in meta] def _recursive_extract(data, path, seen_meta, level=0): + if isinstance(data, dict): + data = [data] if len(path) > 1: for obj in data: for val, key in zip(meta, meta_keys):
json_normalize raises TypeError exception #### Code Sample, a copy-pastable example if possible ```python from pandas.io.json import json_normalize d = { 'name': 'alan smith', 'info': { 'phones': [{ 'area': 111, 'number': 2222 }, { 'area': 333, 'number': 4444 }] } } json_normalize(d, record_path=["info", "phones"]) ``` #### Problem description The above code throws `TypeError` exception: ``` Traceback (most recent call last): File ".\test.py", line 15, in <module> json_normalize(d, record_path = ["info", "phones"]) File "C:\Python36\lib\site-packages\pandas\io\json\normalize.py", line 262, in json_normalize _recursive_extract(data, record_path, {}, level=0) File "C:\Python36\lib\site-packages\pandas\io\json\normalize.py", line 235, in _recursive_extract seen_meta, level=level + 1) File "C:\Python36\lib\site-packages\pandas\io\json\normalize.py", line 238, in _recursive_extract recs = _pull_field(obj, path[0]) File "C:\Python36\lib\site-packages\pandas\io\json\normalize.py", line 185, in _pull_field result = result[spec] TypeError: string indices must be integers ``` #### Expected Output | |area|number| |-|-|-| |0|111|2222| |1|333|4444| #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.6.4.final.0 python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 62 Stepping 4, GenuineIntel byteorder: little LC_ALL: None LANG: None LOCALE: None.None pandas: 0.23.4 pytest: 3.6.2 pip: 18.0 setuptools: 40.2.0 Cython: None numpy: 1.14.5 scipy: None pyarrow: None xarray: None IPython: 6.3.1 sphinx: 1.5.5 patsy: None dateutil: 2.7.3 pytz: 2018.5 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: 4.6.0 html5lib: 1.0.1 sqlalchemy: None pymysql: None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
Thanks for the report - investigation and PRs are always welcome! If `record_path` points to a nested dict of dicts, after one `_recursive_extract`, `data` is the inner dict (`{'phones': ...}` in the example) When `data` is a dict, the for loop [here](https://github.com/pandas-dev/pandas/blob/1c500fb7b3fa08c163e13375d01b9607fcdac0d6/pandas/io/json/normalize.py#L237 ) only iterates over the keys. Do we assume that `data` is always a list? If that is the case, there are two options: 1. Turn data into a list if it is a dict (similar to line 194). 2. Hoist the for loop into a method. If data is not a list call this method instead of iterating over the elements. I prefer (2). Let me know what you think. I can create a PR. @WillAyd : What do you think of the proposed fix? I'll create a PR if you think it's the right thing to do. > Do we assume that data is always a list? If that is the case, there are two options: The docstring claims that either a dict or list of dicts is allowed. The only example with a dict doesn't really do any normalization though: ``` >>> data = {'A': [1, 2]} >>> json_normalize(data, 'A', record_prefix='Prefix.') Prefix.0 0 1 1 2 ``` I'm inclined to do whatever is easiest to maintain in the long-run, though it's not clear what that is in this case. I don't think we should assume that it is always a list. In my mind the behavior for `record_path` should mirror whatever happens at the top level but just resolving that at the specified `record_path`. These calls have an equivalent return: ```python In [6]: json_normalize({'foo': 1, 'bar': 2, 'baz': 3}) Out[6]: bar baz foo 0 2 3 1 In [7]: json_normalize([{'foo': 1, 'bar': 2, 'baz': 3}]) Out[7]: bar baz foo 0 2 3 1 ``` So I would assume the following to also be equivalent (though currently failing) ```python >>> json_normalize({'info': {'phones': {'foo': 1, 'bar': 2, 'baz': 3}}}, record_path=['info', 'phones']) >>> json_normalize({'info': {'phones': [{'foo': 1, 'bar': 2, 'baz': 3}]}}, record_path=['info', 'phones']) To be clear, I asked about `data` in [`_recursive_extract`](https://github.com/pandas-dev/pandas/blob/1c500fb7b3fa08c163e13375d01b9607fcdac0d6/pandas/io/json/normalize.py#L227) (not the parameter `data` in `json_normalize`). I agree with @WillAyd that the list assumption inside `_recursive_extract` is wrong. Inside this function `data` can be anything (list, dict, value). That's why my proposed fix above has a check to deal with non-list type. The proposed fix is as follows: ```python def _extract(data, path, seen_meta, level): for obj in data: # the body of else clause at L237 ... def _recursive_extract(data, path, seen_meta, level=0): if len(path) > 1: # unchanged else: if isinstance(data, list): for obj in data: # similar to the current version _extract(obj, path, seen_meta, level) else: _extract(data, path, seen_meta, level) # this is new to deal with non-list data ``` Note that the current version is ```python def _recursive_extract(data, path, seen_meta, level=0): if len(path) > 1: # unchanged else: for obj in data: _extract(obj, path, seen_meta, level) ``` which raises exception when `data` is not a list. @vuminhle feel free to submit a PR for code review
2018-09-22T02:59:21Z
[]
[]
Traceback (most recent call last): File ".\test.py", line 15, in <module> json_normalize(d, record_path = ["info", "phones"]) File "C:\Python36\lib\site-packages\pandas\io\json\normalize.py", line 262, in json_normalize _recursive_extract(data, record_path, {}, level=0) File "C:\Python36\lib\site-packages\pandas\io\json\normalize.py", line 235, in _recursive_extract seen_meta, level=level + 1) File "C:\Python36\lib\site-packages\pandas\io\json\normalize.py", line 238, in _recursive_extract recs = _pull_field(obj, path[0]) File "C:\Python36\lib\site-packages\pandas\io\json\normalize.py", line 185, in _pull_field result = result[spec] TypeError: string indices must be integers
12,174
pandas-dev/pandas
pandas-dev__pandas-22825
2f1b842119bc4d5242b587b62bde71d8f7ef19f8
diff --git a/doc/source/whatsnew/v0.24.0.txt b/doc/source/whatsnew/v0.24.0.txt --- a/doc/source/whatsnew/v0.24.0.txt +++ b/doc/source/whatsnew/v0.24.0.txt @@ -812,6 +812,7 @@ Reshaping - Bug in :meth:`Series.replace` and meth:`DataFrame.replace` when dict is used as the ``to_replace`` value and one key in the dict is is another key's value, the results were inconsistent between using integer key and using string key (:issue:`20656`) - Bug in :meth:`DataFrame.drop_duplicates` for empty ``DataFrame`` which incorrectly raises an error (:issue:`20516`) - Bug in :func:`pandas.wide_to_long` when a string is passed to the stubnames argument and a column name is a substring of that stubname (:issue:`22468`) +- Bug in :func:`merge` when merging ``datetime64[ns, tz]`` data that contained a DST transition (:issue:`18885`) Build Changes ^^^^^^^^^^^^^ diff --git a/pandas/core/indexes/datetimelike.py b/pandas/core/indexes/datetimelike.py --- a/pandas/core/indexes/datetimelike.py +++ b/pandas/core/indexes/datetimelike.py @@ -277,7 +277,7 @@ def _evaluate_compare(self, other, op): except TypeError: return result - def _ensure_localized(self, result, ambiguous='raise'): + def _ensure_localized(self, arg, ambiguous='raise', from_utc=False): """ ensure that we are re-localized @@ -286,9 +286,11 @@ def _ensure_localized(self, result, ambiguous='raise'): Parameters ---------- - result : DatetimeIndex / i8 ndarray - ambiguous : str, bool, or bool-ndarray - default 'raise' + arg : DatetimeIndex / i8 ndarray + ambiguous : str, bool, or bool-ndarray, default 'raise' + from_utc : bool, default False + If True, localize the i8 ndarray to UTC first before converting to + the appropriate tz. If False, localize directly to the tz. Returns ------- @@ -297,10 +299,13 @@ def _ensure_localized(self, result, ambiguous='raise'): # reconvert to local tz if getattr(self, 'tz', None) is not None: - if not isinstance(result, ABCIndexClass): - result = self._simple_new(result) - result = result.tz_localize(self.tz, ambiguous=ambiguous) - return result + if not isinstance(arg, ABCIndexClass): + arg = self._simple_new(arg) + if from_utc: + arg = arg.tz_localize('UTC').tz_convert(self.tz) + else: + arg = arg.tz_localize(self.tz, ambiguous=ambiguous) + return arg def _box_values_as_index(self): """ @@ -622,11 +627,11 @@ def repeat(self, repeats, *args, **kwargs): @Appender(_index_shared_docs['where'] % _index_doc_kwargs) def where(self, cond, other=None): - other = _ensure_datetimelike_to_i8(other) - values = _ensure_datetimelike_to_i8(self) + other = _ensure_datetimelike_to_i8(other, to_utc=True) + values = _ensure_datetimelike_to_i8(self, to_utc=True) result = np.where(cond, values, other).astype('i8') - result = self._ensure_localized(result) + result = self._ensure_localized(result, from_utc=True) return self._shallow_copy(result, **self._get_attributes_dict()) @@ -695,23 +700,37 @@ def astype(self, dtype, copy=True): return super(DatetimeIndexOpsMixin, self).astype(dtype, copy=copy) -def _ensure_datetimelike_to_i8(other): - """ helper for coercing an input scalar or array to i8 """ +def _ensure_datetimelike_to_i8(other, to_utc=False): + """ + helper for coercing an input scalar or array to i8 + + Parameters + ---------- + other : 1d array + to_utc : bool, default False + If True, convert the values to UTC before extracting the i8 values + If False, extract the i8 values directly. + + Returns + ------- + i8 1d array + """ if is_scalar(other) and isna(other): - other = iNaT + return iNaT elif isinstance(other, ABCIndexClass): # convert tz if needed if getattr(other, 'tz', None) is not None: - other = other.tz_localize(None).asi8 - else: - other = other.asi8 + if to_utc: + other = other.tz_convert('UTC') + else: + other = other.tz_localize(None) else: try: - other = np.array(other, copy=False).view('i8') + return np.array(other, copy=False).view('i8') except TypeError: # period array cannot be coerces to int - other = Index(other).asi8 - return other + other = Index(other) + return other.asi8 def wrap_arithmetic_op(self, other, result):
AmbiguousTimeError merging two timezone-aware DataFrames with DST change When merging two DataFrames by a timezone-aware datetime column, if the datetime values doesn't include a DST change, there's no problem: ```python df1 = pd.DataFrame([pd.to_datetime('2017-10-30 02:00:00+01:00'), pd.to_datetime('2017-10-30 03:00:00+01:00'), pd.to_datetime('2017-10-30 04:00:00+01:00')],columns=['date']) df1['date'] = df1['date'].dt.tz_localize('UTC').dt.tz_convert('Europe/Madrid') df1['value'] = 1 df2 = pd.DataFrame([pd.to_datetime('2017-10-30 04:00:00+01:00'), pd.to_datetime('2017-10-30 05:00:00+01:00'), pd.to_datetime('2017-10-30 06:00:00+01:00')],columns=['date']) df2['date'] = df2['date'].dt.tz_localize('UTC').dt.tz_convert('Europe/Madrid') df2['value'] = 2 pd.merge(df1, df2, how='outer', on='date') ``` ### Output ``` date value_x value_y 0 2017-10-30 02:00:00+01:00 1.0 NaN 1 2017-10-30 03:00:00+01:00 1.0 NaN 2 2017-10-30 04:00:00+01:00 1.0 2.0 3 2017-10-30 05:00:00+01:00 NaN 2.0 4 2017-10-30 06:00:00+01:00 NaN 2.0 ``` This is correct. But if the datetime values include a date with DST change, we get an AmbiguousTimeError exception: ```python df1 = pd.DataFrame([pd.to_datetime('2017-10-29 02:00:00+02:00'), pd.to_datetime('2017-10-29 02:00:00+01:00'), pd.to_datetime('2017-10-29 03:00:00+01:00')],columns=['date']) df1['date'] = df1['date'].dt.tz_localize('UTC').dt.tz_convert('Europe/Madrid') df1['value'] = 1 df2 = pd.DataFrame([pd.to_datetime('2017-10-29 03:00:00+01:00'), pd.to_datetime('2017-10-29 04:00:00+01:00'), pd.to_datetime('2017-10-29 05:00:00+01:00')],columns=['date']) df2['date'] = df2['date'].dt.tz_localize('UTC').dt.tz_convert('Europe/Madrid') df2['value'] = 2 pd.merge(df1, df2, how='outer', on='date') ``` ### Expected output ``` date value_x value_y 0 2017-10-29 02:00:00+02:00 1.0 NaN 1 2017-10-29 02:00:00+01:00 1.0 NaN 2 2017-10-29 03:00:00+01:00 1.0 2.0 3 2017-10-29 04:00:00+01:00 NaN 2.0 4 2017-10-29 05:00:00+01:00 NaN 2.0 ``` ### Actual output ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "(...)/venv/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 58, in merge return op.get_result() File "(...)//venv/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 604, in get_result self._maybe_add_join_keys(result, left_indexer, right_indexer) File "(...)//venv/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 715, in _maybe_add_join_keys key_col = Index(lvals).where(~mask, rvals) File "(...)//venv/lib/python3.6/site-packages/pandas/core/indexes/datetimelike.py", line 809, in where result = self._ensure_localized(result) File "(...)//venv/lib/python3.6/site-packages/pandas/core/indexes/datetimelike.py", line 230, in _ensure_localized result = result.tz_localize(self.tz) File "(...)//venv/lib/python3.6/site-packages/pandas/util/_decorators.py", line 118, in wrapper return func(*args, **kwargs) File "(...)//venv/lib/python3.6/site-packages/pandas/core/indexes/datetimes.py", line 1858, in tz_localize errors=errors) File "pandas/_libs/tslib.pyx", line 3593, in pandas._libs.tslib.tz_localize_to_utc pytz.exceptions.AmbiguousTimeError: Cannot infer dst time from Timestamp('2017-10-29 02:00:00'), try using the 'ambiguous' argument ``` #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.6.2.final.0 python-bits: 64 OS: Darwin OS-release: 17.3.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: es_ES.UTF-8 LOCALE: es_ES.UTF-8 pandas: 0.21.1 pytest: 3.2.5 pip: 9.0.1 setuptools: 36.8.0 Cython: None numpy: 1.13.3 scipy: None pyarrow: None xarray: None IPython: None sphinx: 1.5.3 patsy: None dateutil: 2.6.1 pytz: 2017.3 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: 0.9.6 lxml: None bs4: None html5lib: None sqlalchemy: None pymysql: None psycopg2: None jinja2: 2.9.6 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
yeah, we are joining indicies and do a ``.where()`` on them. we drop the tz, do the op in i8, then localize to the original zone. what we need is an attribute for ``Timestamp`` and ``DatetimeIndex`` like ``is_ambiguous``, then we could record the ambiguous so we can recreate properly. interested in a PR? cc @jbrockmendel I'd love to, but I don't know the pandas/numpy internals, and `merge()` doesn't sound like an easy place to start :-) Maybe with some guidance...
2018-09-24T23:44:10Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "(...)/venv/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 58, in merge return op.get_result() File "(...)//venv/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 604, in get_result self._maybe_add_join_keys(result, left_indexer, right_indexer) File "(...)//venv/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 715, in _maybe_add_join_keys key_col = Index(lvals).where(~mask, rvals) File "(...)//venv/lib/python3.6/site-packages/pandas/core/indexes/datetimelike.py", line 809, in where result = self._ensure_localized(result) File "(...)//venv/lib/python3.6/site-packages/pandas/core/indexes/datetimelike.py", line 230, in _ensure_localized result = result.tz_localize(self.tz) File "(...)//venv/lib/python3.6/site-packages/pandas/util/_decorators.py", line 118, in wrapper return func(*args, **kwargs) File "(...)//venv/lib/python3.6/site-packages/pandas/core/indexes/datetimes.py", line 1858, in tz_localize errors=errors) File "pandas/_libs/tslib.pyx", line 3593, in pandas._libs.tslib.tz_localize_to_utc pytz.exceptions.AmbiguousTimeError: Cannot infer dst time from Timestamp('2017-10-29 02:00:00'), try using the 'ambiguous' argument
12,180
pandas-dev/pandas
pandas-dev__pandas-22880
e4b67ca725db373afe8f4565672eb16e1e8e3b31
diff --git a/doc/source/whatsnew/v0.24.0.txt b/doc/source/whatsnew/v0.24.0.txt --- a/doc/source/whatsnew/v0.24.0.txt +++ b/doc/source/whatsnew/v0.24.0.txt @@ -510,6 +510,88 @@ Previous Behavior: 0 0 NaT +.. _whatsnew_0240.api.dataframe_cmp_broadcasting: + +DataFrame Comparison Operations Broadcasting Changes +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Previously, the broadcasting behavior of :class:`DataFrame` comparison +operations (``==``, ``!=``, ...) was inconsistent with the behavior of +arithmetic operations (``+``, ``-``, ...). The behavior of the comparison +operations has been changed to match the arithmetic operations in these cases. +(:issue:`22880`) + +The affected cases are: + +- operating against a 2-dimensional ``np.ndarray`` with either 1 row or 1 column will now broadcast the same way a ``np.ndarray`` would (:issue:`23000`). +- a list or tuple with length matching the number of rows in the :class:`DataFrame` will now raise ``ValueError`` instead of operating column-by-column (:issue:`22880`. +- a list or tuple with length matching the number of columns in the :class:`DataFrame` will now operate row-by-row instead of raising ``ValueError`` (:issue:`22880`). + +Previous Behavior: + +.. code-block:: ipython + + In [3]: arr = np.arange(6).reshape(3, 2) + In [4]: df = pd.DataFrame(arr) + + In [5]: df == arr[[0], :] + ...: # comparison previously broadcast where arithmetic would raise + Out[5]: + 0 1 + 0 True True + 1 False False + 2 False False + In [6]: df + arr[[0], :] + ... + ValueError: Unable to coerce to DataFrame, shape must be (3, 2): given (1, 2) + + In [7]: df == (1, 2) + ...: # length matches number of columns; + ...: # comparison previously raised where arithmetic would broadcast + ... + ValueError: Invalid broadcasting comparison [(1, 2)] with block values + In [8]: df + (1, 2) + Out[8]: + 0 1 + 0 1 3 + 1 3 5 + 2 5 7 + + In [9]: df == (1, 2, 3) + ...: # length matches number of rows + ...: # comparison previously broadcast where arithmetic would raise + Out[9]: + 0 1 + 0 False True + 1 True False + 2 False False + In [10]: df + (1, 2, 3) + ... + ValueError: Unable to coerce to Series, length must be 2: given 3 + +*Current Behavior*: + +.. ipython:: python + :okexcept: + + arr = np.arange(6).reshape(3, 2) + df = pd.DataFrame(arr) + +.. ipython:: python + # Comparison operations and arithmetic operations both broadcast. + df == arr[[0], :] + df + arr[[0], :] + +.. ipython:: python + # Comparison operations and arithmetic operations both broadcast. + df == (1, 2) + df + (1, 2) + +.. ipython:: python + :okexcept: + # Comparison operations and arithmetic opeartions both raise ValueError. + df == (1, 2, 3) + df + (1, 2, 3) + .. _whatsnew_0240.api.dataframe_arithmetic_broadcasting: diff --git a/pandas/core/frame.py b/pandas/core/frame.py --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -4948,13 +4948,8 @@ def _combine_match_columns(self, other, func, level=None, try_cast=True): return ops.dispatch_to_series(left, right, func, axis="columns") def _combine_const(self, other, func, errors='raise', try_cast=True): - if lib.is_scalar(other) or np.ndim(other) == 0: - return ops.dispatch_to_series(self, other, func) - - new_data = self._data.eval(func=func, other=other, - errors=errors, - try_cast=try_cast) - return self._constructor(new_data) + assert lib.is_scalar(other) or np.ndim(other) == 0 + return ops.dispatch_to_series(self, other, func) def combine(self, other, func, fill_value=None, overwrite=True): """ diff --git a/pandas/core/internals/blocks.py b/pandas/core/internals/blocks.py --- a/pandas/core/internals/blocks.py +++ b/pandas/core/internals/blocks.py @@ -1313,145 +1313,6 @@ def shift(self, periods, axis=0, mgr=None): return [self.make_block(new_values)] - def eval(self, func, other, errors='raise', try_cast=False, mgr=None): - """ - evaluate the block; return result block from the result - - Parameters - ---------- - func : how to combine self, other - other : a ndarray/object - errors : str, {'raise', 'ignore'}, default 'raise' - - ``raise`` : allow exceptions to be raised - - ``ignore`` : suppress exceptions. On error return original object - - try_cast : try casting the results to the input type - - Returns - ------- - a new block, the result of the func - """ - orig_other = other - values = self.values - - other = getattr(other, 'values', other) - - # make sure that we can broadcast - is_transposed = False - if hasattr(other, 'ndim') and hasattr(values, 'ndim'): - if values.ndim != other.ndim: - is_transposed = True - else: - if values.shape == other.shape[::-1]: - is_transposed = True - elif values.shape[0] == other.shape[-1]: - is_transposed = True - else: - # this is a broadcast error heree - raise ValueError( - "cannot broadcast shape [{t_shape}] with " - "block values [{oth_shape}]".format( - t_shape=values.T.shape, oth_shape=other.shape)) - - transf = (lambda x: x.T) if is_transposed else (lambda x: x) - - # coerce/transpose the args if needed - try: - values, values_mask, other, other_mask = self._try_coerce_args( - transf(values), other) - except TypeError: - block = self.coerce_to_target_dtype(orig_other) - return block.eval(func, orig_other, - errors=errors, - try_cast=try_cast, mgr=mgr) - - # get the result, may need to transpose the other - def get_result(other): - - # avoid numpy warning of comparisons again None - if other is None: - result = not func.__name__ == 'eq' - - # avoid numpy warning of elementwise comparisons to object - elif is_numeric_v_string_like(values, other): - result = False - - # avoid numpy warning of elementwise comparisons - elif func.__name__ == 'eq': - if is_list_like(other) and not isinstance(other, np.ndarray): - other = np.asarray(other) - - # if we can broadcast, then ok - if values.shape[-1] != other.shape[-1]: - return False - result = func(values, other) - else: - result = func(values, other) - - # mask if needed - if isinstance(values_mask, np.ndarray) and values_mask.any(): - result = result.astype('float64', copy=False) - result[values_mask] = np.nan - if other_mask is True: - result = result.astype('float64', copy=False) - result[:] = np.nan - elif isinstance(other_mask, np.ndarray) and other_mask.any(): - result = result.astype('float64', copy=False) - result[other_mask.ravel()] = np.nan - - return result - - # error handler if we have an issue operating with the function - def handle_error(): - - if errors == 'raise': - # The 'detail' variable is defined in outer scope. - raise TypeError( - 'Could not operate {other!r} with block values ' - '{detail!s}'.format(other=other, detail=detail)) # noqa - else: - # return the values - result = np.empty(values.shape, dtype='O') - result.fill(np.nan) - return result - - # get the result - try: - with np.errstate(all='ignore'): - result = get_result(other) - - # if we have an invalid shape/broadcast error - # GH4576, so raise instead of allowing to pass through - except ValueError as detail: - raise - except Exception as detail: - result = handle_error() - - # technically a broadcast error in numpy can 'work' by returning a - # boolean False - if not isinstance(result, np.ndarray): - if not isinstance(result, np.ndarray): - - # differentiate between an invalid ndarray-ndarray comparison - # and an invalid type comparison - if isinstance(values, np.ndarray) and is_list_like(other): - raise ValueError( - 'Invalid broadcasting comparison [{other!r}] with ' - 'block values'.format(other=other)) - - raise TypeError('Could not compare [{other!r}] ' - 'with block values'.format(other=other)) - - # transpose if needed - result = transf(result) - - # try to cast if requested - if try_cast: - result = self._try_cast_result(result) - - result = _block_shape(result, ndim=self.ndim) - return [self.make_block(result)] - def where(self, other, cond, align=True, errors='raise', try_cast=False, axis=0, transpose=False, mgr=None): """ diff --git a/pandas/core/internals/managers.py b/pandas/core/internals/managers.py --- a/pandas/core/internals/managers.py +++ b/pandas/core/internals/managers.py @@ -373,9 +373,6 @@ def apply(self, f, axes=None, filter=None, do_integrity_check=False, align_keys = ['new', 'mask'] else: align_keys = ['mask'] - elif f == 'eval': - align_copy = False - align_keys = ['other'] elif f == 'fillna': # fillna internally does putmask, maybe it's better to do this # at mgr, not block level? @@ -511,9 +508,6 @@ def isna(self, func, **kwargs): def where(self, **kwargs): return self.apply('where', **kwargs) - def eval(self, **kwargs): - return self.apply('eval', **kwargs) - def quantile(self, **kwargs): return self.reduction('quantile', **kwargs) diff --git a/pandas/core/ops.py b/pandas/core/ops.py --- a/pandas/core/ops.py +++ b/pandas/core/ops.py @@ -1934,6 +1934,9 @@ def _comp_method_FRAME(cls, func, special): @Appender('Wrapper for comparison method {name}'.format(name=op_name)) def f(self, other): + + other = _align_method_FRAME(self, other, axis=None) + if isinstance(other, ABCDataFrame): # Another DataFrame if not self._indexed_same(other):
Mixed-dtype dataframe comparison with array raises incorrectly This came up while going through some of statsmodels tests: ``` arr = np.random.randn(3, 2) arr[:, 0] = [1, 2, 3] df = pd.DataFrame(arr) df[0] = df[0].astype(int) >>> df == arr Traceback (most recent call last): File "<stdin>", line 1, in <module> File "pandas/core/ops.py", line 1572, in f try_cast=False) File "pandas/core/frame.py", line 4021, in _combine_const try_cast=try_cast) File "pandas/core/internals.py", line 3644, in eval return self.apply('eval', **kwargs) File "pandas/core/internals.py", line 3538, in apply applied = getattr(b, f)(**kwargs) File "pandas/core/internals.py", line 1348, in eval t_shape=values.T.shape, oth_shape=other.shape)) ValueError: cannot broadcast shape [(3, 1)] with block values [(3, 2)] ``` I'd expect this to wrap the ndarray in a frame and return an all-True frame.
2018-09-28T18:53:16Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "pandas/core/ops.py", line 1572, in f try_cast=False) File "pandas/core/frame.py", line 4021, in _combine_const try_cast=try_cast) File "pandas/core/internals.py", line 3644, in eval return self.apply('eval', **kwargs) File "pandas/core/internals.py", line 3538, in apply applied = getattr(b, f)(**kwargs) File "pandas/core/internals.py", line 1348, in eval t_shape=values.T.shape, oth_shape=other.shape)) ValueError: cannot broadcast shape [(3, 1)] with block values [(3, 2)]
12,189
pandas-dev/pandas
pandas-dev__pandas-23132
5e06c84c8994b625407293ff6c80b8d9ddaaca5d
diff --git a/doc/source/whatsnew/v0.24.0.txt b/doc/source/whatsnew/v0.24.0.txt --- a/doc/source/whatsnew/v0.24.0.txt +++ b/doc/source/whatsnew/v0.24.0.txt @@ -567,6 +567,88 @@ Previous Behavior: 0 0 NaT +.. _whatsnew_0240.api.dataframe_cmp_broadcasting: + +DataFrame Comparison Operations Broadcasting Changes +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Previously, the broadcasting behavior of :class:`DataFrame` comparison +operations (``==``, ``!=``, ...) was inconsistent with the behavior of +arithmetic operations (``+``, ``-``, ...). The behavior of the comparison +operations has been changed to match the arithmetic operations in these cases. +(:issue:`22880`) + +The affected cases are: + +- operating against a 2-dimensional ``np.ndarray`` with either 1 row or 1 column will now broadcast the same way a ``np.ndarray`` would (:issue:`23000`). +- a list or tuple with length matching the number of rows in the :class:`DataFrame` will now raise ``ValueError`` instead of operating column-by-column (:issue:`22880`. +- a list or tuple with length matching the number of columns in the :class:`DataFrame` will now operate row-by-row instead of raising ``ValueError`` (:issue:`22880`). + +Previous Behavior: + +.. code-block:: ipython + + In [3]: arr = np.arange(6).reshape(3, 2) + In [4]: df = pd.DataFrame(arr) + + In [5]: df == arr[[0], :] + ...: # comparison previously broadcast where arithmetic would raise + Out[5]: + 0 1 + 0 True True + 1 False False + 2 False False + In [6]: df + arr[[0], :] + ... + ValueError: Unable to coerce to DataFrame, shape must be (3, 2): given (1, 2) + + In [7]: df == (1, 2) + ...: # length matches number of columns; + ...: # comparison previously raised where arithmetic would broadcast + ... + ValueError: Invalid broadcasting comparison [(1, 2)] with block values + In [8]: df + (1, 2) + Out[8]: + 0 1 + 0 1 3 + 1 3 5 + 2 5 7 + + In [9]: df == (1, 2, 3) + ...: # length matches number of rows + ...: # comparison previously broadcast where arithmetic would raise + Out[9]: + 0 1 + 0 False True + 1 True False + 2 False False + In [10]: df + (1, 2, 3) + ... + ValueError: Unable to coerce to Series, length must be 2: given 3 + +*Current Behavior*: + +.. ipython:: python + :okexcept: + + arr = np.arange(6).reshape(3, 2) + df = pd.DataFrame(arr) + +.. ipython:: python + # Comparison operations and arithmetic operations both broadcast. + df == arr[[0], :] + df + arr[[0], :] + +.. ipython:: python + # Comparison operations and arithmetic operations both broadcast. + df == (1, 2) + df + (1, 2) + +.. ipython:: python + :okexcept: + # Comparison operations and arithmetic opeartions both raise ValueError. + df == (1, 2, 3) + df + (1, 2, 3) + .. _whatsnew_0240.api.dataframe_arithmetic_broadcasting: diff --git a/pandas/core/frame.py b/pandas/core/frame.py --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -4950,13 +4950,8 @@ def _combine_match_columns(self, other, func, level=None, try_cast=True): return ops.dispatch_to_series(left, right, func, axis="columns") def _combine_const(self, other, func, errors='raise', try_cast=True): - if lib.is_scalar(other) or np.ndim(other) == 0: - return ops.dispatch_to_series(self, other, func) - - new_data = self._data.eval(func=func, other=other, - errors=errors, - try_cast=try_cast) - return self._constructor(new_data) + assert lib.is_scalar(other) or np.ndim(other) == 0 + return ops.dispatch_to_series(self, other, func) def combine(self, other, func, fill_value=None, overwrite=True): """ diff --git a/pandas/core/internals/blocks.py b/pandas/core/internals/blocks.py --- a/pandas/core/internals/blocks.py +++ b/pandas/core/internals/blocks.py @@ -1318,145 +1318,6 @@ def shift(self, periods, axis=0, mgr=None): return [self.make_block(new_values)] - def eval(self, func, other, errors='raise', try_cast=False, mgr=None): - """ - evaluate the block; return result block from the result - - Parameters - ---------- - func : how to combine self, other - other : a ndarray/object - errors : str, {'raise', 'ignore'}, default 'raise' - - ``raise`` : allow exceptions to be raised - - ``ignore`` : suppress exceptions. On error return original object - - try_cast : try casting the results to the input type - - Returns - ------- - a new block, the result of the func - """ - orig_other = other - values = self.values - - other = getattr(other, 'values', other) - - # make sure that we can broadcast - is_transposed = False - if hasattr(other, 'ndim') and hasattr(values, 'ndim'): - if values.ndim != other.ndim: - is_transposed = True - else: - if values.shape == other.shape[::-1]: - is_transposed = True - elif values.shape[0] == other.shape[-1]: - is_transposed = True - else: - # this is a broadcast error heree - raise ValueError( - "cannot broadcast shape [{t_shape}] with " - "block values [{oth_shape}]".format( - t_shape=values.T.shape, oth_shape=other.shape)) - - transf = (lambda x: x.T) if is_transposed else (lambda x: x) - - # coerce/transpose the args if needed - try: - values, values_mask, other, other_mask = self._try_coerce_args( - transf(values), other) - except TypeError: - block = self.coerce_to_target_dtype(orig_other) - return block.eval(func, orig_other, - errors=errors, - try_cast=try_cast, mgr=mgr) - - # get the result, may need to transpose the other - def get_result(other): - - # avoid numpy warning of comparisons again None - if other is None: - result = not func.__name__ == 'eq' - - # avoid numpy warning of elementwise comparisons to object - elif is_numeric_v_string_like(values, other): - result = False - - # avoid numpy warning of elementwise comparisons - elif func.__name__ == 'eq': - if is_list_like(other) and not isinstance(other, np.ndarray): - other = np.asarray(other) - - # if we can broadcast, then ok - if values.shape[-1] != other.shape[-1]: - return False - result = func(values, other) - else: - result = func(values, other) - - # mask if needed - if isinstance(values_mask, np.ndarray) and values_mask.any(): - result = result.astype('float64', copy=False) - result[values_mask] = np.nan - if other_mask is True: - result = result.astype('float64', copy=False) - result[:] = np.nan - elif isinstance(other_mask, np.ndarray) and other_mask.any(): - result = result.astype('float64', copy=False) - result[other_mask.ravel()] = np.nan - - return result - - # error handler if we have an issue operating with the function - def handle_error(): - - if errors == 'raise': - # The 'detail' variable is defined in outer scope. - raise TypeError( - 'Could not operate {other!r} with block values ' - '{detail!s}'.format(other=other, detail=detail)) # noqa - else: - # return the values - result = np.empty(values.shape, dtype='O') - result.fill(np.nan) - return result - - # get the result - try: - with np.errstate(all='ignore'): - result = get_result(other) - - # if we have an invalid shape/broadcast error - # GH4576, so raise instead of allowing to pass through - except ValueError as detail: - raise - except Exception as detail: - result = handle_error() - - # technically a broadcast error in numpy can 'work' by returning a - # boolean False - if not isinstance(result, np.ndarray): - if not isinstance(result, np.ndarray): - - # differentiate between an invalid ndarray-ndarray comparison - # and an invalid type comparison - if isinstance(values, np.ndarray) and is_list_like(other): - raise ValueError( - 'Invalid broadcasting comparison [{other!r}] with ' - 'block values'.format(other=other)) - - raise TypeError('Could not compare [{other!r}] ' - 'with block values'.format(other=other)) - - # transpose if needed - result = transf(result) - - # try to cast if requested - if try_cast: - result = self._try_cast_result(result) - - result = _block_shape(result, ndim=self.ndim) - return [self.make_block(result)] - def where(self, other, cond, align=True, errors='raise', try_cast=False, axis=0, transpose=False, mgr=None): """ diff --git a/pandas/core/internals/managers.py b/pandas/core/internals/managers.py --- a/pandas/core/internals/managers.py +++ b/pandas/core/internals/managers.py @@ -373,9 +373,6 @@ def apply(self, f, axes=None, filter=None, do_integrity_check=False, align_keys = ['new', 'mask'] else: align_keys = ['mask'] - elif f == 'eval': - align_copy = False - align_keys = ['other'] elif f == 'fillna': # fillna internally does putmask, maybe it's better to do this # at mgr, not block level? @@ -511,9 +508,6 @@ def isna(self, func, **kwargs): def where(self, **kwargs): return self.apply('where', **kwargs) - def eval(self, **kwargs): - return self.apply('eval', **kwargs) - def quantile(self, **kwargs): return self.reduction('quantile', **kwargs) diff --git a/pandas/core/ops.py b/pandas/core/ops.py --- a/pandas/core/ops.py +++ b/pandas/core/ops.py @@ -1929,6 +1929,9 @@ def _comp_method_FRAME(cls, func, special): @Appender('Wrapper for comparison method {name}'.format(name=op_name)) def f(self, other): + + other = _align_method_FRAME(self, other, axis=None) + if isinstance(other, ABCDataFrame): # Another DataFrame if not self._indexed_same(other):
Mixed-dtype dataframe comparison with array raises incorrectly This came up while going through some of statsmodels tests: ``` arr = np.random.randn(3, 2) arr[:, 0] = [1, 2, 3] df = pd.DataFrame(arr) df[0] = df[0].astype(int) >>> df == arr Traceback (most recent call last): File "<stdin>", line 1, in <module> File "pandas/core/ops.py", line 1572, in f try_cast=False) File "pandas/core/frame.py", line 4021, in _combine_const try_cast=try_cast) File "pandas/core/internals.py", line 3644, in eval return self.apply('eval', **kwargs) File "pandas/core/internals.py", line 3538, in apply applied = getattr(b, f)(**kwargs) File "pandas/core/internals.py", line 1348, in eval t_shape=values.T.shape, oth_shape=other.shape)) ValueError: cannot broadcast shape [(3, 1)] with block values [(3, 2)] ``` I'd expect this to wrap the ndarray in a frame and return an all-True frame.
2018-10-13T16:25:16Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "pandas/core/ops.py", line 1572, in f try_cast=False) File "pandas/core/frame.py", line 4021, in _combine_const try_cast=try_cast) File "pandas/core/internals.py", line 3644, in eval return self.apply('eval', **kwargs) File "pandas/core/internals.py", line 3538, in apply applied = getattr(b, f)(**kwargs) File "pandas/core/internals.py", line 1348, in eval t_shape=values.T.shape, oth_shape=other.shape)) ValueError: cannot broadcast shape [(3, 1)] with block values [(3, 2)]
12,229
pandas-dev/pandas
pandas-dev__pandas-23495
54982c24ed23b29d87a18bb9a28ee268463ad0bb
diff --git a/doc/source/whatsnew/v0.24.0.txt b/doc/source/whatsnew/v0.24.0.txt --- a/doc/source/whatsnew/v0.24.0.txt +++ b/doc/source/whatsnew/v0.24.0.txt @@ -1118,6 +1118,7 @@ Datetimelike - Bug in :func:`DataFrame.combine` with datetimelike values raising a TypeError (:issue:`23079`) - Bug in :func:`date_range` with frequency of ``Day`` or higher where dates sufficiently far in the future could wrap around to the past instead of raising ``OutOfBoundsDatetime`` (:issue:`14187`) - Bug in :class:`PeriodIndex` with attribute ``freq.n`` greater than 1 where adding a :class:`DateOffset` object would return incorrect results (:issue:`23215`) +- Bug in :class:`Series` that interpreted string indices as lists of characters when setting datetimelike values (:issue:`23451`) Timedelta ^^^^^^^^^ diff --git a/pandas/core/series.py b/pandas/core/series.py --- a/pandas/core/series.py +++ b/pandas/core/series.py @@ -947,7 +947,9 @@ def _set_with(self, key, value): except Exception: pass - if not isinstance(key, (list, Series, np.ndarray, Series)): + if is_scalar(key): + key = [key] + elif not isinstance(key, (list, Series, np.ndarray)): try: key = list(key) except Exception:
Can't put date in Series if index is a string longer than 1 character #### Code Sample ``` >>> import pandas >>> x = pandas.Series([1,2,3], index=['Date','b','other']) >>> x Date 1 b 2 other 3 dtype: int64 >>> from datetime import date >>> x.Date = date.today() Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Python37\lib\site-packages\pandas\core\generic.py", line 4405, in __setattr__ self[name] = value File "C:\Python37\lib\site-packages\pandas\core\series.py", line 939, in __setitem__ setitem(key, value) File "C:\Python37\lib\site-packages\pandas\core\series.py", line 935, in setitem self._set_with(key, value) File "C:\Python37\lib\site-packages\pandas\core\series.py", line 983, in _set_with self._set_labels(key, value) File "C:\Python37\lib\site-packages\pandas\core\series.py", line 993, in _set_labels raise ValueError('%s not contained in the index' % str(key[mask])) ValueError: ['D' 'a' 't' 'e'] not contained in the index >>> x.b = date.today() >>> x.b datetime.date(2018, 11, 1) >>> x Date 1 b 2018-11-01 other 3 dtype: object >>> ``` #### Problem description I cannot put a date object in a Series if the index is a string with len > 1. It works if it's only a single character. Other types seem to work. I've only seen the problem with dates.
This looks similar to https://github.com/pandas-dev/pandas/issues/12862, and I can reproduce this in master as well.
2018-11-04T19:40:36Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Python37\lib\site-packages\pandas\core\generic.py", line 4405, in __setattr__ self[name] = value File "C:\Python37\lib\site-packages\pandas\core\series.py", line 939, in __setitem__ setitem(key, value) File "C:\Python37\lib\site-packages\pandas\core\series.py", line 935, in setitem self._set_with(key, value) File "C:\Python37\lib\site-packages\pandas\core\series.py", line 983, in _set_with self._set_labels(key, value) File "C:\Python37\lib\site-packages\pandas\core\series.py", line 993, in _set_labels raise ValueError('%s not contained in the index' % str(key[mask])) ValueError: ['D' 'a' 't' 'e'] not contained in the index
12,290
pandas-dev/pandas
pandas-dev__pandas-23524
efd1844daaadee29a57943597431611d554b6c4a
diff --git a/doc/source/whatsnew/v0.24.0.txt b/doc/source/whatsnew/v0.24.0.txt --- a/doc/source/whatsnew/v0.24.0.txt +++ b/doc/source/whatsnew/v0.24.0.txt @@ -1125,6 +1125,9 @@ Datetimelike - Bug in :class:`PeriodIndex` with attribute ``freq.n`` greater than 1 where adding a :class:`DateOffset` object would return incorrect results (:issue:`23215`) - Bug in :class:`Series` that interpreted string indices as lists of characters when setting datetimelike values (:issue:`23451`) - Bug in :class:`Timestamp` constructor which would drop the frequency of an input :class:`Timestamp` (:issue:`22311`) +- Bug in :class:`DatetimeIndex` where calling ``np.array(dtindex, dtype=object)`` would incorrectly return an array of ``long`` objects (:issue:`23524`) +- Bug in :class:`Index` where passing a timezone-aware :class:`DatetimeIndex` and `dtype=object` would incorrectly raise a ``ValueError`` (:issue:`23524`) +- Bug in :class:`Index` where calling ``np.array(dtindex, dtype=object)`` on a timezone-naive :class:`DatetimeIndex` would return an array of ``datetime`` objects instead of :class:`Timestamp` objects, potentially losing nanosecond portions of the timestamps (:issue:`23524`) Timedelta ^^^^^^^^^ @@ -1171,6 +1174,7 @@ Offsets - Bug in :class:`FY5253` where date offsets could incorrectly raise an ``AssertionError`` in arithmetic operatons (:issue:`14774`) - Bug in :class:`DateOffset` where keyword arguments ``week`` and ``milliseconds`` were accepted and ignored. Passing these will now raise ``ValueError`` (:issue:`19398`) - Bug in adding :class:`DateOffset` with :class:`DataFrame` or :class:`PeriodIndex` incorrectly raising ``TypeError`` (:issue:`23215`) +- Bug in comparing :class:`DateOffset` objects with non-DateOffset objects, particularly strings, raising ``ValueError`` instead of returning ``False`` for equality checks and ``True`` for not-equal checks (:issue:`23524`) Numeric ^^^^^^^ diff --git a/pandas/_libs/tslibs/offsets.pyx b/pandas/_libs/tslibs/offsets.pyx --- a/pandas/_libs/tslibs/offsets.pyx +++ b/pandas/_libs/tslibs/offsets.pyx @@ -308,8 +308,13 @@ class _BaseOffset(object): def __eq__(self, other): if is_string_object(other): - other = to_offset(other) - + try: + # GH#23524 if to_offset fails, we are dealing with an + # incomparable type so == is False and != is True + other = to_offset(other) + except ValueError: + # e.g. "infer" + return False try: return self._params == other._params except AttributeError: diff --git a/pandas/core/arrays/datetimes.py b/pandas/core/arrays/datetimes.py --- a/pandas/core/arrays/datetimes.py +++ b/pandas/core/arrays/datetimes.py @@ -19,6 +19,7 @@ from pandas.core.dtypes.common import ( _NS_DTYPE, is_object_dtype, + is_int64_dtype, is_datetime64tz_dtype, is_datetime64_dtype, ensure_int64) @@ -388,6 +389,15 @@ def _resolution(self): # ---------------------------------------------------------------- # Array-like Methods + def __array__(self, dtype=None): + if is_object_dtype(dtype): + return np.array(list(self), dtype=object) + elif is_int64_dtype(dtype): + return self.asi8 + + # TODO: warn that conversion may be lossy? + return self._data.view(np.ndarray) # follow Index.__array__ + def __iter__(self): """ Return an iterator over the boxed values diff --git a/pandas/core/indexes/base.py b/pandas/core/indexes/base.py --- a/pandas/core/indexes/base.py +++ b/pandas/core/indexes/base.py @@ -301,11 +301,19 @@ def __new__(cls, data=None, dtype=None, copy=False, name=None, (dtype is not None and is_datetime64_any_dtype(dtype)) or 'tz' in kwargs): from pandas import DatetimeIndex - result = DatetimeIndex(data, copy=copy, name=name, - dtype=dtype, **kwargs) + if dtype is not None and is_dtype_equal(_o_dtype, dtype): - return Index(result.to_pydatetime(), dtype=_o_dtype) + # GH#23524 passing `dtype=object` to DatetimeIndex is invalid, + # will raise in the where `data` is already tz-aware. So + # we leave it out of this step and cast to object-dtype after + # the DatetimeIndex construction. + # Note we can pass copy=False because the .astype below + # will always make a copy + result = DatetimeIndex(data, copy=False, name=name, **kwargs) + return result.astype(object) else: + result = DatetimeIndex(data, copy=copy, name=name, + dtype=dtype, **kwargs) return result elif (is_timedelta64_dtype(data) or diff --git a/pandas/tseries/offsets.py b/pandas/tseries/offsets.py --- a/pandas/tseries/offsets.py +++ b/pandas/tseries/offsets.py @@ -2199,9 +2199,18 @@ def apply_index(self, i): def _tick_comp(op): + assert op not in [operator.eq, operator.ne] + def f(self, other): - return op(self.delta, other.delta) + try: + return op(self.delta, other.delta) + except AttributeError: + # comparing with a non-Tick object + raise TypeError("Invalid comparison between {cls} and {typ}" + .format(cls=type(self).__name__, + typ=type(other).__name__)) + f.__name__ = '__{opname}__'.format(opname=op.__name__) return f @@ -2220,8 +2229,6 @@ def __init__(self, n=1, normalize=False): __ge__ = _tick_comp(operator.ge) __lt__ = _tick_comp(operator.lt) __le__ = _tick_comp(operator.le) - __eq__ = _tick_comp(operator.eq) - __ne__ = _tick_comp(operator.ne) def __add__(self, other): if isinstance(other, Tick): @@ -2242,8 +2249,13 @@ def __add__(self, other): def __eq__(self, other): if isinstance(other, compat.string_types): from pandas.tseries.frequencies import to_offset - - other = to_offset(other) + try: + # GH#23524 if to_offset fails, we are dealing with an + # incomparable type so == is False and != is True + other = to_offset(other) + except ValueError: + # e.g. "infer" + return False if isinstance(other, Tick): return self.delta == other.delta @@ -2258,8 +2270,13 @@ def __hash__(self): def __ne__(self, other): if isinstance(other, compat.string_types): from pandas.tseries.frequencies import to_offset - - other = to_offset(other) + try: + # GH#23524 if to_offset fails, we are dealing with an + # incomparable type so == is False and != is True + other = to_offset(other) + except ValueError: + # e.g. "infer" + return True if isinstance(other, Tick): return self.delta != other.delta
BUG: DatetimeIndex cast to object dtype raises/wrong for tzaware ``` dti = pd.date_range('2016-01-01', periods=3, tz='US/Central') >>> pd.Index(dti, dtype=object) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python2.7/site-packages/pandas/core/indexes/base.py", line 294, in __new__ dtype=dtype, **kwargs) File "/usr/local/lib/python2.7/site-packages/pandas/core/indexes/datetimes.py", line 453, in __new__ raise ValueError("cannot localize from non-UTC data") ValueError: cannot localize from non-UTC data >>> np.array(dti, dtype=object) array([1451628000000000000L, 1451714400000000000L, 1451800800000000000L], dtype=object) ``` I expected these to match `pd.Index(list(dti), dtype=object)` and `np.array(list(dti))`, respectively.
2018-11-06T01:55:16Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python2.7/site-packages/pandas/core/indexes/base.py", line 294, in __new__ dtype=dtype, **kwargs) File "/usr/local/lib/python2.7/site-packages/pandas/core/indexes/datetimes.py", line 453, in __new__ raise ValueError("cannot localize from non-UTC data") ValueError: cannot localize from non-UTC data
12,298
pandas-dev/pandas
pandas-dev__pandas-23527
dcb8b6a779874663d5cfa8b61d3a2c6896f29a0f
diff --git a/doc/source/whatsnew/v0.24.0.txt b/doc/source/whatsnew/v0.24.0.txt --- a/doc/source/whatsnew/v0.24.0.txt +++ b/doc/source/whatsnew/v0.24.0.txt @@ -1298,6 +1298,7 @@ Notice how we now instead output ``np.nan`` itself instead of a stringified form - :func:`read_excel()` will correctly show the deprecation warning for previously deprecated ``sheetname`` (:issue:`17994`) - :func:`read_csv()` and func:`read_table()` will throw ``UnicodeError`` and not coredump on badly encoded strings (:issue:`22748`) - :func:`read_csv()` will correctly parse timezone-aware datetimes (:issue:`22256`) +- Bug in :func:`read_csv()` in which memory management was prematurely optimized for the C engine when the data was being read in chunks (:issue:`23509`) - :func:`read_sas()` will parse numbers in sas7bdat-files that have width less than 8 bytes correctly. (:issue:`21616`) - :func:`read_sas()` will correctly parse sas7bdat files with many columns (:issue:`22628`) - :func:`read_sas()` will correctly parse sas7bdat files with data page types having also bit 7 set (so page type is 128 + 256 = 384) (:issue:`16615`) diff --git a/pandas/_libs/parsers.pyx b/pandas/_libs/parsers.pyx --- a/pandas/_libs/parsers.pyx +++ b/pandas/_libs/parsers.pyx @@ -132,6 +132,7 @@ cdef extern from "parser/tokenizer.h": int64_t *word_starts # where we are in the stream int64_t words_len int64_t words_cap + int64_t max_words_cap # maximum word cap encountered char *pword_start # pointer to stream start of current field int64_t word_start # position start of current field diff --git a/pandas/_libs/src/parser/tokenizer.c b/pandas/_libs/src/parser/tokenizer.c --- a/pandas/_libs/src/parser/tokenizer.c +++ b/pandas/_libs/src/parser/tokenizer.c @@ -197,6 +197,7 @@ int parser_init(parser_t *self) { sz = sz ? sz : 1; self->words = (char **)malloc(sz * sizeof(char *)); self->word_starts = (int64_t *)malloc(sz * sizeof(int64_t)); + self->max_words_cap = sz; self->words_cap = sz; self->words_len = 0; @@ -247,7 +248,7 @@ void parser_del(parser_t *self) { } static int make_stream_space(parser_t *self, size_t nbytes) { - int64_t i, cap; + int64_t i, cap, length; int status; void *orig_ptr, *newptr; @@ -287,8 +288,23 @@ static int make_stream_space(parser_t *self, size_t nbytes) { */ cap = self->words_cap; + + /** + * If we are reading in chunks, we need to be aware of the maximum number + * of words we have seen in previous chunks (self->max_words_cap), so + * that way, we can properly allocate when reading subsequent ones. + * + * Otherwise, we risk a buffer overflow if we mistakenly under-allocate + * just because a recent chunk did not have as many words. + */ + if (self->words_len + nbytes < self->max_words_cap) { + length = self->max_words_cap - nbytes; + } else { + length = self->words_len; + } + self->words = - (char **)grow_buffer((void *)self->words, self->words_len, + (char **)grow_buffer((void *)self->words, length, (int64_t*)&self->words_cap, nbytes, sizeof(char *), &status); TRACE( @@ -1241,6 +1257,19 @@ int parser_trim_buffers(parser_t *self) { int64_t i; + /** + * Before we free up space and trim, we should + * save how many words we saw when parsing, if + * it exceeds the maximum number we saw before. + * + * This is important for when we read in chunks, + * so that we can inform subsequent chunk parsing + * as to how many words we could possibly see. + */ + if (self->words_cap > self->max_words_cap) { + self->max_words_cap = self->words_cap; + } + /* trim words, word_starts */ new_cap = _next_pow2(self->words_len) + 1; if (new_cap < self->words_cap) { diff --git a/pandas/_libs/src/parser/tokenizer.h b/pandas/_libs/src/parser/tokenizer.h --- a/pandas/_libs/src/parser/tokenizer.h +++ b/pandas/_libs/src/parser/tokenizer.h @@ -142,6 +142,7 @@ typedef struct parser_t { int64_t *word_starts; // where we are in the stream int64_t words_len; int64_t words_cap; + int64_t max_words_cap; // maximum word cap encountered char *pword_start; // pointer to stream start of current field int64_t word_start; // position start of current field
C error: Buffer overflow caught on CSV with chunksize #### Code Sample This will create the error, but it is slow. I recommend [downloading the file directly](https://github.com/pandas-dev/pandas/files/2548189/debug.txt). ```python import pandas filename = 'https://github.com/pandas-dev/pandas/files/2548189/debug.txt' for chunk in pandas.read_csv(filename, chunksize=1000, names=range(2504)): pass ``` #### Problem description I get the following exception only while using the C engine. This is similar to https://github.com/pandas-dev/pandas/issues/11166. ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "D:\programs\anaconda3\lib\site-packages\pandas\io\parsers.py", line 1007, in __next__ return self.get_chunk() File "D:\programs\anaconda3\lib\site-packages\pandas\io\parsers.py", line 1070, in get_chunk return self.read(nrows=size) File "D:\programs\anaconda3\lib\site-packages\pandas\io\parsers.py", line 1036, in read ret = self._engine.read(nrows) File "D:\programs\anaconda3\lib\site-packages\pandas\io\parsers.py", line 1848, in read data = self._reader.read(nrows) File "pandas\_libs\parsers.pyx", line 876, in pandas._libs.parsers.TextReader.read File "pandas\_libs\parsers.pyx", line 903, in pandas._libs.parsers.TextReader._read_low_memory File "pandas\_libs\parsers.pyx", line 945, in pandas._libs.parsers.TextReader._read_rows File "pandas\_libs\parsers.pyx", line 932, in pandas._libs.parsers.TextReader._tokenize_rows File "pandas\_libs\parsers.pyx", line 2112, in pandas._libs.parsers.raise_parser_error pandas.errors.ParserError: Error tokenizing data. C error: Buffer overflow caught - possible malformed input file. ``` #### Expected Output None. It should just loop through the file. #### Output of ``pd.show_versions()`` Both machines exhibit the exception. <details> <summary>RedHat</summary> ``` INSTALLED VERSIONS ------------------ commit: None python: 3.6.6.final.0 python-bits: 64 OS: Linux OS-release: 3.10.0-862.14.4.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.23.4 pytest: None pip: 18.1 setuptools: 39.1.0 Cython: 0.29 numpy: 1.15.3 scipy: 1.1.0 pyarrow: None xarray: None IPython: None sphinx: None patsy: None dateutil: 2.7.3 pytz: 2018.5 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: 3.0.0 openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: None sqlalchemy: None pymysql: None psycopg2: None jinja2: None s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None ``` </details> <details> <summary>Windows 7</summary> ``` INSTALLED VERSIONS ------------------ commit: None python: 3.6.5.final.0 python-bits: 64 OS: Windows OS-release: 7 machine: AMD64 processor: Intel64 Family 6 Model 58 Stepping 9, GenuineIntel byteorder: little LC_ALL: None LANG: None LOCALE: None.None pandas: 0.23.0 pytest: 3.5.1 pip: 18.1 setuptools: 39.1.0 Cython: 0.28.2 numpy: 1.14.3 scipy: 1.1.0 pyarrow: None xarray: None IPython: 6.4.0 sphinx: 1.7.4 patsy: 0.5.0 dateutil: 2.7.3 pytz: 2018.4 blosc: None bottleneck: 1.2.1 tables: 3.4.3 numexpr: 2.6.5 feather: None matplotlib: 2.2.2 openpyxl: 2.5.3 xlrd: 1.1.0 xlwt: 1.3.0 xlsxwriter: 1.0.4 lxml: 4.2.1 bs4: 4.6.0 html5lib: 1.0.1 sqlalchemy: 1.2.7 pymysql: None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None ``` </details>
Have you been able to narrow down what exactly in the linked file is causing the exception? @TomAugspurger I have not. I'm unsure how to debug the C engine. @dgrahn : I have strong reason to believe that this file is actually malformed. Run this code: ~~~python with open("debug.txt", "r") as f: data = f.readlines() lengths = set() # Get row width # # Delimiter is definitely "," for l in data: l = l.strip() lengths.add(len(l.split(","))) print(lengths) ~~~ This will output: ~~~python {2304, 1154, 2054, 904, 1804, 654, 1554, 404, 2454, 1304, 154, 2204, 1054, 1954, 804, 1704, 554, 1454, 304, 2354, 1204, 54, 2104, 954, 1854, 704, 1604, 454, 2504, 1354, 204, 2254, 1104, 2004, 854, 1754, 604, 1504, 354, 2404, 1254, 104, 2154, 1004, 1904, 754, 1654, 504, 1404, 254} ~~~ If the file was correctly formatted, it should be that there is only one row width. @gfyoung It's not formatted incorrectly. It's a jagged CSV because I didn't want to bloat the file with lots of empty columns. That's why I use the `names` parameter. @dgrahn : Yes, it is, according to our definition. We need properly formatted CSV's, and that means having the same number of comma's across the board for all rows. Jagged CSV's unfortunately do not meet that criterion. @gfyoung It works when reading the entire CSV. How can I debug this for chunks? Neither saving the extra columns nor reading the entire file is a feasible option. This is already a subset of a 7 GB file. > It works when reading the entire CSV. @dgrahn : Given that you mention that it's a subset, what do you mean by "entire CSV" ? Are you referring to the entire 7 GB file or all of `debug.txt` ? On my end, I cannot read all of `debug.txt`. @gfyoung When I use the following, I'm able to read the entire CSV. ``` pd.read_csv('debug.csv', names=range(2504)) ``` The debug file contains the first 7k lines of a file with more than 2.6M. @dgrahn : I'm not sure you actually answered my question. Let me rephrase: Are you able to read the file that you posted to GitHub in its entirety (via `pd.read_csv`)? @gfyoung I'm able to read the debug file using the below code. But it fails when introducing the chunks. Does that answer the question? ``` pd.read_csv('debug.csv', names=range(2504)) ``` Okay, got it. So I'm definitely not able to read all of `debug.txt` in its entirety (Ubuntu 64-bit, `0.23.4`). What version of `pandas` are you using (and on which OS)? @gfyoung Details are included in the original post. Both Windows 7 and RedHat. 0.23.4 on RedHat, 0.23.0 on Windows 7. Interestingly, when `chunksize=10` it fails around line 6,810. When `chunksize=100`, it fails around 3100. More details. ``` chunksize=1, no failure chunksize=3, no failure chunksize=4, failure=92-96 chunksize=5, failure=5515-5520 chunksize=10, failure= 6810-6820 chunksize=100, failure= 3100-3200 ``` > Details are included in the original post. Both Windows 7 and RedHat. 0.23.4 on RedHat, 0.23.0 on Windows 7. I saw, but I wasn't sure whether you meant that it worked on both environments. Here's a smaller file which exhibits the same behavior. [minimal.txt](https://github.com/pandas-dev/pandas/files/2549461/minimal.txt) ````python import pandas as pd i = 0 for c in pd.read_csv('https://github.com/pandas-dev/pandas/files/2549461/minimal.txt', names=range(2504), chunksize=4): print(f'{i}-{i+len(c)}') i += len(c) ```` Okay, so I managed to read the file in its entirety on another environment. The C engine is "filling in the blanks" thanks to the `names` parameter that you passed in, so while I'm still wary of the jagged CSV format, `pandas` is a little more generous than I recalled. As for the discrepancies, as was already noted in the older issue, passing in `engine="python"` works across the board. Thus, it remains to debug the C code and see why it breaks... (@dgrahn : BTW, that is your answer to: "how would I debug chunks") > Here's a smaller file which exhibits the same behavior. @dgrahn : Oh, that's very nice! Might you by any chance be able to make the file "skinnier" ? (the smaller the file, the easier it would be for us to test) @gfyoung Working on it now. @gfyoung Ok. So it gets weirder. 2397 and below works, 2398 and above fails. ```python i = 0 for c in pd.read_csv('https://github.com/pandas-dev/pandas/files/2549525/skinnier.txt', names=range(2397), chunksize=4): print(f'{i}-{i+len(c)}') i += len(c) print('-----') i = 0 for c in pd.read_csv('https://github.com/pandas-dev/pandas/files/2549525/skinnier.txt', names=range(2398), chunksize=4): print(f'{i}-{i+len(c)}') i += len(c) ``` Each line has the following number of columns: ``` 801 801 451 901 - chunk divider - 1001 1 201 1001 ``` [skinnier.txt](https://github.com/pandas-dev/pandas/files/2549525/skinnier.txt) @gfyoung Ok. I have a minimal example. [minimal.txt](https://github.com/pandas-dev/pandas/files/2549561/minimal.txt) ``` 0 0 0 0 0 0 0 0,0 ``` ```python import pandas as pd i = 0 for c in pd.read_csv('https://github.com/pandas-dev/pandas/files/2549561/minimal.txt', names=range(5), chunksize=4): print(f'{i}-{i+len(c)}') i += len(c) ``` @dgrahn : Nice! I'm on my phone currently, so a couple of questions: * Can you read this file in its entirety? * Does reading this file in chunks work with the Python engine? Also, why do you have to pass in `names=range(5)` (and not say `range(2)`) ? @gfyoung Ok. I tried different `chunksize`s from 1-20 and columns from 2-20. * Reading the entire file worked for columns 2-20. * Python engine worked for columns 2-20 * C engine failed for the following conditions: ``` chunk=2,columns=7 chunk=2,columns=15 chunk=3,columns=7 chunk=3,columns=15 chunk=4,columns=5 chunk=6,columns=7 chunk=6,columns=15 ``` @gfyoung I've tried varying the number of columns in the last row. Here's my results. ### 1 column All work. ### 2 columns ``` chunksize, columns 2, 7 2, 15 3, 7 3, 15 4, 5 6, 7 6, 15 ``` ### 3 columns ``` chunksize, columns 2, 6 2, 7 2, 14 2, 15 3, 6 3, 7 3, 14 3, 15 4, 5 4, 10 5, 7 5, 15 6, 6 6, 7 6, 14 6, 15 ``` ### 4 columns ``` chunksize, columns 2, 13 2, 14 2, 15 3, 13 3, 14 3, 15 4, 5 4, 10 5, 7 5, 15 6, 13 6, 14 6, 15 ```` @dgrahn : Thanks for the very thorough investigation! That is very helpful. I'll take a look at the C code later today and see what might be causing the discrepancy. @gfyoung I tried to debug it myself by following the dev guide, but it says pandas has no attribute `read_csv`, so I think I better rely on your findings. So I think I know what's happening. In short, with the C engine, we are able to allocate and de-allocate memory as we see fit. In our attempt to optimize space consumption after reading each chunk, the parser frees up all of the space needed to read a full row (i.e. 2,504 elements). Unfortunately, when it tries to allocate again (at least when using [this dataset](https://github.com/pandas-dev/pandas/issues/23509#issuecomment-435930757)), it comes across one of the "skinnier" rows, causing it to under-allocate and crash with the buffer overflow error (which is a safety measure and not a core-dumping error).
2018-11-06T09:08:08Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "D:\programs\anaconda3\lib\site-packages\pandas\io\parsers.py", line 1007, in __next__ return self.get_chunk() File "D:\programs\anaconda3\lib\site-packages\pandas\io\parsers.py", line 1070, in get_chunk return self.read(nrows=size) File "D:\programs\anaconda3\lib\site-packages\pandas\io\parsers.py", line 1036, in read ret = self._engine.read(nrows) File "D:\programs\anaconda3\lib\site-packages\pandas\io\parsers.py", line 1848, in read data = self._reader.read(nrows) File "pandas\_libs\parsers.pyx", line 876, in pandas._libs.parsers.TextReader.read File "pandas\_libs\parsers.pyx", line 903, in pandas._libs.parsers.TextReader._read_low_memory File "pandas\_libs\parsers.pyx", line 945, in pandas._libs.parsers.TextReader._read_rows File "pandas\_libs\parsers.pyx", line 932, in pandas._libs.parsers.TextReader._tokenize_rows File "pandas\_libs\parsers.pyx", line 2112, in pandas._libs.parsers.raise_parser_error pandas.errors.ParserError: Error tokenizing data. C error: Buffer overflow caught - possible malformed input file.
12,299
pandas-dev/pandas
pandas-dev__pandas-23550
28a42da41ca8e13efaa2ceb3939e576d08c232c8
diff --git a/doc/source/whatsnew/v0.24.0.txt b/doc/source/whatsnew/v0.24.0.txt --- a/doc/source/whatsnew/v0.24.0.txt +++ b/doc/source/whatsnew/v0.24.0.txt @@ -1292,6 +1292,7 @@ Notice how we now instead output ``np.nan`` itself instead of a stringified form - Bug in :func:`DataFrame.to_csv` where a single level MultiIndex incorrectly wrote a tuple. Now just the value of the index is written (:issue:`19589`). - Bug in :meth:`HDFStore.append` when appending a :class:`DataFrame` with an empty string column and ``min_itemsize`` < 8 (:issue:`12242`) - Bug in :meth:`read_csv()` in which :class:`MultiIndex` index names were being improperly handled in the cases when they were not provided (:issue:`23484`) +- Bug in :meth:`read_html()` in which the error message was not displaying the valid flavors when an invalid one was provided (:issue:`23549`) Plotting ^^^^^^^^ diff --git a/pandas/io/html.py b/pandas/io/html.py --- a/pandas/io/html.py +++ b/pandas/io/html.py @@ -854,7 +854,8 @@ def _parser_dispatch(flavor): def _print_as_set(s): - return '{{arg}}'.format(arg=', '.join(pprint_thing(el) for el in s)) + return ('{' + '{arg}'.format(arg=', '.join( + pprint_thing(el) for el in s)) + '}') def _validate_flavor(flavor):
Passing an invalid flavor to read_html prints the wrong error message #### Code Sample, a copy-pastable example if possible ```python >>> import pandas as pd >>> df_list = pd.read_html('https://google.com', flavor='unknown') Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/achabot/envs/tmp-b79b7181308bb9c1/lib/python3.7/site-packages/pandas/io/html.py", line 987, in read_html displayed_only=displayed_only) File "/Users/achabot/envs/tmp-b79b7181308bb9c1/lib/python3.7/site-packages/pandas/io/html.py", line 787, in _parse flavor = _validate_flavor(flavor) File "/Users/achabot/envs/tmp-b79b7181308bb9c1/lib/python3.7/site-packages/pandas/io/html.py", line 782, in _validate_flavor valid=_print_as_set(valid_flavors))) ValueError: {arg} is not a valid set of flavors, valid flavors are {arg} ``` #### Problem description The error message should show the `flavor` selected and the valid choices. It's happenning on this line below, and it's a regression from previous versions, which used `%`-formatting and worked properly. https://github.com/pandas-dev/pandas/blob/de39bfc5e5c6483cb2669773fa10ddc2e32ca111/pandas/io/html.py#L857 #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.7.0.final.0 python-bits: 64 OS: Darwin OS-release: 18.2.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: en_US.UTF-8 LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.23.4 pytest: None pip: 18.1 setuptools: 40.5.0 Cython: None numpy: 1.15.4 scipy: None pyarrow: None xarray: None IPython: None sphinx: None patsy: None dateutil: 2.7.5 pytz: 2018.7 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: None sqlalchemy: None pymysql: None psycopg2: None jinja2: None s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
We actually have a test for this, but we don't check the error message. Oops.
2018-11-07T21:19:09Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/achabot/envs/tmp-b79b7181308bb9c1/lib/python3.7/site-packages/pandas/io/html.py", line 987, in read_html displayed_only=displayed_only) File "/Users/achabot/envs/tmp-b79b7181308bb9c1/lib/python3.7/site-packages/pandas/io/html.py", line 787, in _parse flavor = _validate_flavor(flavor) File "/Users/achabot/envs/tmp-b79b7181308bb9c1/lib/python3.7/site-packages/pandas/io/html.py", line 782, in _validate_flavor valid=_print_as_set(valid_flavors))) ValueError: {arg} is not a valid set of flavors, valid flavors are {arg}
12,302
pandas-dev/pandas
pandas-dev__pandas-23618
1250500cfe18f60cfb8a4867c82d14467bbee7ad
diff --git a/doc/source/whatsnew/v0.24.0.rst b/doc/source/whatsnew/v0.24.0.rst --- a/doc/source/whatsnew/v0.24.0.rst +++ b/doc/source/whatsnew/v0.24.0.rst @@ -1268,8 +1268,8 @@ Numeric Strings ^^^^^^^ -- -- +- Bug in :meth:`Index.str.partition` was not nan-safe (:issue:`23558`). +- Bug in :meth:`Index.str.split` was not nan-safe (:issue:`23677`). - Interval diff --git a/pandas/_libs/lib.pyx b/pandas/_libs/lib.pyx --- a/pandas/_libs/lib.pyx +++ b/pandas/_libs/lib.pyx @@ -2273,7 +2273,7 @@ def to_object_array_tuples(rows: list): k = 0 for i in range(n): - tmp = len(rows[i]) + tmp = 1 if checknull(rows[i]) else len(rows[i]) if tmp > k: k = tmp @@ -2287,7 +2287,7 @@ def to_object_array_tuples(rows: list): except Exception: # upcast any subclasses to tuple for i in range(n): - row = tuple(rows[i]) + row = (rows[i],) if checknull(rows[i]) else tuple(rows[i]) for j in range(len(row)): result[i, j] = row[j]
API/BUG: Index.str.split(expand=True) not nan-safe This is similar to #23558 and shares the same underlying reason: #23578 Found through extensive testing introduced in #23582 (which itself is a split off from #23167) ``` >>> values = ['a', np.nan, 'c'] >>> pd.Series(values).str.split(' ') 0 [a] 1 NaN 2 [c] dtype: object >>> pd.Series(values).str.split(' ', expand=True) 0 0 a 1 NaN 2 c >>> pd.Index(values).str.split(' ') Index([['a'], nan, ['c']], dtype='object') >>> pd.Index(values).str.split(' ', expand=True) Traceback (most recent call last): [...] TypeError: object of type 'float' has no len() ```
2018-11-10T21:17:00Z
[]
[]
Traceback (most recent call last): [...] TypeError: object of type 'float' has no len()
12,312
pandas-dev/pandas
pandas-dev__pandas-23621
24bce1a5fdd70a66b9fb5e2f9f51631d1df6add3
diff --git a/doc/source/whatsnew/v0.24.0.rst b/doc/source/whatsnew/v0.24.0.rst --- a/doc/source/whatsnew/v0.24.0.rst +++ b/doc/source/whatsnew/v0.24.0.rst @@ -1036,6 +1036,7 @@ Deprecations - Constructing a :class:`TimedeltaIndex` from data with ``datetime64``-dtyped data is deprecated, will raise ``TypeError`` in a future version (:issue:`23539`) - The ``keep_tz=False`` option (the default) of the ``keep_tz`` keyword of :meth:`DatetimeIndex.to_series` is deprecated (:issue:`17832`). +- Timezone converting a tz-aware ``datetime.datetime`` or :class:`Timestamp` with :class:`Timestamp` and the ``tz`` argument is now deprecated. Instead, use :meth:`Timestamp.tz_convert` (:issue:`23579`) .. _whatsnew_0240.deprecations.datetimelike_int_ops: diff --git a/pandas/_libs/tslibs/timestamps.pyx b/pandas/_libs/tslibs/timestamps.pyx --- a/pandas/_libs/tslibs/timestamps.pyx +++ b/pandas/_libs/tslibs/timestamps.pyx @@ -700,6 +700,9 @@ class Timestamp(_Timestamp): elif tz is not None: raise ValueError('Can provide at most one of tz, tzinfo') + # User passed tzinfo instead of tz; avoid silently ignoring + tz, tzinfo = tzinfo, None + if is_string_object(ts_input): # User passed a date string to parse. # Check that the user didn't also pass a date attribute kwarg. @@ -709,24 +712,23 @@ class Timestamp(_Timestamp): elif ts_input is _no_input: # User passed keyword arguments. - if tz is None: - # Handle the case where the user passes `tz` and not `tzinfo` - tz = tzinfo - return Timestamp(datetime(year, month, day, hour or 0, - minute or 0, second or 0, - microsecond or 0, tzinfo), - nanosecond=nanosecond, tz=tz) + ts_input = datetime(year, month, day, hour or 0, + minute or 0, second or 0, + microsecond or 0) elif is_integer_object(freq): # User passed positional arguments: # Timestamp(year, month, day[, hour[, minute[, second[, # microsecond[, nanosecond[, tzinfo]]]]]]) - return Timestamp(datetime(ts_input, freq, tz, unit or 0, - year or 0, month or 0, day or 0, - minute), nanosecond=hour, tz=minute) - - if tzinfo is not None: - # User passed tzinfo instead of tz; avoid silently ignoring - tz, tzinfo = tzinfo, None + ts_input = datetime(ts_input, freq, tz, unit or 0, + year or 0, month or 0, day or 0) + nanosecond = hour + tz = minute + freq = None + + if getattr(ts_input, 'tzinfo', None) is not None and tz is not None: + warnings.warn("Passing a datetime or Timestamp with tzinfo and the" + " tz parameter will raise in the future. Use" + " tz_convert instead.", FutureWarning) ts = convert_to_tsobject(ts_input, tz, unit, 0, 0, nanosecond or 0) diff --git a/pandas/core/arrays/datetimes.py b/pandas/core/arrays/datetimes.py --- a/pandas/core/arrays/datetimes.py +++ b/pandas/core/arrays/datetimes.py @@ -45,7 +45,12 @@ def _to_m8(key, tz=None): """ if not isinstance(key, Timestamp): # this also converts strings - key = Timestamp(key, tz=tz) + key = Timestamp(key) + if key.tzinfo is not None and tz is not None: + # Don't tz_localize(None) if key is already tz-aware + key = key.tz_convert(tz) + else: + key = key.tz_localize(tz) return np.int64(conversion.pydt_to_i8(key)).view(_NS_DTYPE) diff --git a/pandas/core/generic.py b/pandas/core/generic.py --- a/pandas/core/generic.py +++ b/pandas/core/generic.py @@ -9336,8 +9336,14 @@ def describe_categorical_1d(data): if is_datetime64_any_dtype(data): tz = data.dt.tz asint = data.dropna().values.view('i8') + top = Timestamp(top) + if top.tzinfo is not None and tz is not None: + # Don't tz_localize(None) if key is already tz-aware + top = top.tz_convert(tz) + else: + top = top.tz_localize(tz) names += ['top', 'freq', 'first', 'last'] - result += [Timestamp(top, tz=tz), freq, + result += [top, freq, Timestamp(asint.min(), tz=tz), Timestamp(asint.max(), tz=tz)] else: diff --git a/pandas/core/indexes/datetimes.py b/pandas/core/indexes/datetimes.py --- a/pandas/core/indexes/datetimes.py +++ b/pandas/core/indexes/datetimes.py @@ -937,7 +937,10 @@ def get_value(self, series, key): # needed to localize naive datetimes if self.tz is not None: - key = Timestamp(key, tz=self.tz) + if key.tzinfo is not None: + key = Timestamp(key).tz_convert(self.tz) + else: + key = Timestamp(key).tz_localize(self.tz) return self.get_value_maybe_box(series, key) @@ -963,7 +966,11 @@ def get_value(self, series, key): def get_value_maybe_box(self, series, key): # needed to localize naive datetimes if self.tz is not None: - key = Timestamp(key, tz=self.tz) + key = Timestamp(key) + if key.tzinfo is not None: + key = key.tz_convert(self.tz) + else: + key = key.tz_localize(self.tz) elif not isinstance(key, Timestamp): key = Timestamp(key) values = self._engine.get_value(com.values_from_object(series), @@ -986,7 +993,10 @@ def get_loc(self, key, method=None, tolerance=None): if isinstance(key, datetime): # needed to localize naive datetimes - key = Timestamp(key, tz=self.tz) + if key.tzinfo is None: + key = Timestamp(key, tz=self.tz) + else: + key = Timestamp(key).tz_convert(self.tz) return Index.get_loc(self, key, method, tolerance) elif isinstance(key, timedelta): @@ -1010,7 +1020,11 @@ def get_loc(self, key, method=None, tolerance=None): pass try: - stamp = Timestamp(key, tz=self.tz) + stamp = Timestamp(key) + if stamp.tzinfo is not None and self.tz is not None: + stamp = stamp.tz_convert(self.tz) + else: + stamp = stamp.tz_localize(self.tz) return Index.get_loc(self, stamp, method, tolerance) except KeyError: raise KeyError(key) diff --git a/pandas/io/formats/format.py b/pandas/io/formats/format.py --- a/pandas/io/formats/format.py +++ b/pandas/io/formats/format.py @@ -1246,7 +1246,10 @@ def _format_datetime64(x, tz=None, nat_rep='NaT'): return nat_rep if tz is not None or not isinstance(x, Timestamp): - x = Timestamp(x, tz=tz) + if getattr(x, 'tzinfo', None) is not None: + x = Timestamp(x).tz_convert(tz) + else: + x = Timestamp(x).tz_localize(tz) return str(x)
API: tz_convert within DatetimeIndex constructor At the moment the following raises: ``` >>> dti = pd.date_range('2016-01-01', periods=3, tz='US/Central') >>> pd.DatetimeIndex(dti, tz='Asia/Tokyo') Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python2.7/site-packages/pandas/core/indexes/datetimes.py", line 413, in __new__ raise TypeError(msg.format(data.tz, tz)) TypeError: data is already tz-aware US/Central, unable to set specified tz: Asia/Tokyo ``` It isn't clear to me that raising is the right thing to do; shouldn't this just be equivalent to `dti.tz_convert('Asia/Tokyo')`? Or is this ambiguous for some reason?
This works for `Timestamp` albeit I am not really a fan of `tz=` meaning localizing and converting. But if this is properly documented, we might as well follow `Timestamp`'s behavior unless I am missing something ``` In [1]: pd.Timestamp(pd.Timestamp('2016-01-01', tz='US/Central'), tz='Asia/Tokyo') Out[1]: Timestamp('2016-01-01 15:00:00+0900', tz='Asia/Tokyo') ``` I would rather leave this and be very explicit doing anything non explicit with tz localize vs conversion has bitten lots in the past For consistency sake then, we should depreciate the `Timestamp` behavior then. yep that sounds right
2018-11-11T00:24:27Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python2.7/site-packages/pandas/core/indexes/datetimes.py", line 413, in __new__ raise TypeError(msg.format(data.tz, tz)) TypeError: data is already tz-aware US/Central, unable to set specified tz: Asia/Tokyo
12,313
pandas-dev/pandas
pandas-dev__pandas-23762
24bce1a5fdd70a66b9fb5e2f9f51631d1df6add3
Adding big offset to timedelta generates a python crash #### Code Sample, a copy-pastable example if possible ##### In: ``` import pandas as pd from pandas.tseries.frequencies import to_offset d = pd.Timestamp("2000/1/1") d + to_offset("D")*100**25 ``` ##### Out: **=> python crash** Fatal Python error: Cannot recover from stack overflow. Current thread 0x00002b00 (most recent call first): File "C:\Users\geoffroy.destaintot\Miniconda3\envs\pd-0.18\lib\site-packages\pandas\tseries\offsets.py", line 2526 in delta File "C:\Users\geoffroy.destaintot\Miniconda3\envs\pd-0.18\lib\site-packages\pandas\tseries\offsets.py", line 2535 in apply File "C:\Users\geoffroy.destaintot\Miniconda3\envs\pd-0.18\lib\site-packages\pandas\tseries\offsets.py", line 2493 in **add** File "C:\Users\geoffroy.destaintot\Miniconda3\envs\pd-0.18\lib\site-packages\pandas\tseries\offsets.py", line 390 in **radd** File "C:\Users\geoffroy.destaintot\Miniconda3\envs\pd-0.18\lib\site-packages\pandas\tseries\offsets.py", line 2535 in apply File "C:\Users\geoffroy.destaintot\Miniconda3\envs\pd-0.18\lib\site-packages\pandas\tseries\offsets.py", line 2493 in **add** File "C:\Users\geoffroy.destaintot\Miniconda3\envs\pd-0.18\lib\site-packages\pandas\tseries\offsets.py", line 390 in **radd** ... #### Expected Output Satisfactory behaviour when using python timedeltas: ##### In: ``` import datetime as dt import pandas as pd from pandas.tseries.frequencies import to_offset d = pd.Timestamp("2000/1/1") d + dt.timedelta(days=1)*100**25 ``` ##### Out: **=> python error** Traceback (most recent call last): File "C:/Users/geoffroy.destaintot/Documents/Local/Informatique/Projets/2016-08-django-debug/to_offset_bug.py", line 11, in <module> d + dt.timedelta(days=1)_100_*25 OverflowError: Python int too large to convert to C long #### output of `pd.show_versions()` (same behaviour with pandas 0.17.1, 0.16.2, 0.15.2) ## INSTALLED VERSIONS commit: None python: 3.5.2.final.0 python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 69 Stepping 1, GenuineIntel byteorder: little LC_ALL: None LANG: None pandas: 0.18.1 nose: None pip: 8.1.2 setuptools: 25.1.6 Cython: None numpy: 1.11.1 scipy: None statsmodels: None xarray: None IPython: None sphinx: None patsy: None dateutil: 2.5.3 pytz: 2016.6.1 blosc: None bottleneck: None tables: None numexpr: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: None httplib2: None apiclient: None sqlalchemy: None pymysql: None psycopg2: None jinja2: None boto: None pandas_datareader: None
thought we had an issue for this.... its an wraparound thing I think. PR's are welcome. Any pointers on how to fix this? step thru the code - this hits cython at some point (for the add) then again for the construction of a new Timestamp - think it's crashing there I generated the stack trace, and stepped through the code. I've isolated the problem to the subset of the trace I've attached. It crashes at the point where it's trying to multiply "self.n" and "self._inc", within the Delta function of the Tick class. Any suggestions on fixing this? `> /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(393)**radd**() -> def **radd**(self, other): (Pdb) s > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(394)**radd**() > -> return self.**add**(other) > (Pdb) s > --Call-- > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(2698)**add**() > -> def **add**(self, other): > (Pdb) s > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(2699)**add**() > -> if isinstance(other, Tick): > (Pdb) s > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(2704)**add**() > -> elif isinstance(other, ABCPeriod): > (Pdb) s > --Call-- > /home/bhaprayan/Workspace/pandas/pandas/types/generic.py(7)_check() > -> @classmethod > (Pdb) s > /home/bhaprayan/Workspace/pandas/pandas/types/generic.py(9)_check() > -> return getattr(inst, attr, '_typ') in comp > (Pdb) s > --Return-- > /home/bhaprayan/Workspace/pandas/pandas/types/generic.py(9)_check()->False > -> return getattr(inst, attr, '_typ') in comp > (Pdb) s > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(2706)__add__() > -> try: > (Pdb) s > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(2707)**add**() > -> return self.apply(other) > (Pdb) s > --Call-- > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(2746)apply() > -> def apply(self, other): > (Pdb) s > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(2748)apply() > -> if isinstance(other, (datetime, np.datetime64, date)): > (Pdb) s > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(2749)apply() > -> return as_timestamp(other) + self > (Pdb) s > --Call-- > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(35)as_timestamp() > -> def as_timestamp(obj): > (Pdb) s > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(36)as_timestamp() > -> if isinstance(obj, Timestamp): > (Pdb) s > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(37)as_timestamp() > -> return obj > (Pdb) s > --Return-- > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(37)as_timestamp()->Timestam...0:00:00') > -> return obj > (Pdb) s > --Call-- > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(2738)delta() > -> @property > (Pdb) s > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(2740)delta() > -> return self.n \* self._inc > (Pdb) s > **OverflowError: 'Python int too large to convert to C long'** > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(2740)delta() > -> return self.n \* self._inc > (Pdb) s > --Return-- > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(2740)delta()->None > -> return self.n \* self._inc > (Pdb) s > --Call-- > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(393)__radd__() > -> def **radd**(self, other): > (Pdb) > ` so I think that multiplcation needs a guard on overflow ``` In [2]: np.iinfo(np.int64).max Out[2]: 9223372036854775807 In [3]: np.int64(1000000)*np.int64(86400*1e9) /Users/jreback/miniconda/bin/ipython:1: RuntimeWarning: overflow encountered in long_scalars #!/bin/bash /Users/jreback/miniconda/bin/python.app Out[3]: -5833720368547758080 ``` First, I set a guard on the multiplication overflow. However it's still stuck in a recursive loop, where after catching the OverflowError, it still calls **radd**. `ipdb> s > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(2741)delta() > 2739 def delta(self): > 2740 try: > -> 2741 self.n \* self._inc > 2742 except OverflowError: > 2743 raise ipdb> s OverflowError: 'Python int too large to convert to C long' > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(2741)delta() > 2739 def delta(self): > 2740 try: > -> 2741 self.n \* self._inc > 2742 except OverflowError: > 2743 raise ipdb> s > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(2742)delta() > 2740 try: > 2741 self.n \* self._inc > -> 2742 except OverflowError: > 2743 raise > 2744 ipdb> s > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(2743)delta() > 2741 self.n \* self._inc > 2742 except OverflowError: > -> 2743 raise > 2744 > 2745 @property ipdb> s --Return-- None > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(2743)delta() > 2741 self.n \* self._inc > 2742 except OverflowError: > -> 2743 raise > 2744 > 2745 @property ipdb> s --Call-- > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(393)**radd**() > 391 return NotImplemented > 392 > --> 393 def **radd**(self, other): > 394 return self.**add**(other) > 395 ipdb> s > /home/bhaprayan/Workspace/pandas/pandas/tseries/offsets.py(394)**radd**() > 392 > 393 def **radd**(self, other): > --> 394 return self.**add**(other) > 395 > 396 def **sub**(self, other): > ` Looks like this issue was already solved, by running the reproduction scenario now I get a clear exception: `OverflowError: the add operation between <100000000000000000000000000000000000000000000000000 * Days> and 2000-01-01 00:00:00 will overflow` great do u want to do a PR with some tests ? I put together a quick smoke test, and indeed it looks like things are generating exceptions like they should. But two offsets, the FY5253Quarter and DateOffset cases, both take forever to fail, ~20s in one case, ~10s in the other, so something's different about them (I haven't given even a cursory glance). this is already fixed in master if someone would like to add tests in a PR
2018-11-18T05:04:11Z
[]
[]
Traceback (most recent call last): File "C:/Users/geoffroy.destaintot/Documents/Local/Informatique/Projets/2016-08-django-debug/to_offset_bug.py", line 11, in <module> d + dt.timedelta(days=1)_100_*25 OverflowError: Python int too large to convert to C long
12,337
pandas-dev/pandas
pandas-dev__pandas-23776
c9c99129108cf16bc6c3684dc0df5a5fc60ffc8a
Lookup using datetimes does not work with hierarchical indices containing periods Lookup in a PeriodIndex using a datetime works as expected (the period in which the timestamp falls will be returned). However, when the PeriodIndex is part of a hierarchy, this functionality fails in a non-obvious way: ``` >>> s = pd.Series([1,2,3,4,5], pd.MultiIndex.from_arrays([["a", "a", "a", "b", "b"], pd.period_range("2012-01", periods=5, freq="M")])) >>> s.loc["a", datetime(2012,1,1)] Traceback (most recent call last): File "C:\VirtualEnvs\test\lib\site-packages\ipython-1.0.dev-py2.6.egg\IPython\core\interactiveshell.py", line 2837, in run_code exec code_obj in self.user_global_ns, self.user_ns File "<ipython-input-18-9e6cd34eee66>", line 1, in <module> a.loc["a", datetime(2012,1,1)] File "C:\VirtualEnvs\test\lib\site-packages\pandas-0.12.0-py2.6-win32.egg\pandas\core\indexing.py", line 697, in __getitem__ return self._getitem_tuple(key) File "C:\VirtualEnvs\test\lib\site-packages\pandas-0.12.0-py2.6-win32.egg\pandas\core\indexing.py", line 258, in _getitem_tuple self._has_valid_tuple(tup) File "C:\VirtualEnvs\test\lib\site-packages\pandas-0.12.0-py2.6-win32.egg\pandas\core\indexing.py", line 691, in _has_valid_tuple raise ValueError('Too many indexers') ValueError: Too many indexers ``` Using a period works just fine: ``` >>> s.loc["a", pd.Period("2012-01")] 1 ```
A possibly related issue (happens when using a MultiIndex containing periods), is that when querying with a label that is not in the index, a ValueError("Too many indexers") will be raised instead of a KeyError. Works in 0.23.2, needs test.
2018-11-19T06:37:18Z
[]
[]
Traceback (most recent call last): File "C:\VirtualEnvs\test\lib\site-packages\ipython-1.0.dev-py2.6.egg\IPython\core\interactiveshell.py", line 2837, in run_code exec code_obj in self.user_global_ns, self.user_ns File "<ipython-input-18-9e6cd34eee66>", line 1, in <module> a.loc["a", datetime(2012,1,1)] File "C:\VirtualEnvs\test\lib\site-packages\pandas-0.12.0-py2.6-win32.egg\pandas\core\indexing.py", line 697, in __getitem__ return self._getitem_tuple(key) File "C:\VirtualEnvs\test\lib\site-packages\pandas-0.12.0-py2.6-win32.egg\pandas\core\indexing.py", line 258, in _getitem_tuple self._has_valid_tuple(tup) File "C:\VirtualEnvs\test\lib\site-packages\pandas-0.12.0-py2.6-win32.egg\pandas\core\indexing.py", line 691, in _has_valid_tuple raise ValueError('Too many indexers') ValueError: Too many indexers
12,340
pandas-dev/pandas
pandas-dev__pandas-23864
20ae4543c1d8838f52229830bfae0cc8626801bb
diff --git a/doc/source/whatsnew/v0.24.0.rst b/doc/source/whatsnew/v0.24.0.rst --- a/doc/source/whatsnew/v0.24.0.rst +++ b/doc/source/whatsnew/v0.24.0.rst @@ -1420,6 +1420,7 @@ Groupby/Resample/Rolling - Bug in :meth:`DataFrame.expanding` in which the ``axis`` argument was not being respected during aggregations (:issue:`23372`) - Bug in :meth:`pandas.core.groupby.DataFrameGroupBy.transform` which caused missing values when the input function can accept a :class:`DataFrame` but renames it (:issue:`23455`). - Bug in :func:`pandas.core.groupby.GroupBy.nth` where column order was not always preserved (:issue:`20760`) +- Bug in :meth:`pandas.core.groupby.DataFrameGroupBy.rank` with ``method='dense'`` and ``pct=True`` when a group has only one member would raise a ``ZeroDivisionError`` (:issue:`23666`). Reshaping ^^^^^^^^^ diff --git a/pandas/_libs/groupby_helper.pxi.in b/pandas/_libs/groupby_helper.pxi.in --- a/pandas/_libs/groupby_helper.pxi.in +++ b/pandas/_libs/groupby_helper.pxi.in @@ -587,7 +587,7 @@ def group_rank_{{name}}(ndarray[float64_t, ndim=2] out, # rankings, so we assign them percentages of NaN. if out[i, 0] != out[i, 0] or out[i, 0] == NAN: out[i, 0] = NAN - else: + elif grp_sizes[i, 0] != 0: out[i, 0] = out[i, 0] / grp_sizes[i, 0] {{endif}} {{endfor}}
ZeroDivisionError when groupby rank with method="dense" and pct=True When I tried to use groupby rank function with method="dense", pct=True options, I encountered the ZeroDivisionError. #### Code Sample, a copy-pastable example if possible ```python import pandas as pd df = pd.DataFrame({"A": [1, 1, 1, 2, 2, 2], "B": [1, 1, 1, 1, 2, 2], "C": [1, 2, 1, 1, 1, 2]}) df.groupby(["A", "B"])["C"].rank(method="dense", pct=True) ``` error: ``` Traceback (most recent call last): File "c:/Users/<user_name>/Documents/test.py", line 6, in <module> df.groupby(["A", "B"])["C"].rank(method="dense", pct=True) File "C:\Users\<user_name>\Anaconda3\lib\site-packages\pandas\core\groupby\groupby.py", line 1906, in rank na_option=na_option, pct=pct, axis=axis) File "C:\Users\<user_name>\Anaconda3\lib\site-packages\pandas\core\groupby\groupby.py", line 1025, in _cython_transform **kwargs) File "C:\Users\<user_name>\Anaconda3\lib\site-packages\pandas\core\groupby\groupby.py", line 2630, in transform return self._cython_operation('transform', values, how, axis, **kwargs) File "C:\Users\<user_name>\Anaconda3\lib\site-packages\pandas\core\groupby\groupby.py", line 2590, in _cython_operation **kwargs) File "C:\Users\<user_name>\Anaconda3\lib\site-packages\pandas\core\groupby\groupby.py", line 2664, in _transform transform_func(result, values, comp_ids, is_datetimelike, **kwargs) File "C:\Users\<user_name>\Anaconda3\lib\site-packages\pandas\core\groupby\groupby.py", line 2479, in wrapper return f(afunc, *args, **kwargs) File "C:\Users\<user_name>\Anaconda3\lib\site-packages\pandas\core\groupby\groupby.py", line 2431, in <lambda> kwargs.get('na_option', 'keep') File "pandas\_libs\groupby_helper.pxi", line 1292, in pandas._libs.groupby.group_rank_int64 ZeroDivisionError: float division ``` #### Problem description I encountered ZeroDivisionError when I tried to use the groupby rank function. I can't find out exactly what a problem is. But when I drop either method="dense" or pct=True option, the above code works. If some elements in the above DataFrame are changed, this error disappear. For example, the following code gives the expected output. ```python df = pd.DataFrame({"A": [1, 1, 1, 2, 2, 2], "B": [1, 1, 1, 1, 2, 2], "C": [1, 2, 1, 0, 1, 2]}) # a little change in column C df.groupby(["A", "B"])["C"].rank(method="dense", pct=True) ``` output: ``` 0 0.5 1 1.0 2 0.5 3 1.0 4 0.5 5 1.0 Name: C, dtype: float64 ``` #### Output of ``pd.show_versions()`` <details> [paste the output of ``pd.show_versions()`` here below this line] INSTALLED VERSIONS ------------------ commit: None python: 3.6.6.final.0 python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 78 Stepping 3, GenuineIntel byteorder: little LC_ALL: None LANG: None LOCALE: None.None pandas: 0.23.4 pytest: 3.5.1 pip: 10.0.1 setuptools: 39.1.0 Cython: 0.28.2 numpy: 1.14.5 scipy: 1.1.0 pyarrow: None xarray: None IPython: 6.4.0 sphinx: 1.7.4 patsy: 0.5.0 dateutil: 2.7.3 pytz: 2018.4 blosc: None bottleneck: 1.2.1 tables: 3.4.3 numexpr: 2.6.5 feather: None matplotlib: 3.0.0 openpyxl: 2.5.3 xlrd: 1.1.0 xlwt: 1.3.0 xlsxwriter: 1.0.4 lxml: 4.2.5 bs4: 4.6.0 html5lib: 1.0.1 sqlalchemy: 1.2.7 pymysql: None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
I think this is caused due to groups of size 1. By removing (A, B) = (2, 1) group, the error goes away. @WillAyd Do you mind if I tackle this? It's my first time contributing to pandas but I think I have a rough idea on how to fix the problem. Go for it!
2018-11-23T01:26:54Z
[]
[]
Traceback (most recent call last): File "c:/Users/<user_name>/Documents/test.py", line 6, in <module> df.groupby(["A", "B"])["C"].rank(method="dense", pct=True) File "C:\Users\<user_name>\Anaconda3\lib\site-packages\pandas\core\groupby\groupby.py", line 1906, in rank na_option=na_option, pct=pct, axis=axis) File "C:\Users\<user_name>\Anaconda3\lib\site-packages\pandas\core\groupby\groupby.py", line 1025, in _cython_transform **kwargs) File "C:\Users\<user_name>\Anaconda3\lib\site-packages\pandas\core\groupby\groupby.py", line 2630, in transform return self._cython_operation('transform', values, how, axis, **kwargs) File "C:\Users\<user_name>\Anaconda3\lib\site-packages\pandas\core\groupby\groupby.py", line 2590, in _cython_operation **kwargs) File "C:\Users\<user_name>\Anaconda3\lib\site-packages\pandas\core\groupby\groupby.py", line 2664, in _transform transform_func(result, values, comp_ids, is_datetimelike, **kwargs) File "C:\Users\<user_name>\Anaconda3\lib\site-packages\pandas\core\groupby\groupby.py", line 2479, in wrapper return f(afunc, *args, **kwargs) File "C:\Users\<user_name>\Anaconda3\lib\site-packages\pandas\core\groupby\groupby.py", line 2431, in <lambda> kwargs.get('na_option', 'keep') File "pandas\_libs\groupby_helper.pxi", line 1292, in pandas._libs.groupby.group_rank_int64 ZeroDivisionError: float division
12,355
pandas-dev/pandas
pandas-dev__pandas-24005
92d25f0da6c3b1175047cba8c900e04da68920b8
diff --git a/doc/source/whatsnew/v0.24.0.rst b/doc/source/whatsnew/v0.24.0.rst --- a/doc/source/whatsnew/v0.24.0.rst +++ b/doc/source/whatsnew/v0.24.0.rst @@ -1256,6 +1256,7 @@ Categorical - Bug in :meth:`Categorical.take` with a user-provided ``fill_value`` not encoding the ``fill_value``, which could result in a ``ValueError``, incorrect results, or a segmentation fault (:issue:`23296`). - In meth:`Series.unstack`, specifying a ``fill_value`` not present in the categories now raises a ``TypeError`` rather than ignoring the ``fill_value`` (:issue:`23284`) - Bug when resampling :meth:`Dataframe.resample()` and aggregating on categorical data, the categorical dtype was getting lost. (:issue:`23227`) +- Bug in many methods of the ``.str``-accessor, which always failed on calling the ``CategoricalIndex.str`` constructor (:issue:`23555`, :issue:`23556`) Datetimelike ^^^^^^^^^^^^ diff --git a/pandas/core/strings.py b/pandas/core/strings.py --- a/pandas/core/strings.py +++ b/pandas/core/strings.py @@ -15,7 +15,7 @@ from pandas.core.dtypes.common import ( ensure_object, is_bool_dtype, is_categorical_dtype, is_integer, is_list_like, is_object_dtype, is_re, is_scalar, is_string_like) -from pandas.core.dtypes.generic import ABCIndex, ABCSeries +from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries from pandas.core.dtypes.missing import isna from pandas.core.algorithms import take_1d @@ -931,7 +931,7 @@ def str_extractall(arr, pat, flags=0): if regex.groups == 0: raise ValueError("pattern contains no capture groups") - if isinstance(arr, ABCIndex): + if isinstance(arr, ABCIndexClass): arr = arr.to_series().reset_index(drop=True) names = dict(zip(regex.groupindex.values(), regex.groupindex.keys())) @@ -1854,7 +1854,7 @@ def __iter__(self): def _wrap_result(self, result, use_codes=True, name=None, expand=None, fill_value=np.nan): - from pandas.core.index import Index, MultiIndex + from pandas import Index, Series, MultiIndex # for category, we do the stuff on the categories, so blow it up # to the full series again @@ -1862,7 +1862,8 @@ def _wrap_result(self, result, use_codes=True, # so make it possible to skip this step as the method already did this # before the transformation... if use_codes and self._is_categorical: - result = take_1d(result, self._orig.cat.codes, + # if self._orig is a CategoricalIndex, there is no .cat-accessor + result = take_1d(result, Series(self._orig, copy=False).cat.codes, fill_value=fill_value) if not hasattr(result, 'ndim') or not hasattr(result, 'dtype'):
BUG: many methods on CategoricalIndex.str are broken This was also uncovered by #23167, but is a different error than #23555. Basically, all methods calling `CategoricalIndex.str._wrap_result(result, use_codes=True)` will necessarily fail, e.g.: ``` >>> import pandas as pd >>> pd.Index(['a', 'b', 'aa'], dtype='category').str.replace('a', 'c') Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\ProgramData\Miniconda3\envs\pandas-dev\lib\site-packages\pandas\core\strings.py", line 2430, in replace return self._wrap_result(result) File "C:\ProgramData\Miniconda3\envs\pandas-dev\lib\site-packages\pandas\core\strings.py", line 1964, in _wrap_result result = take_1d(result, self._orig.cat.codes) AttributeError: 'CategoricalIndex' object has no attribute 'cat' ``` This is because `self._orig` is the original `CategoricalIndex`, which does not have a `cat`-accessor.
Yikes! That's a pretty serious bug there... cc @jreback
2018-11-29T23:37:46Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\ProgramData\Miniconda3\envs\pandas-dev\lib\site-packages\pandas\core\strings.py", line 2430, in replace return self._wrap_result(result) File "C:\ProgramData\Miniconda3\envs\pandas-dev\lib\site-packages\pandas\core\strings.py", line 1964, in _wrap_result result = take_1d(result, self._orig.cat.codes) AttributeError: 'CategoricalIndex' object has no attribute 'cat'
12,374
pandas-dev/pandas
pandas-dev__pandas-24634
dc91f4cb03208889b98dc29c1a1fe46b979e81c7
diff --git a/doc/source/whatsnew/v0.24.0.rst b/doc/source/whatsnew/v0.24.0.rst --- a/doc/source/whatsnew/v0.24.0.rst +++ b/doc/source/whatsnew/v0.24.0.rst @@ -1553,6 +1553,7 @@ Timezones - Bug in :func:`to_datetime` where ``utc=True`` was not respected when specifying a ``unit`` and ``errors='ignore'`` (:issue:`23758`) - Bug in :func:`to_datetime` where ``utc=True`` was not respected when passing a :class:`Timestamp` (:issue:`24415`) - Bug in :meth:`DataFrame.any` returns wrong value when ``axis=1`` and the data is of datetimelike type (:issue:`23070`) +- Bug in :meth:`DatetimeIndex.to_period` where a timezone aware index was converted to UTC first before creating :class:`PeriodIndex` (:issue:`22905`) Offsets ^^^^^^^ @@ -1802,6 +1803,9 @@ Reshaping - Constructing a DataFrame with an index argument that wasn't already an instance of :class:`~pandas.core.Index` was broken (:issue:`22227`). - Bug in :class:`DataFrame` prevented list subclasses to be used to construction (:issue:`21226`) - Bug in :func:`DataFrame.unstack` and :func:`DataFrame.pivot_table` returning a missleading error message when the resulting DataFrame has more elements than int32 can handle. Now, the error message is improved, pointing towards the actual problem (:issue:`20601`) +- Bug in :func:`DataFrame.unstack` where a ``ValueError`` was raised when unstacking timezone aware values (:issue:`18338`) +- Bug in :func:`DataFrame.stack` where timezone aware values were converted to timezone naive values (:issue:`19420`) +- Bug in :func:`merge_asof` where a ``TypeError`` was raised when ``by_col`` were timezone aware values (:issue:`21184`) .. _whatsnew_0240.bug_fixes.sparse:
bug: merge_asof with tz-aware datetime "by" parameter raises #### Code Sample ```python import pandas as pd left = pd.DataFrame({'by_col': pd.DatetimeIndex(['2018-01-01']).tz_localize('UTC'), 'on_col': [2], 'values': ['a']}) right = pd.DataFrame({'by_col': pd.DatetimeIndex(['2018-01-01']).tz_localize('UTC'), 'on_col': [1], 'values': ['b']}) merged = pd.merge_asof(left, right, by='by_col', on='on_col') ``` #### Error traceback ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\Hamb\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\reshape\merge.py", line 478, in merge_asof return op.get_result() File "C:\Users\Hamb\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\reshape\merge.py", line 1163, in get_result join_index, left_indexer, right_indexer = self._get_join_info() File "C:\Users\Hamb\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\reshape\merge.py", line 776, in _get_join_info right_indexer) = self._get_join_indexers() File "C:\Users\Hamb\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\reshape\merge.py", line 1437, in _get_join_indexers tolerance) TypeError: Argument 'left_by_values' has incorrect type (expected numpy.ndarray, got Index) ``` #### Problem description Function pandas.merge_asof raises when "by" parameter is provided a column of tz-aware datetime type. Note that the same code with tz-naive datetimes works : ```python import pandas as pd left = pd.DataFrame({'by_col': pd.DatetimeIndex(['2018-01-01']), 'on_col': [2], 'values': ['a']}) right = pd.DataFrame({'by_col': pd.DatetimeIndex(['2018-01-01']), 'on_col': [1], 'values': ['b']}) merged = pd.merge_asof(left, right, by='by_col', on='on_col') print(merged) ``` outputs : ``` by_col on_col values_x values_y 0 2018-01-01 2 a b ``` #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.6.4.final.0 python-bits: 64 OS: Windows OS-release: 7 machine: AMD64 processor: Intel64 Family 6 Model 60 Stepping 3, GenuineIntel byteorder: little LC_ALL: None LANG: FR LOCALE: None.None pandas: 0.23.0 pytest: None pip: 10.0.1 setuptools: 38.5.1 Cython: None numpy: 1.14.1 scipy: 1.0.0 pyarrow: None xarray: None IPython: None sphinx: None patsy: None dateutil: 2.6.1 pytz: 2018.3 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: 0.9999999 sqlalchemy: None pymysql: None psycopg2: None jinja2: None s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None </details>
Thanks, I can confirm that this bug is occurring on master. PR to fix is welcome! xref #14844 : a similar `merge_asof` tz-aware issue that's been fixed, and could potentially be useful for determining a fix here (not certain though). I'd be glad to help, but have no experience in contributing to a big project. So I can try to find a fix when I have time to dive into it, but no promises yet ! :) When the `_get_merge_keys` function preps the keys in `pandas/core/reshape/merge.py`, essentially this happens: ``` In [8]: left Out[8]: by_col on_col values 0 2018-01-01 00:00:00+00:00 2 a In [9]: left_naive Out[9]: by_col on_col values 0 2018-01-01 2 a In [10]: left._get_label_or_level_values('by_col') Out[10]: DatetimeIndex(['2018-01-01'], dtype='datetime64[ns, UTC]', freq=None) In [11]: left_naive._get_label_or_level_values('by_col') Out[11]: array(['2018-01-01T00:00:00.000000000'], dtype='datetime64[ns]') ``` The results are cast to object dtype, but are passed to a cython function that expects a numpy array instead of an Index. A `.values` call is needed somewhere in the flow to cast timezone aware keys to a numpy array. here's a patch to fix. prob could use some general refactoring in this routine (maybe), but can do in the future ``` diff --git a/pandas/core/reshape/merge.py b/pandas/core/reshape/merge.py index 4d8897fb7..58454d0cf 100644 --- a/pandas/core/reshape/merge.py +++ b/pandas/core/reshape/merge.py @@ -1420,6 +1420,11 @@ class _AsOfMerge(_OrderedMerge): left_by_values = flip(left_by_values) right_by_values = flip(right_by_values) + # initial type conversion as needed + if needs_i8_conversion(left_by_values): + left_by_values = left_by_values.view('i8') + right_by_values = right_by_values.view('i8') + # upcast 'by' parameter because HashTable is limited by_type = _get_cython_type_upcast(left_by_values.dtype) by_type_caster = _type_casters[by_type] ``` I was actually looking into a fix too this morning, and in the process found out that the bug originated in a typing issue in the following function of pandas/core/generic.py (line 1327) : ``` def _get_label_or_level_values(self, key, axis=0, stacklevel=1): """ Return a 1-D array of values associated with `key`, a label or level from the given `axis`. ``` The expected return type is a numpy array, but the following (line 1375) : ``` values = self.xs(key, axis=other_axes[0])._values ``` produces a DateTimeIndex in the case when _values is accessed on a tz-aware datetime Series. This is because _values is overridden in pandas/core/indexes/datetimes.py (line 675): ``` @property def _values(self): # tz-naive -> ndarray # tz-aware -> DatetimeIndex if self.tz is not None: return self else: return self.values ``` edit: The problem i'm pointing out also yields an error when doing things such as ``` left = pd.DataFrame({'on_col': pd.DatetimeIndex(['2018-01-01']).tz_localize('UTC'), 'values': ['a']}) right = pd.DataFrame({'values': ['b']}, index=pd.DatetimeIndex(['2018-01-01']).tz_localize('UTC')) merged = left.merge(right, left_on='on_col', right_index=True) ``` Sorry for the lack of details, i'm a bit out of time right now, i can elaborate later if needed. This looks to be fixed on master now. Could use a test.
2019-01-05T08:27:33Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\Hamb\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\reshape\merge.py", line 478, in merge_asof return op.get_result() File "C:\Users\Hamb\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\reshape\merge.py", line 1163, in get_result join_index, left_indexer, right_indexer = self._get_join_info() File "C:\Users\Hamb\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\reshape\merge.py", line 776, in _get_join_info right_indexer) = self._get_join_indexers() File "C:\Users\Hamb\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\reshape\merge.py", line 1437, in _get_join_indexers tolerance) TypeError: Argument 'left_by_values' has incorrect type (expected numpy.ndarray, got Index)
12,466
pandas-dev/pandas
pandas-dev__pandas-24725
17a6bc56e5ab6ad3dab12d3a8b20ed69a5830b6f
diff --git a/doc/source/whatsnew/v0.24.0.rst b/doc/source/whatsnew/v0.24.0.rst --- a/doc/source/whatsnew/v0.24.0.rst +++ b/doc/source/whatsnew/v0.24.0.rst @@ -1816,6 +1816,7 @@ Reshaping - Bug in :func:`DataFrame.unstack` where a ``ValueError`` was raised when unstacking timezone aware values (:issue:`18338`) - Bug in :func:`DataFrame.stack` where timezone aware values were converted to timezone naive values (:issue:`19420`) - Bug in :func:`merge_asof` where a ``TypeError`` was raised when ``by_col`` were timezone aware values (:issue:`21184`) +- Bug showing an incorrect shape when throwing error during ``DataFrame`` construction. (:issue:`20742`) .. _whatsnew_0240.bug_fixes.sparse: @@ -1853,6 +1854,7 @@ Other - Bug where C variables were declared with external linkage causing import errors if certain other C libraries were imported before Pandas. (:issue:`24113`) + .. _whatsnew_0.24.0.contributors: Contributors diff --git a/pandas/core/internals/managers.py b/pandas/core/internals/managers.py --- a/pandas/core/internals/managers.py +++ b/pandas/core/internals/managers.py @@ -1674,7 +1674,15 @@ def create_block_manager_from_arrays(arrays, names, axes): def construction_error(tot_items, block_shape, axes, e=None): """ raise a helpful message about our construction """ passed = tuple(map(int, [tot_items] + list(block_shape))) - implied = tuple(map(int, [len(ax) for ax in axes])) + # Correcting the user facing error message during dataframe construction + if len(passed) <= 2: + passed = passed[::-1] + + implied = tuple(len(ax) for ax in axes) + # Correcting the user facing error message during dataframe construction + if len(implied) <= 2: + implied = implied[::-1] + if passed == implied and e is not None: raise e if block_shape[0] == 0:
DataFrame creation incorrect error message The problem was already mentioned as part of other issues, but still persists in 0.22 https://github.com/pandas-dev/pandas/issues/8020 https://github.com/blaze/blaze/issues/466 Reported both expected shape and input data shape are both transposed which causes a lot of confusion. In my opinion, the reference value should be ` DataFrame.shape`. ```python my_arr = np.array([1, 2, 3]) print("my_arr.shape: {}".format(my_arr.shape)) df = pd.DataFrame(index=[0], columns=range(0, 4), data=my_arr) ``` ```python my_arr.shape: (3,) Traceback (most recent call last): ... ValueError: Shape of passed values is (1, 3), indices imply (4, 1) ``` Below are shapes which are expected to be reported: ```python my_arr = np.array([[0, 1, 2, 3]]) print("my_arr.shape: {}".format(my_arr.shape)) df = pd.DataFrame(index=[0], columns=range(0, 4), data=my_arr) print(df.shape)` ``` ```python my_arr.shape: (1, 4) (1, 4) ``` I'm not sure, whether this is another issue, but in the first example, the error cause is 1-dimensional data while constructor expects 2-dimensional data. The user gets no hint about this from the error message.
the first example is wrong. The block manager reports this, but doesn't flip the dim (like we do for everything else), so would welcome a PR to correct that. I don't see a problem with the 2nd. You gave a 1, 4 array. That's the same as the dim of the frame, so it constructs.
2019-01-11T15:13:07Z
[]
[]
Traceback (most recent call last): ... ValueError: Shape of passed values is (1, 3), indices imply (4, 1)
12,476
pandas-dev/pandas
pandas-dev__pandas-24758
453fa85a8b88ca22c7b878a3fcf97e068f11b6c4
diff --git a/doc/source/whatsnew/v0.24.0.rst b/doc/source/whatsnew/v0.24.0.rst --- a/doc/source/whatsnew/v0.24.0.rst +++ b/doc/source/whatsnew/v0.24.0.rst @@ -1790,6 +1790,7 @@ I/O - Bug in :meth:`DataFrame.to_dict` when the resulting dict contains non-Python scalars in the case of numeric data (:issue:`23753`) - :func:`DataFrame.to_string()`, :func:`DataFrame.to_html()`, :func:`DataFrame.to_latex()` will correctly format output when a string is passed as the ``float_format`` argument (:issue:`21625`, :issue:`22270`) - Bug in :func:`read_csv` that caused it to raise ``OverflowError`` when trying to use 'inf' as ``na_value`` with integer index column (:issue:`17128`) +- Bug in :func:`read_csv` that caused the C engine on Python 3.6+ on Windows to improperly read CSV filenames with accented or special characters (:issue:`15086`) - Bug in :func:`read_fwf` in which the compression type of a file was not being properly inferred (:issue:`22199`) - Bug in :func:`pandas.io.json.json_normalize` that caused it to raise ``TypeError`` when two consecutive elements of ``record_path`` are dicts (:issue:`22706`) - Bug in :meth:`DataFrame.to_stata`, :class:`pandas.io.stata.StataWriter` and :class:`pandas.io.stata.StataWriter117` where a exception would leave a partially written and invalid dta file (:issue:`23573`) diff --git a/pandas/_libs/parsers.pyx b/pandas/_libs/parsers.pyx --- a/pandas/_libs/parsers.pyx +++ b/pandas/_libs/parsers.pyx @@ -677,7 +677,13 @@ cdef class TextReader: if isinstance(source, basestring): if not isinstance(source, bytes): - source = source.encode(sys.getfilesystemencoding() or 'utf-8') + if compat.PY36 and compat.is_platform_windows(): + # see gh-15086. + encoding = "mbcs" + else: + encoding = sys.getfilesystemencoding() or "utf-8" + + source = source.encode(encoding) if self.memory_map: ptr = new_mmap(source)
OSError when reading file with accents in file path #### Code Sample, a copy-pastable example if possible `test.txt` and `test_é.txt` are the same file, only the name change: ```python pd.read_csv('test.txt') Out[3]: 1 1 1 0 1 1 1 1 1 1 1 pd.read_csv('test_é.txt') Traceback (most recent call last): File "<ipython-input-4-fd67679d1d17>", line 1, in <module> pd.read_csv('test_é.txt') File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 646, in parser_f return _read(filepath_or_buffer, kwds) File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 389, in _read parser = TextFileReader(filepath_or_buffer, **kwds) File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 730, in __init__ self._make_engine(self.engine) File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 923, in _make_engine self._engine = CParserWrapper(self.f, **self.options) File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 1390, in __init__ self._reader = _parser.TextReader(src, **kwds) File "pandas\parser.pyx", line 373, in pandas.parser.TextReader.__cinit__ (pandas\parser.c:4184) File "pandas\parser.pyx", line 669, in pandas.parser.TextReader._setup_parser_source (pandas\parser.c:8471) OSError: Initializing from file failed ``` #### Problem description Pandas return OSError when trying to read a file with accents in file path. The problem is new (Since I upgraded to Python 3.6 and Pandas 0.19.2) #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.6.0.final.0 python-bits: 64 OS: Windows OS-release: 7 machine: AMD64 processor: Intel64 Family 6 Model 94 Stepping 3, GenuineIntel byteorder: little LC_ALL: None LANG: fr LOCALE: None.None pandas: 0.19.2 nose: None pip: 9.0.1 setuptools: 32.3.1 Cython: 0.25.2 numpy: 1.11.3 scipy: 0.18.1 statsmodels: None xarray: None IPython: 5.1.0 sphinx: 1.5.1 patsy: None dateutil: 2.6.0 pytz: 2016.10 blosc: None bottleneck: 1.2.0 tables: None numexpr: 2.6.1 matplotlib: 1.5.3 openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: 0.999999999 httplib2: None apiclient: None sqlalchemy: 1.1.4 pymysql: None psycopg2: None jinja2: 2.9.3 boto: None pandas_datareader: None </details>
Just my pennies worth. Quickly tried it out on Mac OSX and Ubuntu with no problems. See below. Could this be an environment/platform problem? I noticed that the `LOCALE` is set to `None.None`. Unfortunately I do not have a windows machine to try this example on. Admittedly this would not explain why you've seen this *after* the upgrade to python3.6 and pandas 0.19.2. Note: I just set up a virtualenv with python3.6 and installed pandas 0.19.2 using pip. ```python >>> import pandas as pd >>> pd.read_csv('test_é.txt') a b c 0 1 2 3 1 4 5 6 ``` Output of **pd.show_versions()** <details> INSTALLED VERSIONS commit: None python: 3.6.0.final.0 python-bits: 64 OS: Linux OS-release: 4.4.0-57-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: en_GB.UTF-8 pandas: 0.19.2 nose: None pip: 9.0.1 setuptools: 32.3.1 Cython: None numpy: 1.11.3 scipy: None statsmodels: None xarray: None IPython: None sphinx: None patsy: None dateutil: 2.6.0 pytz: 2016.10 blosc: None bottleneck: None tables: None numexpr: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: None httplib2: None apiclient: None sqlalchemy: None pymysql: None psycopg2: None jinja2: None boto: None pandas_datareader: None </details> I believe 3.6 switches the file system encoding on windows to utf8 (from ascii). Apart from that we don't have testing enable yet on windows for 3.6 (as some of the required packages are just now becoming available). @JGoutin so I just added build support on appveyor (windows) for 3.6, so if you'd push up your tests to see if it works, would be great. I also faced the same problem when the program stopped at pd.read_csv(file_path). The situation is similar to me after I upgraded my python to 3.6 (I'm not sure the last time the python I installed is exactly what version, maybe 3.5......). @jreback what is the next step towards a fix here? You have mentioned a PR that got 'blown away' - what does it mean? While I do not use Windows, I could try to help (just got a VM to debug a piece of my code that apparently does not work on windows) BTW, a workaround: pass a file handle instead of a name `pd.read_csv(open('test_é.txt', 'r'))` (there are several workarounds in related issues, but I have not seen this one) @tpietruszka see comments on the PR: https://github.com/pandas-dev/pandas/pull/15092 (it got removed from a private fork, was pretty much there). you basically need to encode the paths differently on py3.6 (vs other pythons) on wnidows. basically need to implement: https://docs.python.org/3/whatsnew/3.6.html#pep-529-change-windows-filesystem-encoding-to-utf-8 my old code (can't run): ``` import pandas as pd import os file_path='./dict/字典.csv' df_name = pd.read_csv(file_path,sep=',' ) ``` new code (sucessful): ``` import pandas as pd import os file_path='./dict/dict.csv' df_name = pd.read_csv(file_path,sep=',' ) ``` I think this bug is filename problem. I change filename from chinese to english, it can run now. If anyone comes here like me because he/she hit the same problem, here is a solution until pandas is fixed to work with pep 529 (basically any non ascii chars will in your path or filename will result in errors): Insert the following two lines at the beginning of your code to revert back to the old way of handling paths on windows: ``` import sys sys._enablelegacywindowsfsencoding() ``` I use the solution above and it works. Thanks very much @fotisj ! However I'm still confused on why DataFrame.to_csv() doesn't occur same problem. In other words, for unicode file path, write is ok, while read isn't. path=os.path.join('E:\语料','sina.csv') pd.read_csv(open(path, 'r',encoding='utf8')) It is successful. Can someone with an affected system check if changing this line https://github.com/pandas-dev/pandas/blob/e8620abc12a4c468a75adb8607fd8e0eb1c472e7/pandas/io/common.py#L209 to ```python return _expand_user(os.fsencode(filepath_or_buffer)), None, compression ``` fixes it? No, it does not. Results in: OSError: Expected file path name or file-like object, got <class 'bytes'> type (on Windows 10) OSError Traceback (most recent call last) <ipython-input-2-e8247998d6d4> in <module>() 1 ----> 2 df = pd.read_csv(r'D:\mydata\Dropbox\uni\progrs\test öäau\n\teu.csv', sep='\t') C:\conda\lib\site-packages\pandas\io\parsers.py in parser_f(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, skip_footer, doublequote, delim_whitespace, as_recarray, compact_ints, use_unsigned, low_memory, buffer_lines, memory_map, float_precision) 707 skip_blank_lines=skip_blank_lines) 708 --> 709 return _read(filepath_or_buffer, kwds) 710 711 parser_f.__name__ = name C:\conda\lib\site-packages\pandas\io\parsers.py in _read(filepath_or_buffer, kwds) 447 448 # Create the parser. --> 449 parser = TextFileReader(filepath_or_buffer, **kwds) 450 451 if chunksize or iterator: C:\conda\lib\site-packages\pandas\io\parsers.py in __init__(self, f, engine, **kwds) 816 self.options['has_index_names'] = kwds['has_index_names'] 817 --> 818 self._make_engine(self.engine) 819 820 def close(self): C:\conda\lib\site-packages\pandas\io\parsers.py in _make_engine(self, engine) 1047 def _make_engine(self, engine='c'): 1048 if engine == 'c': -> 1049 self._engine = CParserWrapper(self.f, **self.options) 1050 else: 1051 if engine == 'python': C:\conda\lib\site-packages\pandas\io\parsers.py in __init__(self, src, **kwds) 1693 kwds['allow_leading_cols'] = self.index_col is not False 1694 -> 1695 self._reader = parsers.TextReader(src, **kwds) 1696 1697 # XXX pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader.__cinit__() pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._setup_parser_source() OSError: Expected file path name or file-like object, got <class 'bytes'> type Oh, sorry. Does fsdecode work there? ________________________________ From: Fotis Jannidis <notifications@github.com> Sent: Saturday, February 3, 2018 8:00:13 AM To: pandas-dev/pandas Cc: Tom Augspurger; Comment Subject: Re: [pandas-dev/pandas] OSError when reading file with accents in file path (#15086) No, it does not. Results in: OSError: Expected file path name or file-like object, got <class 'bytes'> type — You are receiving this because you commented. Reply to this email directly, view it on GitHub<https://github.com/pandas-dev/pandas/issues/15086#issuecomment-362809602>, or mute the thread<https://github.com/notifications/unsubscribe-auth/ABQHIplv8thHxpjsP3knUCpET0Fjy0kLks5tRGZsgaJpZM4LeTSB>. No. Using fsdecode produces the same error we originally had ([error_msg.txt](https://github.com/pandas-dev/pandas/files/1691837/error_msg.txt)) Ok thanks for trying. ________________________________ From: Fotis Jannidis <notifications@github.com> Sent: Saturday, February 3, 2018 8:57:07 AM To: pandas-dev/pandas Cc: Tom Augspurger; Comment Subject: Re: [pandas-dev/pandas] OSError when reading file with accents in file path (#15086) No. Using fsdecode produces the same error we originally had (error_msg.txt<https://github.com/pandas-dev/pandas/files/1691837/error_msg.txt>) — You are receiving this because you commented. Reply to this email directly, view it on GitHub<https://github.com/pandas-dev/pandas/issues/15086#issuecomment-362818153>, or mute the thread<https://github.com/notifications/unsubscribe-auth/ABQHIpeYsj9Bv3OsoHAsOufXzU3AYSBSks5tRHPCgaJpZM4LeTSB>. Talked with Steve Dower today, and he suspects this may be the problematic line: https://github.com/pandas-dev/pandas/blob/e8f206d8192b409bc39da1ba1b2c5bcd8b65cc9f/pandas/_libs/src/parser/io.c#L30 IIUC, the Windows filesystem API is expecting those bytes to be in the MBCS, but we're using utf-8. A user-level workaround is to explicitly encode your filename as mbcs before passing the bytestring to pandas. https://www.python.org/dev/peps/pep-0529/#explicitly-using-mbcs ```python pd.read_csv(filename.encode('mbcs')) ``` is anyone able to test out that workaround? just need a small change in the parser code to fix this (there was a PR doing this) but was deleted @TomAugspurger that does not work. read_csv expects a `str` and not a `bytes` value. It fails with OSError: Expected file path name or file-like object, got <class 'bytes'> type Thanks for checking. On Fri, Apr 20, 2018 at 3:43 PM, João D. Ferreira <notifications@github.com> wrote: > @TomAugspurger <https://github.com/TomAugspurger> that does not work. > read_csv expects a str and not a bytes value. It fails with > > OSError: Expected file path name or file-like object, got <class 'bytes'> type > > — > You are receiving this because you were mentioned. > Reply to this email directly, view it on GitHub > <https://github.com/pandas-dev/pandas/issues/15086#issuecomment-383217062>, > or mute the thread > <https://github.com/notifications/unsubscribe-auth/ABQHIiOHyt3sT7B0pHJuY5lB-cJtT5JHks5tqkiEgaJpZM4LeTSB> > . > Just pinging this - I have the same issue, I'm using a workaround but it would be great if that was not required. this needs a community patch I am encountering this issue. I want to try and contribute a patchc Any pointers on how to start fixing this? I think none of the maintainers have access to a system that can reproduce this. Perhaps some of the others in this issue can help put together a solution.
2019-01-13T23:42:56Z
[]
[]
Traceback (most recent call last): File "<ipython-input-4-fd67679d1d17>", line 1, in <module> pd.read_csv('test_é.txt') File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 646, in parser_f return _read(filepath_or_buffer, kwds) File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 389, in _read parser = TextFileReader(filepath_or_buffer, **kwds) File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 730, in __init__ self._make_engine(self.engine) File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 923, in _make_engine self._engine = CParserWrapper(self.f, **self.options) File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 1390, in __init__ self._reader = _parser.TextReader(src, **kwds) File "pandas\parser.pyx", line 373, in pandas.parser.TextReader.__cinit__ (pandas\parser.c:4184) File "pandas\parser.pyx", line 669, in pandas.parser.TextReader._setup_parser_source (pandas\parser.c:8471) OSError: Initializing from file failed
12,482
pandas-dev/pandas
pandas-dev__pandas-24837
f4458c18287288562b21adece524fc1b046e9724
diff --git a/asv_bench/benchmarks/io/csv.py b/asv_bench/benchmarks/io/csv.py --- a/asv_bench/benchmarks/io/csv.py +++ b/asv_bench/benchmarks/io/csv.py @@ -214,4 +214,23 @@ def time_baseline(self): names=list(string.digits[:9])) +class ReadCSVMemoryGrowth(BaseIO): + + chunksize = 20 + num_rows = 1000 + fname = "__test__.csv" + + def setup(self): + with open(self.fname, "w") as f: + for i in range(self.num_rows): + f.write("{i}\n".format(i=i)) + + def mem_parser_chunks(self): + # see gh-24805. + result = read_csv(self.fname, chunksize=self.chunksize) + + for _ in result: + pass + + from ..pandas_vb_common import setup # noqa: F401 diff --git a/pandas/_libs/src/parser/tokenizer.c b/pandas/_libs/src/parser/tokenizer.c --- a/pandas/_libs/src/parser/tokenizer.c +++ b/pandas/_libs/src/parser/tokenizer.c @@ -300,7 +300,7 @@ static int make_stream_space(parser_t *self, size_t nbytes) { * just because a recent chunk did not have as many words. */ if (self->words_len + nbytes < self->max_words_cap) { - length = self->max_words_cap - nbytes; + length = self->max_words_cap - nbytes - 1; } else { length = self->words_len; }
read_csv using C engine and chunksize can grow memory usage exponentially in 0.24.0rc1 #### Code Sample ```python import pandas as pd NUM_ROWS = 1000 CHUNKSIZE = 20 with open('test.csv', 'w') as f: for i in range(NUM_ROWS): f.write('{}\n'.format(i)) for chunk_index, chunk in enumerate(pd.read_csv('test.csv', chunksize=CHUNKSIZE, engine='c')): print(chunk_index) ``` #### Problem description In v0.24.0rc1, using `chunksize` in `pandas.read_csv` with the C engine causes exponential memory growth (`engine='python'` works fine). The code sample I listed uses a very small chunksize to better illustrate the issue but the issue happens with more realistic values like `NUM_ROWS = 1000000` and `CHUNKSIZE = 1024`. The `low_memory` parameter in `pd.read_csv()` doesn't affect the behavior. On Windows, the process becomes very slow as memory usage grows. On Linux, an out-of-memory exception is raised after some chunks are processed and the buffer length grows too much. For example: <details> ``` 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ``` ```pytb Traceback (most recent call last): File "test_csv.py", line 10, in <module> for chunk_index, chunk in enumerate(pd.read_csv('test.csv', chunksize=CHUNKSIZE, engine='c')): File "/home/meira/.conda/envs/pandas024/lib/python3.6/site-packages/pandas/io/parsers.py", line 1110, in __next__ return self.get_chunk() File "/home/meira/.conda/envs/pandas024/lib/python3.6/site-packages/pandas/io/parsers.py", line 1168, in get_chunk return self.read(nrows=size) File "/home/meira/.conda/envs/pandas024/lib/python3.6/site-packages/pandas/io/parsers.py", line 1134, in read ret = self._engine.read(nrows) File "/home/meira/.conda/envs/pandas024/lib/python3.6/site-packages/pandas/io/parsers.py", line 1977, in read data = self._reader.read(nrows) File "pandas/_libs/parsers.pyx", line 893, in pandas._libs.parsers.TextReader.read File "pandas/_libs/parsers.pyx", line 920, in pandas._libs.parsers.TextReader._read_low_memory File "pandas/_libs/parsers.pyx", line 962, in pandas._libs.parsers.TextReader._read_rows File "pandas/_libs/parsers.pyx", line 949, in pandas._libs.parsers.TextReader._tokenize_rows File "pandas/_libs/parsers.pyx", line 2166, in pandas._libs.parsers.raise_parser_error pandas.errors.ParserError: Error tokenizing data. C error: out of memory ``` </details> I tried to debug the C code from the tokenizer as of 0bd454cdc9307d3a7e73403c49cc8350965628ce. The unexpected behavior seems present since 011b79fbf73b45313b47c08b4be1fc07dcb99365 which introduces these lines (and other changes) to fix #23509: https://github.com/pandas-dev/pandas/blob/0bd454cdc9307d3a7e73403c49cc8350965628ce/pandas/_libs/src/parser/tokenizer.c#L294-L306 I'm not familiar with the code, so I could be misinterpreting it, but I believe that code block, coupled with how `self->words_cap` and `self->max_words_cap` are handled could be the source of the issue. There are some potentially misleading variables names like `nbytes` that seem to refer to the number of bytes that are later interpreted as `nbytes tokens` -- I couldn't follow what's happening but hopefully this report helps. It seems the issue could also be related to https://github.com/pandas-dev/pandas/issues/16537 and https://github.com/pandas-dev/pandas/issues/21516 but the specific changes that cause it are newer, not present in previous releases. #### Expected Output ``` 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 ``` #### Output of ``pd.show_versions()`` <details> ``` INSTALLED VERSIONS ------------------ commit: None python: 3.6.0.final.0 python-bits: 64 OS: Linux OS-release: 4.12.14-lp150.12.25-default machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.24.0rc1 pytest: None pip: 18.1 setuptools: 40.6.3 Cython: None numpy: 1.15.4 scipy: None pyarrow: None xarray: None IPython: None sphinx: None patsy: None dateutil: 2.7.5 pytz: 2018.9 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml.etree: None bs4: None html5lib: None sqlalchemy: None pymysql: None psycopg2: None jinja2: None s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None gcsfs: None ``` </details>
cc @gfyoung @PMeira : Thanks for reporting this! I can confirm this error as well. Did your code example previously work with `0.23.4` by any chance? Code from the OP works for me on 0.23.4. @gfyoung Yes, it worked fine with version `0.23.4`, just checked to be sure. I first noticed it from a failing test in another module that I'm trying to port to recent versions of Pandas. @PMeira @h-vetinari : Thanks for looking into this! Sounds like we have a regression on our hands... @gfyoung do you have time to do this for 0.24.0? I don't think we have a release date set yet, but sometime in the next week or so? @TomAugspurger : Yep, I'm going to look into this on the weekend. @PMeira : Your observations are validated by what happens behind the scenes, as your numbers produce a snowball effect that causes the memory allocation to double with every iteration of reading. It is indeed an edge case, as your numbers work just perfectly to cause memory allocated to be powers of 2. In fact, your "smaller example" fails for me for that reason on my local machine. I think I have a patch for this that prevents the memory usage from growing exponentially, but I need to test to make sure I didn't break anything else with it.
2019-01-19T11:40:03Z
[]
[]
Traceback (most recent call last): File "test_csv.py", line 10, in <module> for chunk_index, chunk in enumerate(pd.read_csv('test.csv', chunksize=CHUNKSIZE, engine='c')): File "/home/meira/.conda/envs/pandas024/lib/python3.6/site-packages/pandas/io/parsers.py", line 1110, in __next__ return self.get_chunk() File "/home/meira/.conda/envs/pandas024/lib/python3.6/site-packages/pandas/io/parsers.py", line 1168, in get_chunk return self.read(nrows=size) File "/home/meira/.conda/envs/pandas024/lib/python3.6/site-packages/pandas/io/parsers.py", line 1134, in read ret = self._engine.read(nrows) File "/home/meira/.conda/envs/pandas024/lib/python3.6/site-packages/pandas/io/parsers.py", line 1977, in read data = self._reader.read(nrows) File "pandas/_libs/parsers.pyx", line 893, in pandas._libs.parsers.TextReader.read File "pandas/_libs/parsers.pyx", line 920, in pandas._libs.parsers.TextReader._read_low_memory File "pandas/_libs/parsers.pyx", line 962, in pandas._libs.parsers.TextReader._read_rows File "pandas/_libs/parsers.pyx", line 949, in pandas._libs.parsers.TextReader._tokenize_rows File "pandas/_libs/parsers.pyx", line 2166, in pandas._libs.parsers.raise_parser_error pandas.errors.ParserError: Error tokenizing data. C error: out of memory
12,490
pandas-dev/pandas
pandas-dev__pandas-24984
3855a27be4f04d15e7ba7aee12f0220c93148d3d
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -22,6 +22,7 @@ Other Enhancements - Indexing of ``DataFrame`` and ``Series`` now accepts zerodim ``np.ndarray`` (:issue:`24919`) - :meth:`Timestamp.replace` now supports the ``fold`` argument to disambiguate DST transition times (:issue:`25017`) - :meth:`DataFrame.at_time` and :meth:`Series.at_time` now support :meth:`datetime.time` objects with timezones (:issue:`24043`) +- :meth:`DataFrame.set_index` now works for instances of ``abc.Iterator``, provided their output is of the same length as the calling frame (:issue:`22484`, :issue:`24984`) - :meth:`DatetimeIndex.union` now supports the ``sort`` argument. The behaviour of the sort parameter matches that of :meth:`Index.union` (:issue:`24994`) - diff --git a/pandas/compat/__init__.py b/pandas/compat/__init__.py --- a/pandas/compat/__init__.py +++ b/pandas/compat/__init__.py @@ -137,6 +137,7 @@ def lfilter(*args, **kwargs): reload = reload Hashable = collections.abc.Hashable Iterable = collections.abc.Iterable + Iterator = collections.abc.Iterator Mapping = collections.abc.Mapping MutableMapping = collections.abc.MutableMapping Sequence = collections.abc.Sequence @@ -199,6 +200,7 @@ def get_range_parameters(data): Hashable = collections.Hashable Iterable = collections.Iterable + Iterator = collections.Iterator Mapping = collections.Mapping MutableMapping = collections.MutableMapping Sequence = collections.Sequence diff --git a/pandas/core/frame.py b/pandas/core/frame.py --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -33,7 +33,7 @@ from pandas import compat from pandas.compat import (range, map, zip, lmap, lzip, StringIO, u, - PY36, raise_with_traceback, + PY36, raise_with_traceback, Iterator, string_and_binary_types) from pandas.compat.numpy import function as nv from pandas.core.dtypes.cast import ( @@ -4025,7 +4025,8 @@ def set_index(self, keys, drop=True, append=False, inplace=False, This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, "array" - encompasses :class:`Series`, :class:`Index` and ``np.ndarray``. + encompasses :class:`Series`, :class:`Index`, ``np.ndarray``, and + instances of :class:`abc.Iterator`. drop : bool, default True Delete columns to be used as the new index. append : bool, default False @@ -4104,6 +4105,32 @@ def set_index(self, keys, drop=True, append=False, inplace=False, if not isinstance(keys, list): keys = [keys] + err_msg = ('The parameter "keys" may be a column key, one-dimensional ' + 'array, or a list containing only valid column keys and ' + 'one-dimensional arrays.') + + missing = [] + for col in keys: + if isinstance(col, (ABCIndexClass, ABCSeries, np.ndarray, + list, Iterator)): + # arrays are fine as long as they are one-dimensional + # iterators get converted to list below + if getattr(col, 'ndim', 1) != 1: + raise ValueError(err_msg) + else: + # everything else gets tried as a key; see GH 24969 + try: + found = col in self.columns + except TypeError: + raise TypeError(err_msg + ' Received column of ' + 'type {}'.format(type(col))) + else: + if not found: + missing.append(col) + + if missing: + raise KeyError('None of {} are in the columns'.format(missing)) + if inplace: frame = self else: @@ -4132,6 +4159,9 @@ def set_index(self, keys, drop=True, append=False, inplace=False, elif isinstance(col, (list, np.ndarray)): arrays.append(col) names.append(None) + elif isinstance(col, Iterator): + arrays.append(list(col)) + names.append(None) # from here, col can only be a column label else: arrays.append(frame[col]._values) @@ -4139,6 +4169,15 @@ def set_index(self, keys, drop=True, append=False, inplace=False, if drop: to_remove.append(col) + if len(arrays[-1]) != len(self): + # check newest element against length of calling frame, since + # ensure_index_from_sequences would not raise for append=False. + raise ValueError('Length mismatch: Expected {len_self} rows, ' + 'received array of length {len_col}'.format( + len_self=len(self), + len_col=len(arrays[-1]) + )) + index = ensure_index_from_sequences(arrays, names) if verify_integrity and not index.is_unique:
Regression in DataFrame.set_index with class instance column keys The following code worked in Pandas 0.23.4 but not in Pandas 0.24.0 (I'm on Python 3.7.2). ```python import pandas as pd class Thing: # (Production code would also ensure a Thing instance's hash # and equality testing depended on name and color) def __init__(self, name, color): self.name = name self.color = color def __str__(self): return "<Thing %r>" % (self.name,) thing1 = Thing('One', 'red') thing2 = Thing('Two', 'blue') df = pd.DataFrame({thing1: [0, 1], thing2: [2, 3]}) df.set_index([thing2]) ``` In Pandas 0.23.4, I get the following correct result: ``` <Thing 'One'> <Thing 'Two'> 2 0 3 1 ``` In Pandas 0.24.0, I get the following error: ```Python-traceback Traceback (most recent call last): File "<stdin>", line 1, in <module> File ".../venv/lib/python3.7/site-packages/pandas/core/frame.py", line 4153, in set_index raise ValueError(err_msg) ValueError: The parameter "keys" may be a column key, one-dimensional array, or a list containing only valid column keys and one-dimensional arrays. ``` After looking at Pandas 0.24.0's implementation of `DataFrame.set_index`: https://github.com/pandas-dev/pandas/blob/83eb2428ceb6257042173582f3f436c2c887aa69/pandas/core/frame.py#L4144-L4153 I noticed that `is_scalar` returns `False` for `thing1` in Pandas 0.24.0: ```Python-console >>> from pandas.core.dtypes.common import is_scalar >>> is_scalar(thing1) False ``` I suspect that it is incorrect to test DataFrame column keys using `is_scalar`. # Output of ``pd.show_versions()`` <details> ## `pd.show_versions()` from Pandas 0.23.4 INSTALLED VERSIONS ------------------ commit: None python: 3.7.2.final.0 python-bits: 64 OS: Darwin OS-release: 17.7.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.23.4 pytest: None pip: 18.1 setuptools: 40.4.3 Cython: None numpy: 1.16.0 scipy: 1.1.0 pyarrow: None xarray: None IPython: 7.2.0 sphinx: None patsy: None dateutil: 2.7.3 pytz: 2018.5 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: 1.1.2 lxml: None bs4: None html5lib: None sqlalchemy: None pymysql: None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None ## `pd.show_versions()` from Pandas 0.24.0 INSTALLED VERSIONS ------------------ commit: None python: 3.7.2.final.0 python-bits: 64 OS: Darwin OS-release: 17.7.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.24.0 pytest: None pip: 18.1 setuptools: 40.4.3 Cython: None numpy: 1.16.0 scipy: 1.1.0 pyarrow: None xarray: None IPython: 7.2.0 sphinx: None patsy: None dateutil: 2.7.3 pytz: 2018.5 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: 1.1.2 lxml.etree: None bs4: None html5lib: None sqlalchemy: None pymysql: None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None gcsfs: None </details>
We have had quite some discussion lately about `set_index` (see eg https://github.com/pandas-dev/pandas/issues/24046), and the actual change (that started to use `is_scalar`, I think) that caused this regression is https://github.com/pandas-dev/pandas/pull/22486 and https://github.com/pandas-dev/pandas/pull/24762 In general the usage `is_scalar` gives problems with custom objects. Eg we also fixed this in fillna (https://github.com/pandas-dev/pandas/issues/20411). cc @h-vetinari @jorisvandenbossche Does pandas support custom objects as labels? I think that's bound to break in many places. The code previously tried *everything* it got as a key, so in this sense this is a regression, yes. I'm a bit stumped as for how to deal with this. Column keys should IMO clearly be scalar (or tuples, grudgingly) - and that's the only reason `is_scalar` is there. CC @jreback @wkschwartz Your object (at least the toy version) looks a bit like a tuple. As an immediate workaround, I'd suggest to try inheriting `Thing` from `tuple`, then the `isinstance(..., tuple)`-side should work at least. In my production code, I use [dataclasses](https://docs.python.org/3/library/dataclasses.html) as custom objects in both column keys and row indices, which worked throughout Pandas 0.23.4. If Pandas 0.24 or later drop support for custom classes in row/column indices, I would be stuck at 0.23.4 forever. This is why I view the change as a regression. > Does pandas support custom objects as labels? We didn't disallow it previously, so yes. This may have *happened* to work, but we don't support custom objects as labels explicity. Not against reverting this, but its buyer beware here. I never could find anything in the documentation that takes a stance on what can or can’t be column keys, except the general notion that DataFrames are dict-like. From this I surmised that column keys should be hashable and immutable. Did I miss something in the documentation?
2019-01-28T17:52:56Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File ".../venv/lib/python3.7/site-packages/pandas/core/frame.py", line 4153, in set_index raise ValueError(err_msg) ValueError: The parameter "keys" may be a column key, one-dimensional array, or a list containing only valid column keys and one-dimensional arrays.
12,509
pandas-dev/pandas
pandas-dev__pandas-25058
5e224fb8b474df8e7d8053bfbae171f500a65f54
diff --git a/doc/source/whatsnew/v0.24.2.rst b/doc/source/whatsnew/v0.24.2.rst --- a/doc/source/whatsnew/v0.24.2.rst +++ b/doc/source/whatsnew/v0.24.2.rst @@ -51,7 +51,7 @@ Bug Fixes **I/O** -- +- Bug in reading a HDF5 table-format ``DataFrame`` created in Python 2, in Python 3 (:issue:`24925`) - - diff --git a/pandas/io/pytables.py b/pandas/io/pytables.py --- a/pandas/io/pytables.py +++ b/pandas/io/pytables.py @@ -3288,7 +3288,7 @@ def get_attrs(self): self.nan_rep = getattr(self.attrs, 'nan_rep', None) self.encoding = _ensure_encoding( getattr(self.attrs, 'encoding', None)) - self.errors = getattr(self.attrs, 'errors', 'strict') + self.errors = _ensure_decoded(getattr(self.attrs, 'errors', 'strict')) self.levels = getattr( self.attrs, 'levels', None) or [] self.index_axes = [
reading of old pandas dataframe (created in python 2) failed with 0.23.4 Hi, Firstly I have to apologize, that my description will be very vague. I have a problem with one of my dataframe that was created earlier with python 2 and older version of pandas (unfortunately I do not know what version). Now I cannot open it in python 3 and pandas 0.23.4 (loading in python 3 with pandas 0.22.0 works fine). For reading, I am using: ```python hdf = pd.HDFStore(src_filename, mode=”r”) data_frame = hdf.select(src_tablename) ``` My stack trace in pandas 0.23.4 is: ``` Traceback (most recent call last): data_frame = hdf.select(src_tablename) File "/home/rbenes/virtual_envs/iface_venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 743, in select return it.get_result() File "/home/rbenes/virtual_envs/iface_venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 1485, in get_result results = self.func(self.start, self.stop, where) File "/home/rbenes/virtual_envs/iface_venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 734, in func columns=columns) File "/home/rbenes/virtual_envs/iface_venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 4182, in read if not self.read_axes(where=where, **kwargs): File "/home/rbenes/virtual_envs/iface_venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 3385, in read_axes errors=self.errors) File "/home/rbenes/virtual_envs/iface_venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 2195, in convert self.data, nan_rep=nan_rep, encoding=encoding, errors=errors) File "/home/rbenes/virtual_envs/iface_venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 4658, in _unconvert_string_array data = libwriters.string_array_replace_from_nan_rep(data, nan_rep) File "pandas/_libs/writers.pyx", line 158, in pandas._libs.writers.string_array_replace_from_nan_rep ValueError: Buffer dtype mismatch, expected 'Python object' but got 'double' ``` This stack trace led me to this pull request: https://github.com/pandas-dev/pandas/pull/24510 If I list it e.g. with h5ls it looks fine (it is loaded and content looks fine). Unfortunately, I cannot share the dataframe, because it is private and I cannot reproduce process of the creation with older versions any more :-(. So I am not able to deliver that unreable dataframe. I debuged pandas and found, that this patch helped me. ``` diff --git a/pandas/io/pytables.py b/pandas/io/pytables.py index 4e103482f..2ab6ddb5b 100644 --- a/pandas/io/pytables.py +++ b/pandas/io/pytables.py @@ -3288,7 +3288,7 @@ class Table(Fixed): self.nan_rep = getattr(self.attrs, 'nan_rep', None) self.encoding = _ensure_encoding( getattr(self.attrs, 'encoding', None)) - self.errors = getattr(self.attrs, 'errors', 'strict') + self.errors = _ensure_decoded(getattr(self.attrs, 'errors', 'strict')) self.levels = getattr( self.attrs, 'levels', None) or [] self.index_axes = [ ``` Can anyone advice me, if such a fix is fine and if yes, can I send it as pull request without any reproducer? Thank you.
you should try with 0.24.0 which is releasing today and has that patch I know, that pull reques: #24510 will be in 0.24, but my adition of _ensure_decoded() in my patch is on different place. your diff looks the same I am not sure... My patch is trying to change this - https://github.com/pandas-dev/pandas/blob/master/pandas/io/pytables.py#L3291 But the pull request mentioned changed this - https://github.com/pandas-dev/pandas/blob/master/pandas/io/pytables.py#L2524 Maybe there is some hierarchy, that I do not see, but without my patch the master (that will probably be the base for 0.24?) fails in my case (I know, my case is specific). well this would require a test ; construct a dummy file that fails and a patch fixes, just like the ref issue I found the reproducer saving of dataframe: ``` df_orig = pd.DataFrame({ "a": ["a", "b"], "b": [2, 3] }) filename = "a.h5" hdf = pd.HDFStore(filename, mode="w") hdf.put("table", df_orig, format='table', data_columns=True, index=None) hdf.close() ``` env: Python 2.7.15 pandas 0.23.4 numpy 1.16.0 loading: ``` hdf = pd.HDFStore(filename, mode="r") df_loaded = hdf.select("table") hdf.close() print("loaded") print(df_loaded.equals(df_orig)) ``` env: Python 3.6.7 pandas 0.23.4 numpy 1.14.3 ``` Traceback (most recent call last): File "pandas_test.py", line 19, in <module> df_loaded = hdf.select("table") File "/home/rbenes/virtual_envs/venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 741, in select return it.get_result() File "/home/rbenes/virtual_envs/venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 1483, in get_result results = self.func(self.start, self.stop, where) File "/home/rbenes/virtual_envs/venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 734, in func columns=columns) File "/home/rbenes/virtual_envs/venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 4180, in read if not self.read_axes(where=where, **kwargs): File "/home/rbenes/virtual_envs/venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 3383, in read_axes errors=self.errors) File "/home/rbenes/virtual_envs/venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 2193, in convert self.data, nan_rep=nan_rep, encoding=encoding, errors=errors) File "/home/rbenes/virtual_envs/venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 4656, in _unconvert_string_array data = libwriters.string_array_replace_from_nan_rep(data, nan_rep) File "pandas/_libs/writers.pyx", line 158, in pandas._libs.writers.string_array_replace_from_nan_rep ValueError: Buffer dtype mismatch, expected 'Python object' but got 'double' ``` so i will prepare pull request with test with this dummy dataframe...
2019-01-31T17:54:28Z
[]
[]
Traceback (most recent call last): data_frame = hdf.select(src_tablename) File "/home/rbenes/virtual_envs/iface_venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 743, in select return it.get_result() File "/home/rbenes/virtual_envs/iface_venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 1485, in get_result results = self.func(self.start, self.stop, where) File "/home/rbenes/virtual_envs/iface_venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 734, in func columns=columns) File "/home/rbenes/virtual_envs/iface_venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 4182, in read if not self.read_axes(where=where, **kwargs): File "/home/rbenes/virtual_envs/iface_venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 3385, in read_axes errors=self.errors) File "/home/rbenes/virtual_envs/iface_venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 2195, in convert self.data, nan_rep=nan_rep, encoding=encoding, errors=errors) File "/home/rbenes/virtual_envs/iface_venv36_new_pkgs/lib/python3.6/site-packages/pandas/io/pytables.py", line 4658, in _unconvert_string_array data = libwriters.string_array_replace_from_nan_rep(data, nan_rep) File "pandas/_libs/writers.pyx", line 158, in pandas._libs.writers.string_array_replace_from_nan_rep ValueError: Buffer dtype mismatch, expected 'Python object' but got 'double'
12,517
pandas-dev/pandas
pandas-dev__pandas-25124
659e0cae6be2d7ab3370cc7d8ab936bc3ee1b159
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -28,6 +28,8 @@ Other Enhancements Backwards incompatible API changes ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +- :meth:`Timestamp.strptime` will now rise a NotImplementedError (:issue:`21257`) + .. _whatsnew_0250.api.other: Other API Changes diff --git a/pandas/_libs/tslibs/nattype.pyx b/pandas/_libs/tslibs/nattype.pyx --- a/pandas/_libs/tslibs/nattype.pyx +++ b/pandas/_libs/tslibs/nattype.pyx @@ -374,7 +374,6 @@ class NaTType(_NaT): utctimetuple = _make_error_func('utctimetuple', datetime) timetz = _make_error_func('timetz', datetime) timetuple = _make_error_func('timetuple', datetime) - strptime = _make_error_func('strptime', datetime) strftime = _make_error_func('strftime', datetime) isocalendar = _make_error_func('isocalendar', datetime) dst = _make_error_func('dst', datetime) @@ -388,6 +387,14 @@ class NaTType(_NaT): # The remaining methods have docstrings copy/pasted from the analogous # Timestamp methods. + strptime = _make_error_func('strptime', # noqa:E128 + """ + Timestamp.strptime(string, format) + + Function is not implemented. Use pd.to_datetime(). + """ + ) + utcfromtimestamp = _make_error_func('utcfromtimestamp', # noqa:E128 """ Timestamp.utcfromtimestamp(ts) diff --git a/pandas/_libs/tslibs/timestamps.pyx b/pandas/_libs/tslibs/timestamps.pyx --- a/pandas/_libs/tslibs/timestamps.pyx +++ b/pandas/_libs/tslibs/timestamps.pyx @@ -697,6 +697,17 @@ class Timestamp(_Timestamp): """ return cls(datetime.fromtimestamp(ts)) + # Issue 25016. + @classmethod + def strptime(cls, date_string, format): + """ + Timestamp.strptime(string, format) + + Function is not implemented. Use pd.to_datetime(). + """ + raise NotImplementedError("Timestamp.strptime() is not implmented." + "Use to_datetime() to parse date strings.") + @classmethod def combine(cls, date, time): """
Timestamp.strptime %z not supported #### Code Sample, a copy-pastable example if possible ```python fmt = '%Y%m%d-%H%M%S-%f%z' ts = '20190129-235348-183747+0000' pd.Timestamp.strptime(ts, fmt) ``` ```python Traceback (most recent call last): File "/scratch.py", line 6, in <module> pd.Timestamp.strptime(ts, fmt) File "/python/lib/python3.6/_strptime.py", line 576, in _strptime_datetime return cls(*args) File "pandas/_libs/tslibs/timestamps.pyx", line 748, in pandas._libs.tslibs.timestamps.Timestamp.__new__ TypeError: an integer is required ``` #### Problem description Timestamp.strptime does not support %z. Issue was fixed with `pd.to_datetime` in #19979. #### Expected Output The same as `pd.to_datetime(ts, format=fmt)`: ```python Timestamp('2019-01-29 23:53:48.183747+0000', tz='UTC') ``` #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.6.8.final.0 python-bits: 64 OS: Linux OS-release: 4.15.0-43-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: C.UTF-8 LANG: C.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.24.0 pytest: 4.1.1 pip: 18.1 setuptools: 40.6.3 Cython: 0.29.2 numpy: 1.15.4 scipy: None pyarrow: None xarray: None IPython: 7.2.0 sphinx: 1.8.2 patsy: None dateutil: 2.7.5 pytz: 2018.9 blosc: None bottleneck: None tables: 3.4.4 numexpr: 2.6.9 feather: None matplotlib: 3.0.2 openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml.etree: 4.3.0 bs4: None html5lib: None sqlalchemy: 1.2.16 pymysql: None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None gcsfs: None </details>
Thanks for the report. The fix is luckily straightforward. ``` --- a/pandas/_libs/tslibs/timestamps.pyx +++ b/pandas/_libs/tslibs/timestamps.pyx @@ -736,8 +736,8 @@ class Timestamp(_Timestamp): # microsecond[, nanosecond[, tzinfo]]]]]]) ts_input = datetime(ts_input, freq, tz, unit or 0, year or 0, month or 0, day or 0) - nanosecond = hour - tz = minute + nanosecond = minute + tz = hour freq = None ``` However, we need to make an API change in the `Timestamp` constructor as well and switch the positions of the `tzinfo` and `nanosecond` arguments. Can I give this a try if no one is working on this? Go for it, unless @mroeschke was planning on? Sure go for it @saurav2608
2019-02-03T19:01:57Z
[]
[]
Traceback (most recent call last): File "/scratch.py", line 6, in <module> pd.Timestamp.strptime(ts, fmt) File "/python/lib/python3.6/_strptime.py", line 576, in _strptime_datetime return cls(*args) File "pandas/_libs/tslibs/timestamps.pyx", line 748, in pandas._libs.tslibs.timestamps.Timestamp.__new__ TypeError: an integer is required
12,528
pandas-dev/pandas
pandas-dev__pandas-25246
2448e5229683acbe7de57f2d53065247aa085b1f
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -139,7 +139,7 @@ Indexing Missing ^^^^^^^ -- +- Fixed misleading exception message in :meth:`Series.missing` if argument ``order`` is required, but omitted (:issue:`10633`, :issue:`24014`). - - diff --git a/pandas/core/internals/blocks.py b/pandas/core/internals/blocks.py --- a/pandas/core/internals/blocks.py +++ b/pandas/core/internals/blocks.py @@ -1115,24 +1115,18 @@ def check_int_bool(self, inplace): fill_value=fill_value, coerce=coerce, downcast=downcast) - # try an interp method - try: - m = missing.clean_interp_method(method, **kwargs) - except ValueError: - m = None - - if m is not None: - r = check_int_bool(self, inplace) - if r is not None: - return r - return self._interpolate(method=m, index=index, values=values, - axis=axis, limit=limit, - limit_direction=limit_direction, - limit_area=limit_area, - fill_value=fill_value, inplace=inplace, - downcast=downcast, **kwargs) - - raise ValueError("invalid method '{0}' to interpolate.".format(method)) + # validate the interp method + m = missing.clean_interp_method(method, **kwargs) + + r = check_int_bool(self, inplace) + if r is not None: + return r + return self._interpolate(method=m, index=index, values=values, + axis=axis, limit=limit, + limit_direction=limit_direction, + limit_area=limit_area, + fill_value=fill_value, inplace=inplace, + downcast=downcast, **kwargs) def _interpolate_with_fill(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, coerce=False, diff --git a/pandas/core/missing.py b/pandas/core/missing.py --- a/pandas/core/missing.py +++ b/pandas/core/missing.py @@ -293,9 +293,10 @@ def _interpolate_scipy_wrapper(x, y, new_x, method, fill_value=None, bounds_error=bounds_error) new_y = terp(new_x) elif method == 'spline': - # GH #10633 - if not order: - raise ValueError("order needs to be specified and greater than 0") + # GH #10633, #24014 + if isna(order) or (order <= 0): + raise ValueError("order needs to be specified and greater than 0; " + "got order: {}".format(order)) terp = interpolate.UnivariateSpline(x, y, k=order, **kwargs) new_y = terp(new_x) else:
Unnecessary bare except at class Block, function interpolate hides actual error #### Code Sample, a copy-pastable example if possible ```python # Minimal example: import pandas as pd df = pd.Series([0,1,pd.np.nan,3,4]) df.interpolate(method='spline') Traceback (most recent call last): File "<input>", line 1, in <module> File "D:\venvs\food_and_drinking\lib\site-packages\pandas\core\generic.py", line 6034, in interpolate **kwargs) File "D:\venvs\food_and_drinking\lib\site-packages\pandas\core\internals.py", line 3702, in interpolate return self.apply('interpolate', **kwargs) File "D:\venvs\food_and_drinking\lib\site-packages\pandas\core\internals.py", line 3581, in apply applied = getattr(b, f)(**kwargs) File "D:\venvs\food_and_drinking\lib\site-packages\pandas\core\internals.py", line 1168, in interpolate raise ValueError("invalid method '{0}' to interpolate.".format(method)) ValueError: invalid method 'spline' to interpolate. ``` ##### Expected output ```python ValueError: You must specify the order of the spline or polynomial. ``` #### Problem description If interpolation parameter not specified, it raises an error, which states invalid method internals.py:1152:1155 try: m = missing.clean_interp_method(method, **kwargs) except: m = None If there is no such try/except block around the missing.clean_interp_method function call, we would get the proper exception from mising.py/clean_interp_method. Pandas version: 0.23.4
Do you have a minimal example? http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports Minimal example: import pandas as pd df = pd.Series([0,1,pd.np.nan,3,4]) df.interpolate(method='spline') For clarity, the expected output is ``` ValueError: You must specify the order of the spline or polynomial. ``` @seboktamas can you edit your original post to include the minimal example and the expected output?
2019-02-09T18:33:57Z
[]
[]
Traceback (most recent call last): File "<input>", line 1, in <module> File "D:\venvs\food_and_drinking\lib\site-packages\pandas\core\generic.py", line 6034, in interpolate **kwargs) File "D:\venvs\food_and_drinking\lib\site-packages\pandas\core\internals.py", line 3702, in interpolate return self.apply('interpolate', **kwargs) File "D:\venvs\food_and_drinking\lib\site-packages\pandas\core\internals.py", line 3581, in apply applied = getattr(b, f)(**kwargs) File "D:\venvs\food_and_drinking\lib\site-packages\pandas\core\internals.py", line 1168, in interpolate raise ValueError("invalid method '{0}' to interpolate.".format(method)) ValueError: invalid method 'spline' to interpolate.
12,544
pandas-dev/pandas
pandas-dev__pandas-25469
c9863865c217867583e8f6592ba88d9200601992
diff --git a/doc/source/reference/groupby.rst b/doc/source/reference/groupby.rst --- a/doc/source/reference/groupby.rst +++ b/doc/source/reference/groupby.rst @@ -99,6 +99,7 @@ application to columns of a specific data type. DataFrameGroupBy.idxmax DataFrameGroupBy.idxmin DataFrameGroupBy.mad + DataFrameGroupBy.nunique DataFrameGroupBy.pct_change DataFrameGroupBy.plot DataFrameGroupBy.quantile diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -210,6 +210,7 @@ Groupby/Resample/Rolling ^^^^^^^^^^^^^^^^^^^^^^^^ - Bug in :meth:`pandas.core.resample.Resampler.agg` with a timezone aware index where ``OverflowError`` would raise when passing a list of functions (:issue:`22660`) +- Bug in :meth:`pandas.core.groupby.DataFrameGroupBy.nunique` in which the names of column levels were lost (:issue:`23222`) - - diff --git a/pandas/core/groupby/generic.py b/pandas/core/groupby/generic.py --- a/pandas/core/groupby/generic.py +++ b/pandas/core/groupby/generic.py @@ -1579,6 +1579,7 @@ def groupby_series(obj, col=None): from pandas.core.reshape.concat import concat results = [groupby_series(obj[col], col) for col in obj.columns] results = concat(results, axis=1) + results.columns.names = obj.columns.names if not self.as_index: results.index = ibase.default_index(len(results))
Resampling using `nunique` causes multi-level columns to lose their level names #### Problem description Resampling using `nunique` causes multi-level columns to lose their level names. https://nbviewer.jupyter.org/gist/taljaards/20e945b7572aea1f4eb4aa4c6e823037 I only ran into this issue with `nunique`; I do not know if this is also the case for some other functions. #### Expected Output To not drop the level names, as in the first resample example. #### Output of ``pd.show_versions()`` <details> ``` import pandas as pd pd.show_versions() Backend TkAgg is interactive backend. Turning interactive mode on. Matplotlib support failed Traceback (most recent call last): File "C:\Users\Admin\AppData\Local\JetBrains\Toolbox\apps\PyCharm-P\ch-0\183.3647.8\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 23, in do_import succeeded = activate_func() File "C:\Users\Admin\AppData\Local\JetBrains\Toolbox\apps\PyCharm-P\ch-0\183.3647.8\helpers\pydev\pydev_ipython\matplotlibtools.py", line 141, in activate_pylab pylab = sys.modules['pylab'] KeyError: 'pylab' INSTALLED VERSIONS ------------------ commit: None python: 3.6.6.final.0 python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 142 Stepping 9, GenuineIntel byteorder: little LC_ALL: None LANG: None LOCALE: None.None pandas: 0.23.4 pytest: 3.8.2 pip: 18.1 setuptools: 40.4.3 Cython: 0.28.5 numpy: 1.15.1 scipy: 1.1.0 pyarrow: None xarray: None IPython: 7.0.1 sphinx: 1.8.1 patsy: 0.5.0 dateutil: 2.7.3 pytz: 2018.5 blosc: None bottleneck: 1.2.1 tables: 3.4.4 numexpr: 2.6.8 feather: None matplotlib: 3.0.0 openpyxl: 2.5.8 xlrd: 1.1.0 xlwt: 1.3.0 xlsxwriter: 1.1.1 lxml: 4.2.5 bs4: 4.6.3 html5lib: 1.0.1 sqlalchemy: 1.2.12 pymysql: None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None ``` </details>
I'll have a look at this today.
2019-02-28T04:25:05Z
[]
[]
Traceback (most recent call last): File "C:\Users\Admin\AppData\Local\JetBrains\Toolbox\apps\PyCharm-P\ch-0\183.3647.8\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 23, in do_import succeeded = activate_func() File "C:\Users\Admin\AppData\Local\JetBrains\Toolbox\apps\PyCharm-P\ch-0\183.3647.8\helpers\pydev\pydev_ipython\matplotlibtools.py", line 141, in activate_pylab pylab = sys.modules['pylab'] KeyError: 'pylab'
12,580
pandas-dev/pandas
pandas-dev__pandas-25474
c9863865c217867583e8f6592ba88d9200601992
diff --git a/pandas/core/frame.py b/pandas/core/frame.py --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -3797,7 +3797,12 @@ def drop(self, labels=None, axis=0, index=None, columns=None, axis : {0 or 'index', 1 or 'columns'}, default 0 Whether to drop labels from the index (0 or 'index') or columns (1 or 'columns'). - index, columns : single label or list-like + index : single label or list-like + Alternative to specifying axis (``labels, axis=0`` + is equivalent to ``index=labels``). + + .. versionadded:: 0.21.0 + columns : single label or list-like Alternative to specifying axis (``labels, axis=1`` is equivalent to ``columns=labels``). @@ -3813,11 +3818,12 @@ def drop(self, labels=None, axis=0, index=None, columns=None, Returns ------- DataFrame + DataFrame without the removed index or column labels. Raises ------ KeyError - If none of the labels are found in the selected axis + If any of the labels is not found in the selected axis. See Also -------- @@ -3830,7 +3836,7 @@ def drop(self, labels=None, axis=0, index=None, columns=None, Examples -------- - >>> df = pd.DataFrame(np.arange(12).reshape(3,4), + >>> df = pd.DataFrame(np.arange(12).reshape(3, 4), ... columns=['A', 'B', 'C', 'D']) >>> df A B C D @@ -3867,7 +3873,7 @@ def drop(self, labels=None, axis=0, index=None, columns=None, >>> df = pd.DataFrame(index=midx, columns=['big', 'small'], ... data=[[45, 30], [200, 100], [1.5, 1], [30, 20], ... [250, 150], [1.5, 0.8], [320, 250], - ... [1, 0.8], [0.3,0.2]]) + ... [1, 0.8], [0.3, 0.2]]) >>> df big small lama speed 45.0 30.0
Error in documentation of DataFrame.drop #### Code Sample, a copy-pastable example if possible ```python df = pd.DataFrame(np.arange(12).reshape(3,4), columns=['A', 'B', 'C', 'D']) df.drop(columns=['A','not_occurring']) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/opt/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py", line 3697, in drop errors=errors) File "/opt/anaconda3/lib/python3.7/site-packages/pandas/core/generic.py", line 3111, in drop obj = obj._drop_axis(labels, axis, level=level, errors=errors) File "/opt/anaconda3/lib/python3.7/site-packages/pandas/core/generic.py", line 3143, in _drop_axis new_axis = axis.drop(labels, errors=errors) File "/opt/anaconda3/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 4404, in drop '{} not found in axis'.format(labels[mask])) KeyError: "['not_occurring'] not found in axis" ``` #### Problem description In the pandas documentation for DataFrame drop (https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.drop.html#pandas.DataFrame.drop), the following is mentioned: `KeyError: If none of the labels are found in the selected axis` However, when looking at the provided code snippet, we see that even though there is a label which is found in the selected axis (`'A'`), the KeyError is thrown. #### Expected Output ```python df = pd.DataFrame(np.arange(12).reshape(3,4), columns=['A', 'B', 'C', 'D']) df.drop(columns=['A','not_occurring']) B C D 0 1 2 3 1 5 6 7 2 9 10 11 ``` ### Suggested Fix Although from this issue, it seems like the code is at fault, I would suggest to change the documentation to `KeyError: If one of the labels are not found in the selected axis`. If the core team agrees with this fix, then I would be happy to provide a pull request that does this. #### Output of ``pd.show_versions()`` <details> commit: None python: 3.7.2.final.0 python-bits: 64 OS: Linux OS-release: 4.15.0-45-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.25.0.dev0+162.gc9863865c.dirty pytest: 4.2.1 pip: 19.0.1 setuptools: 40.8.0 Cython: 0.29.5 numpy: 1.15.4 scipy: 1.2.0 pyarrow: 0.11.1 xarray: 0.11.3 IPython: 7.2.0 sphinx: 1.8.4 patsy: 0.5.1 dateutil: 2.7.5 pytz: 2018.9 blosc: None bottleneck: 1.2.1 tables: 3.4.4 numexpr: 2.6.9 feather: None matplotlib: 3.0.2 openpyxl: 2.6.0 xlrd: 1.2.0 xlwt: 1.3.0 xlsxwriter: 1.1.2 lxml.etree: 4.3.1 bs4: 4.7.1 html5lib: 1.0.1 sqlalchemy: 1.2.18 pymysql: None psycopg2: None jinja2: 2.10 s3fs: 0.2.0 fastparquet: 0.2.1 pandas_gbq: None pandas_datareader: None gcsfs: None </details>
2019-02-28T11:41:56Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/opt/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py", line 3697, in drop errors=errors) File "/opt/anaconda3/lib/python3.7/site-packages/pandas/core/generic.py", line 3111, in drop obj = obj._drop_axis(labels, axis, level=level, errors=errors) File "/opt/anaconda3/lib/python3.7/site-packages/pandas/core/generic.py", line 3143, in _drop_axis new_axis = axis.drop(labels, errors=errors) File "/opt/anaconda3/lib/python3.7/site-packages/pandas/core/indexes/base.py", line 4404, in drop '{} not found in axis'.format(labels[mask])) KeyError: "['not_occurring'] not found in axis"
12,581
pandas-dev/pandas
pandas-dev__pandas-25479
50c40ff1afa4a4a6772225e02c320294c422ed1a
diff --git a/doc/source/development/contributing.rst b/doc/source/development/contributing.rst --- a/doc/source/development/contributing.rst +++ b/doc/source/development/contributing.rst @@ -435,7 +435,7 @@ reducing the turn-around time for checking your changes. # compile the reference docs for a single function python make.py clean - python make.py --single DataFrame.join + python make.py --single pandas.DataFrame.join For comparison, a full documentation build may take 15 minutes, but a single section may take 15 seconds. Subsequent builds, which only process portions
Contribution Guide - Building the Documentation single function error #### Code Sample, a copy-pastable example if possible ``` python make.py --single DataFrame.join Traceback (most recent call last): File "make.py", line 339, in <module> sys.exit(main()) File "make.py", line 334, in main args.verbosity, args.warnings_are_errors) File "make.py", line 46, in __init__ single_doc = self._process_single_doc(single_doc) File "make.py", line 88, in _process_single_doc 'pandas.DataFrame.head)').format(single_doc)) ValueError: --single=DataFrame.join not understood. Value should be a valid path to a .rst or .ipynb file, or a valid pandas object (e.g. categorical.rst or pandas.DataFrame.head) ``` #### Problem description Using the code snippet described in the pandas contribution guide (https://pandas-docs.github.io/pandas-docs-travis/development/contributing.html#id48), we get a ValueError. This is fixed by instead using the following command: ``` python make.py --single pandas.DataFrame.join ``` I will create a PR updating the documentation.
2019-02-28T14:29:07Z
[]
[]
Traceback (most recent call last): File "make.py", line 339, in <module> sys.exit(main()) File "make.py", line 334, in main args.verbosity, args.warnings_are_errors) File "make.py", line 46, in __init__ single_doc = self._process_single_doc(single_doc) File "make.py", line 88, in _process_single_doc 'pandas.DataFrame.head)').format(single_doc)) ValueError: --single=DataFrame.join not understood. Value should be a valid path to a .rst or .ipynb file, or a valid pandas object (e.g. categorical.rst or pandas.DataFrame.head)
12,582
pandas-dev/pandas
pandas-dev__pandas-25588
46639512c06300a9844ea27f90167d5648c9b93a
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -176,6 +176,7 @@ Performance Improvements Bug Fixes ~~~~~~~~~ + Categorical ^^^^^^^^^^^ @@ -211,6 +212,7 @@ Numeric - Bug in :meth:`to_numeric` in which large negative numbers were being improperly handled (:issue:`24910`) - Bug in :meth:`to_numeric` in which numbers were being coerced to float, even though ``errors`` was not ``coerce`` (:issue:`24910`) - Bug in error messages in :meth:`DataFrame.corr` and :meth:`Series.corr`. Added the possibility of using a callable. (:issue:`25729`) +- Bug in :meth:`Series.divmod` and :meth:`Series.rdivmod` which would raise an (incorrect) ``ValueError`` rather than return a pair of :class:`Series` objects as result (:issue:`25557`) - - - diff --git a/pandas/core/ops.py b/pandas/core/ops.py --- a/pandas/core/ops.py +++ b/pandas/core/ops.py @@ -1660,7 +1660,7 @@ def _construct_result(left, result, index, name, dtype=None): not be enough; we still need to override the name attribute. """ out = left._constructor(result, index=index, dtype=dtype) - + out = out.__finalize__(left) out.name = name return out @@ -1668,10 +1668,11 @@ def _construct_result(left, result, index, name, dtype=None): def _construct_divmod_result(left, result, index, name, dtype=None): """divmod returns a tuple of like indexed series instead of a single series. """ - constructor = left._constructor return ( - constructor(result[0], index=index, name=name, dtype=dtype), - constructor(result[1], index=index, name=name, dtype=dtype), + _construct_result(left, result[0], index=index, name=name, + dtype=dtype), + _construct_result(left, result[1], index=index, name=name, + dtype=dtype), ) diff --git a/pandas/core/series.py b/pandas/core/series.py --- a/pandas/core/series.py +++ b/pandas/core/series.py @@ -2527,6 +2527,7 @@ def _binop(self, other, func, level=None, fill_value=None): ------- Series """ + if not isinstance(other, Series): raise AssertionError('Other operand must be Series') @@ -2543,13 +2544,13 @@ def _binop(self, other, func, level=None, fill_value=None): with np.errstate(all='ignore'): result = func(this_vals, other_vals) + name = ops.get_op_result_name(self, other) - result = self._constructor(result, index=new_index, name=name) - result = result.__finalize__(self) - if name is None: - # When name is None, __finalize__ overwrites current name - result.name = None - return result + if func.__name__ in ['divmod', 'rdivmod']: + ret = ops._construct_divmod_result(self, result, new_index, name) + else: + ret = ops._construct_result(self, result, new_index, name) + return ret def combine(self, other, func, fill_value=None): """
BUG: ValueError in Series.divmod #### Code Sample, a copy-pastable example if possible ```python import pandas as pd import numpy as np a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) ##Working: divmod(a,b) ##Fails: a.divmod(b) ``` #### Problem description divmod(series_a,series_b) works as expected, but series_a.divmod(b) returns the following error: ``` >>> a.divmod(b) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/danlaw/Projects/pandas/pandas/core/ops.py", line 1892, in flex_wrapper return self._binop(other, op, level=level, fill_value=fill_value) File "/Users/danlaw/Projects/pandas/pandas/core/series.py", line 2522, in _binop result = self._constructor(result, index=new_index, name=name) File "/Users/danlaw/Projects/pandas/pandas/core/series.py", line 250, in __init__ .format(val=len(data), ind=len(index))) ValueError: Length of passed values is 2, index implies 4 ``` #### Expected Output ```python (a 0.0 b 0.0 c NaN d NaN e NaN dtype: float64, a 1.0 b 1.0 c NaN d NaN e NaN dtype: float64) ``` #### Output of ``pd.show_versions()`` <details> commit: 221be3b4adde0f45927803b1c593b56d4678faeb python: 3.7.2.final.0 python-bits: 64 OS: Darwin OS-release: 16.7.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.25.0.dev0+200.g221be3b4a pytest: 4.3.0 pip: 19.0.3 setuptools: 40.8.0 Cython: 0.29.5 numpy: 1.16.2 scipy: 1.2.1 pyarrow: 0.11.1 xarray: 0.11.3 IPython: 7.3.0 sphinx: 1.8.4 patsy: 0.5.1 dateutil: 2.8.0 pytz: 2018.9 blosc: None bottleneck: 1.2.1 tables: 3.4.4 numexpr: 2.6.9 feather: None matplotlib: 3.0.2 openpyxl: 2.6.0 xlrd: 1.2.0 xlwt: 1.3.0 xlsxwriter: 1.1.5 lxml.etree: 4.3.1 bs4: 4.7.1 html5lib: 1.0.1 sqlalchemy: 1.2.18 pymysql: None psycopg2: None jinja2: 2.10 s3fs: 0.2.0 fastparquet: 0.2.1 pandas_gbq: None pandas_datareader: None gcsfs: None </details>
I will look at this issue.
2019-03-07T11:49:30Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/danlaw/Projects/pandas/pandas/core/ops.py", line 1892, in flex_wrapper return self._binop(other, op, level=level, fill_value=fill_value) File "/Users/danlaw/Projects/pandas/pandas/core/series.py", line 2522, in _binop result = self._constructor(result, index=new_index, name=name) File "/Users/danlaw/Projects/pandas/pandas/core/series.py", line 250, in __init__ .format(val=len(data), ind=len(index))) ValueError: Length of passed values is 2, index implies 4
12,603
pandas-dev/pandas
pandas-dev__pandas-25620
976a2db444c20ee71895bda394193aa24e1e5734
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -214,7 +214,7 @@ I/O - Bug in :func:`read_json` for ``orient='table'`` when it tries to infer dtypes by default, which is not applicable as dtypes are already defined in the JSON schema (:issue:`21345`) - Bug in :func:`read_json` for ``orient='table'`` and float index, as it infers index dtype by default, which is not applicable because index dtype is already defined in the JSON schema (:issue:`25433`) - Bug in :func:`read_json` for ``orient='table'`` and string of float column names, as it makes a column name type conversion to Timestamp, which is not applicable because column names are already defined in the JSON schema (:issue:`25435`) -- +- :meth:`DataFrame.to_html` now raises ``TypeError`` when using an invalid type for the ``classes`` parameter instead of ``AsseertionError`` (:issue:`25608`) - - diff --git a/pandas/io/formats/html.py b/pandas/io/formats/html.py --- a/pandas/io/formats/html.py +++ b/pandas/io/formats/html.py @@ -163,8 +163,8 @@ def _write_table(self, indent=0): if isinstance(self.classes, str): self.classes = self.classes.split() if not isinstance(self.classes, (list, tuple)): - raise AssertionError('classes must be list or tuple, not {typ}' - .format(typ=type(self.classes))) + raise TypeError('classes must be a string, list, or tuple, ' + 'not {typ}'.format(typ=type(self.classes))) _classes.extend(self.classes) if self.table_id is None:
BUG: User-facing AssertionError with DataFrame.to_html(classes=<invalid type>) #### Code Sample, a copy-pastable example if possible ```python import pandas as pd pd.DataFrame().to_html(classes=True) ``` #### Problem description ```python-traceback Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\simon\OneDrive\code\pandas-simonjayhawkins\pandas\core\frame.py", line 2212, in to_html formatter.to_html(classes=classes, notebook=notebook, border=border) File "C:\Users\simon\OneDrive\code\pandas-simonjayhawkins\pandas\io\formats\format.py", line 729, in to_html html = Klass(self, classes=classes, border=border).render() File "C:\Users\simon\OneDrive\code\pandas-simonjayhawkins\pandas\io\formats\html.py", line 146, in render self._write_table() File "C:\Users\simon\OneDrive\code\pandas-simonjayhawkins\pandas\io\formats\html.py", line 167, in _write_table .format(typ=type(self.classes))) AssertionError: classes must be list or tuple, not <class 'bool'> ``` #### Expected Output ```python-traceback TypeError: classes must be a string, list or tuple, not <class 'bool'> ``` #### Output of ``pd.show_versions()`` <details> [paste the output of ``pd.show_versions()`` here below this line] </details>
@mroeschke : the solution requires a change to one line of code, add a simple parametrised test and a whatsnew entry under bugfix. Can this be labelled good first issue? Thanks for the suggestion! I can work on this
2019-03-09T16:58:22Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\simon\OneDrive\code\pandas-simonjayhawkins\pandas\core\frame.py", line 2212, in to_html formatter.to_html(classes=classes, notebook=notebook, border=border) File "C:\Users\simon\OneDrive\code\pandas-simonjayhawkins\pandas\io\formats\format.py", line 729, in to_html html = Klass(self, classes=classes, border=border).render() File "C:\Users\simon\OneDrive\code\pandas-simonjayhawkins\pandas\io\formats\html.py", line 146, in render self._write_table() File "C:\Users\simon\OneDrive\code\pandas-simonjayhawkins\pandas\io\formats\html.py", line 167, in _write_table .format(typ=type(self.classes))) AssertionError: classes must be list or tuple, not <class 'bool'>
12,609
pandas-dev/pandas
pandas-dev__pandas-25769
46639512c06300a9844ea27f90167d5648c9b93a
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -271,6 +271,7 @@ I/O - Bug in :func:`json_normalize` for ``errors='ignore'`` where missing values in the input data, were filled in resulting ``DataFrame`` with the string "nan" instead of ``numpy.nan`` (:issue:`25468`) - :meth:`DataFrame.to_html` now raises ``TypeError`` when using an invalid type for the ``classes`` parameter instead of ``AsseertionError`` (:issue:`25608`) - Bug in :meth:`DataFrame.to_string` and :meth:`DataFrame.to_latex` that would lead to incorrect output when the ``header`` keyword is used (:issue:`16718`) +- Bug in :func:`read_csv` not properly interpreting the UTF8 encoded filenames on Windows on Python 3.6+ (:issue:`15086`) - diff --git a/pandas/_libs/parsers.pyx b/pandas/_libs/parsers.pyx --- a/pandas/_libs/parsers.pyx +++ b/pandas/_libs/parsers.pyx @@ -678,11 +678,7 @@ cdef class TextReader: if isinstance(source, basestring): if not isinstance(source, bytes): - if compat.PY36 and compat.is_platform_windows(): - # see gh-15086. - encoding = "mbcs" - else: - encoding = sys.getfilesystemencoding() or "utf-8" + encoding = sys.getfilesystemencoding() or "utf-8" source = source.encode(encoding) diff --git a/pandas/_libs/src/parser/io.c b/pandas/_libs/src/parser/io.c --- a/pandas/_libs/src/parser/io.c +++ b/pandas/_libs/src/parser/io.c @@ -17,6 +17,11 @@ The full license is in the LICENSE file, distributed with this software. #define O_BINARY 0 #endif // O_BINARY +#if PY_VERSION_HEX >= 0x03060000 && defined(_WIN32) +#define USE_WIN_UTF16 +#include <Windows.h> +#endif + /* On-disk FILE, uncompressed */ @@ -27,7 +32,35 @@ void *new_file_source(char *fname, size_t buffer_size) { return NULL; } +#ifdef USE_WIN_UTF16 + // Fix gh-15086 properly - convert UTF8 to UTF16 that Windows widechar API + // accepts. This is needed because UTF8 might _not_ be convertible to MBCS + // for some conditions, as MBCS is locale-dependent, and not all unicode + // symbols can be expressed in it. + { + wchar_t* wname = NULL; + int required = MultiByteToWideChar(CP_UTF8, 0, fname, -1, NULL, 0); + if (required == 0) { + free(fs); + return NULL; + } + wname = (wchar_t*)malloc(required * sizeof(wchar_t)); + if (wname == NULL) { + free(fs); + return NULL; + } + if (MultiByteToWideChar(CP_UTF8, 0, fname, -1, wname, required) < + required) { + free(wname); + free(fs); + return NULL; + } + fs->fd = _wopen(wname, O_RDONLY | O_BINARY); + free(wname); + } +#else fs->fd = open(fname, O_RDONLY | O_BINARY); +#endif if (fs->fd == -1) { free(fs); return NULL;
OSError when reading file with accents in file path #### Code Sample, a copy-pastable example if possible `test.txt` and `test_é.txt` are the same file, only the name change: ```python pd.read_csv('test.txt') Out[3]: 1 1 1 0 1 1 1 1 1 1 1 pd.read_csv('test_é.txt') Traceback (most recent call last): File "<ipython-input-4-fd67679d1d17>", line 1, in <module> pd.read_csv('test_é.txt') File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 646, in parser_f return _read(filepath_or_buffer, kwds) File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 389, in _read parser = TextFileReader(filepath_or_buffer, **kwds) File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 730, in __init__ self._make_engine(self.engine) File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 923, in _make_engine self._engine = CParserWrapper(self.f, **self.options) File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 1390, in __init__ self._reader = _parser.TextReader(src, **kwds) File "pandas\parser.pyx", line 373, in pandas.parser.TextReader.__cinit__ (pandas\parser.c:4184) File "pandas\parser.pyx", line 669, in pandas.parser.TextReader._setup_parser_source (pandas\parser.c:8471) OSError: Initializing from file failed ``` #### Problem description Pandas return OSError when trying to read a file with accents in file path. The problem is new (Since I upgraded to Python 3.6 and Pandas 0.19.2) #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.6.0.final.0 python-bits: 64 OS: Windows OS-release: 7 machine: AMD64 processor: Intel64 Family 6 Model 94 Stepping 3, GenuineIntel byteorder: little LC_ALL: None LANG: fr LOCALE: None.None pandas: 0.19.2 nose: None pip: 9.0.1 setuptools: 32.3.1 Cython: 0.25.2 numpy: 1.11.3 scipy: 0.18.1 statsmodels: None xarray: None IPython: 5.1.0 sphinx: 1.5.1 patsy: None dateutil: 2.6.0 pytz: 2016.10 blosc: None bottleneck: 1.2.0 tables: None numexpr: 2.6.1 matplotlib: 1.5.3 openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: 0.999999999 httplib2: None apiclient: None sqlalchemy: 1.1.4 pymysql: None psycopg2: None jinja2: 2.9.3 boto: None pandas_datareader: None </details>
Just my pennies worth. Quickly tried it out on Mac OSX and Ubuntu with no problems. See below. Could this be an environment/platform problem? I noticed that the `LOCALE` is set to `None.None`. Unfortunately I do not have a windows machine to try this example on. Admittedly this would not explain why you've seen this *after* the upgrade to python3.6 and pandas 0.19.2. Note: I just set up a virtualenv with python3.6 and installed pandas 0.19.2 using pip. ```python >>> import pandas as pd >>> pd.read_csv('test_é.txt') a b c 0 1 2 3 1 4 5 6 ``` Output of **pd.show_versions()** <details> INSTALLED VERSIONS commit: None python: 3.6.0.final.0 python-bits: 64 OS: Linux OS-release: 4.4.0-57-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: en_GB.UTF-8 pandas: 0.19.2 nose: None pip: 9.0.1 setuptools: 32.3.1 Cython: None numpy: 1.11.3 scipy: None statsmodels: None xarray: None IPython: None sphinx: None patsy: None dateutil: 2.6.0 pytz: 2016.10 blosc: None bottleneck: None tables: None numexpr: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: None httplib2: None apiclient: None sqlalchemy: None pymysql: None psycopg2: None jinja2: None boto: None pandas_datareader: None </details> I believe 3.6 switches the file system encoding on windows to utf8 (from ascii). Apart from that we don't have testing enable yet on windows for 3.6 (as some of the required packages are just now becoming available). @JGoutin so I just added build support on appveyor (windows) for 3.6, so if you'd push up your tests to see if it works, would be great. I also faced the same problem when the program stopped at pd.read_csv(file_path). The situation is similar to me after I upgraded my python to 3.6 (I'm not sure the last time the python I installed is exactly what version, maybe 3.5......). @jreback what is the next step towards a fix here? You have mentioned a PR that got 'blown away' - what does it mean? While I do not use Windows, I could try to help (just got a VM to debug a piece of my code that apparently does not work on windows) BTW, a workaround: pass a file handle instead of a name `pd.read_csv(open('test_é.txt', 'r'))` (there are several workarounds in related issues, but I have not seen this one) @tpietruszka see comments on the PR: https://github.com/pandas-dev/pandas/pull/15092 (it got removed from a private fork, was pretty much there). you basically need to encode the paths differently on py3.6 (vs other pythons) on wnidows. basically need to implement: https://docs.python.org/3/whatsnew/3.6.html#pep-529-change-windows-filesystem-encoding-to-utf-8 my old code (can't run): ``` import pandas as pd import os file_path='./dict/字典.csv' df_name = pd.read_csv(file_path,sep=',' ) ``` new code (sucessful): ``` import pandas as pd import os file_path='./dict/dict.csv' df_name = pd.read_csv(file_path,sep=',' ) ``` I think this bug is filename problem. I change filename from chinese to english, it can run now. If anyone comes here like me because he/she hit the same problem, here is a solution until pandas is fixed to work with pep 529 (basically any non ascii chars will in your path or filename will result in errors): Insert the following two lines at the beginning of your code to revert back to the old way of handling paths on windows: ``` import sys sys._enablelegacywindowsfsencoding() ``` I use the solution above and it works. Thanks very much @fotisj ! However I'm still confused on why DataFrame.to_csv() doesn't occur same problem. In other words, for unicode file path, write is ok, while read isn't. path=os.path.join('E:\语料','sina.csv') pd.read_csv(open(path, 'r',encoding='utf8')) It is successful. Can someone with an affected system check if changing this line https://github.com/pandas-dev/pandas/blob/e8620abc12a4c468a75adb8607fd8e0eb1c472e7/pandas/io/common.py#L209 to ```python return _expand_user(os.fsencode(filepath_or_buffer)), None, compression ``` fixes it? No, it does not. Results in: OSError: Expected file path name or file-like object, got <class 'bytes'> type (on Windows 10) OSError Traceback (most recent call last) <ipython-input-2-e8247998d6d4> in <module>() 1 ----> 2 df = pd.read_csv(r'D:\mydata\Dropbox\uni\progrs\test öäau\n\teu.csv', sep='\t') C:\conda\lib\site-packages\pandas\io\parsers.py in parser_f(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, skip_footer, doublequote, delim_whitespace, as_recarray, compact_ints, use_unsigned, low_memory, buffer_lines, memory_map, float_precision) 707 skip_blank_lines=skip_blank_lines) 708 --> 709 return _read(filepath_or_buffer, kwds) 710 711 parser_f.__name__ = name C:\conda\lib\site-packages\pandas\io\parsers.py in _read(filepath_or_buffer, kwds) 447 448 # Create the parser. --> 449 parser = TextFileReader(filepath_or_buffer, **kwds) 450 451 if chunksize or iterator: C:\conda\lib\site-packages\pandas\io\parsers.py in __init__(self, f, engine, **kwds) 816 self.options['has_index_names'] = kwds['has_index_names'] 817 --> 818 self._make_engine(self.engine) 819 820 def close(self): C:\conda\lib\site-packages\pandas\io\parsers.py in _make_engine(self, engine) 1047 def _make_engine(self, engine='c'): 1048 if engine == 'c': -> 1049 self._engine = CParserWrapper(self.f, **self.options) 1050 else: 1051 if engine == 'python': C:\conda\lib\site-packages\pandas\io\parsers.py in __init__(self, src, **kwds) 1693 kwds['allow_leading_cols'] = self.index_col is not False 1694 -> 1695 self._reader = parsers.TextReader(src, **kwds) 1696 1697 # XXX pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader.__cinit__() pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._setup_parser_source() OSError: Expected file path name or file-like object, got <class 'bytes'> type Oh, sorry. Does fsdecode work there? ________________________________ From: Fotis Jannidis <notifications@github.com> Sent: Saturday, February 3, 2018 8:00:13 AM To: pandas-dev/pandas Cc: Tom Augspurger; Comment Subject: Re: [pandas-dev/pandas] OSError when reading file with accents in file path (#15086) No, it does not. Results in: OSError: Expected file path name or file-like object, got <class 'bytes'> type — You are receiving this because you commented. Reply to this email directly, view it on GitHub<https://github.com/pandas-dev/pandas/issues/15086#issuecomment-362809602>, or mute the thread<https://github.com/notifications/unsubscribe-auth/ABQHIplv8thHxpjsP3knUCpET0Fjy0kLks5tRGZsgaJpZM4LeTSB>. No. Using fsdecode produces the same error we originally had ([error_msg.txt](https://github.com/pandas-dev/pandas/files/1691837/error_msg.txt)) Ok thanks for trying. ________________________________ From: Fotis Jannidis <notifications@github.com> Sent: Saturday, February 3, 2018 8:57:07 AM To: pandas-dev/pandas Cc: Tom Augspurger; Comment Subject: Re: [pandas-dev/pandas] OSError when reading file with accents in file path (#15086) No. Using fsdecode produces the same error we originally had (error_msg.txt<https://github.com/pandas-dev/pandas/files/1691837/error_msg.txt>) — You are receiving this because you commented. Reply to this email directly, view it on GitHub<https://github.com/pandas-dev/pandas/issues/15086#issuecomment-362818153>, or mute the thread<https://github.com/notifications/unsubscribe-auth/ABQHIpeYsj9Bv3OsoHAsOufXzU3AYSBSks5tRHPCgaJpZM4LeTSB>. Talked with Steve Dower today, and he suspects this may be the problematic line: https://github.com/pandas-dev/pandas/blob/e8f206d8192b409bc39da1ba1b2c5bcd8b65cc9f/pandas/_libs/src/parser/io.c#L30 IIUC, the Windows filesystem API is expecting those bytes to be in the MBCS, but we're using utf-8. A user-level workaround is to explicitly encode your filename as mbcs before passing the bytestring to pandas. https://www.python.org/dev/peps/pep-0529/#explicitly-using-mbcs ```python pd.read_csv(filename.encode('mbcs')) ``` is anyone able to test out that workaround? just need a small change in the parser code to fix this (there was a PR doing this) but was deleted @TomAugspurger that does not work. read_csv expects a `str` and not a `bytes` value. It fails with OSError: Expected file path name or file-like object, got <class 'bytes'> type Thanks for checking. On Fri, Apr 20, 2018 at 3:43 PM, João D. Ferreira <notifications@github.com> wrote: > @TomAugspurger <https://github.com/TomAugspurger> that does not work. > read_csv expects a str and not a bytes value. It fails with > > OSError: Expected file path name or file-like object, got <class 'bytes'> type > > — > You are receiving this because you were mentioned. > Reply to this email directly, view it on GitHub > <https://github.com/pandas-dev/pandas/issues/15086#issuecomment-383217062>, > or mute the thread > <https://github.com/notifications/unsubscribe-auth/ABQHIiOHyt3sT7B0pHJuY5lB-cJtT5JHks5tqkiEgaJpZM4LeTSB> > . > Just pinging this - I have the same issue, I'm using a workaround but it would be great if that was not required. this needs a community patch I am encountering this issue. I want to try and contribute a patchc Any pointers on how to start fixing this? I think none of the maintainers have access to a system that can reproduce this. Perhaps some of the others in this issue can help put together a solution.
2019-03-18T15:35:16Z
[]
[]
Traceback (most recent call last): File "<ipython-input-4-fd67679d1d17>", line 1, in <module> pd.read_csv('test_é.txt') File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 646, in parser_f return _read(filepath_or_buffer, kwds) File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 389, in _read parser = TextFileReader(filepath_or_buffer, **kwds) File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 730, in __init__ self._make_engine(self.engine) File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 923, in _make_engine self._engine = CParserWrapper(self.f, **self.options) File "d:\app\python36\lib\site-packages\pandas\io\parsers.py", line 1390, in __init__ self._reader = _parser.TextReader(src, **kwds) File "pandas\parser.pyx", line 373, in pandas.parser.TextReader.__cinit__ (pandas\parser.c:4184) File "pandas\parser.pyx", line 669, in pandas.parser.TextReader._setup_parser_source (pandas\parser.c:8471) OSError: Initializing from file failed
12,631
pandas-dev/pandas
pandas-dev__pandas-26188
fecee8ffe39446d213f425257c6de24b5a7f9021
diff --git a/environment.yml b/environment.yml --- a/environment.yml +++ b/environment.yml @@ -24,7 +24,7 @@ dependencies: - pytest>=4.0.2 - pytest-mock - sphinx - - numpydoc + - numpydoc>=0.9.0 - pip # optional diff --git a/requirements-dev.txt b/requirements-dev.txt --- a/requirements-dev.txt +++ b/requirements-dev.txt @@ -15,7 +15,7 @@ pycodestyle pytest>=4.0.2 pytest-mock sphinx -numpydoc +numpydoc>=0.9.0 pip beautifulsoup4>=4.2.1 blosc diff --git a/scripts/validate_docstrings.py b/scripts/validate_docstrings.py --- a/scripts/validate_docstrings.py +++ b/scripts/validate_docstrings.py @@ -472,9 +472,12 @@ def parameter_desc(self, param): @property def see_also(self): - return collections.OrderedDict((name, ''.join(desc)) - for name, desc, _ - in self.doc['See Also']) + result = collections.OrderedDict() + for funcs, desc in self.doc['See Also']: + for func, _ in funcs: + result[func] = ''.join(desc) + + return result @property def examples(self): @@ -731,7 +734,7 @@ def get_validation_data(doc): if doc.method_returns_something: errs.append(error('RT01')) else: - if len(doc.returns) == 1 and doc.returns[0][1]: + if len(doc.returns) == 1 and doc.returns[0].name: errs.append(error('RT02')) for name_or_type, type_, desc in doc.returns: if not desc:
Doc Check Failures This just started showing up in the CI failures today: ```sh Traceback (most recent call last): File "ci/../scripts/validate_docstrings.py", line 991, in <module> args.ignore_deprecated)) File "ci/../scripts/validate_docstrings.py", line 891, in main result = validate_all(prefix, ignore_deprecated) File "ci/../scripts/validate_docstrings.py", line 845, in validate_all doc_info = validate_one(func_name) File "ci/../scripts/validate_docstrings.py", line 801, in validate_one errs, wrns, examples_errs = get_validation_data(doc) File "ci/../scripts/validate_docstrings.py", line 749, in get_validation_data if not doc.see_also: File "ci/../scripts/validate_docstrings.py", line 477, in see_also in self.doc['See Also']) File "ci/../scripts/validate_docstrings.py", line 476, in <genexpr> for name, desc, _ ValueError: not enough values to unpack (expected 3, got 2) ``` I think it's an issue with upgrading to numpydoc 0.9 but will look in more detail and confirm
Here's the relevant enhancement on the numpydoc side released in v0.9: https://github.com/numpy/numpydoc/pull/172
2019-04-22T22:36:45Z
[]
[]
Traceback (most recent call last): File "ci/../scripts/validate_docstrings.py", line 991, in <module> args.ignore_deprecated)) File "ci/../scripts/validate_docstrings.py", line 891, in main result = validate_all(prefix, ignore_deprecated) File "ci/../scripts/validate_docstrings.py", line 845, in validate_all doc_info = validate_one(func_name) File "ci/../scripts/validate_docstrings.py", line 801, in validate_one errs, wrns, examples_errs = get_validation_data(doc) File "ci/../scripts/validate_docstrings.py", line 749, in get_validation_data if not doc.see_also: File "ci/../scripts/validate_docstrings.py", line 477, in see_also in self.doc['See Also']) File "ci/../scripts/validate_docstrings.py", line 476, in <genexpr> for name, desc, _ ValueError: not enough values to unpack (expected 3, got 2)
12,698
pandas-dev/pandas
pandas-dev__pandas-26228
971dcc11c8d9d71605582e6d37a4cdc65d996ff3
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -403,6 +403,7 @@ Groupby/Resample/Rolling - Bug in :meth:`pandas.core.groupby.GroupBy.idxmax` and :meth:`pandas.core.groupby.GroupBy.idxmin` with datetime column would return incorrect dtype (:issue:`25444`, :issue:`15306`) - Bug in :meth:`pandas.core.groupby.GroupBy.cumsum`, :meth:`pandas.core.groupby.GroupBy.cumprod`, :meth:`pandas.core.groupby.GroupBy.cummin` and :meth:`pandas.core.groupby.GroupBy.cummax` with categorical column having absent categories, would return incorrect result or segfault (:issue:`16771`) - Bug in :meth:`pandas.core.groupby.GroupBy.nth` where NA values in the grouping would return incorrect results (:issue:`26011`) +- Bug in :meth:`pandas.core.groupby.SeriesGroupBy.transform` where transforming an empty group would raise error (:issue:`26208`) Reshaping diff --git a/pandas/core/groupby/generic.py b/pandas/core/groupby/generic.py --- a/pandas/core/groupby/generic.py +++ b/pandas/core/groupby/generic.py @@ -916,8 +916,12 @@ def transform(self, func, *args, **kwargs): s = klass(res, indexer) results.append(s) - from pandas.core.reshape.concat import concat - result = concat(results).sort_index() + # check for empty "results" to avoid concat ValueError + if results: + from pandas.core.reshape.concat import concat + result = concat(results).sort_index() + else: + result = Series() # we will only try to coerce the result type if # we have a numeric dtype, as these are *always* udfs
SeriesGroupBy.transform cannot handle empty series #### Code Sample, a copy-pastable example if possible ```python d = pd.DataFrame({1: [], 2: []}) g = d.groupby(1) g[2].transform(lambda x: x) Traceback (most recent call last): File "<input>", line 1, in <module> File "C:\python37\lib\site-packages\pandas\core\groupby\generic.py", line 945, in transform result = concat(results).sort_index() File "C:\python37\lib\site-packages\pandas\core\reshape\concat.py", line 228, in concat copy=copy, sort=sort) File "C:\python37\lib\site-packages\pandas\core\reshape\concat.py", line 262, in __init__ raise ValueError('No objects to concatenate') ``` #### Problem description Crashes on SeriesGroupby obj with zero length, which came from an empty dataframe. Would be nicer if pandas can handle this case without raising errors, by for example, just return an empty series. Thanks. #### Expected Output ``` Series([], Name: 2, dtype: float64) ``` #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.7.3.final.0 python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 142 Stepping 9, GenuineIntel byteorder: little LC_ALL: None LANG: None LOCALE: None.None pandas: 0.24.2 pytest: 4.4.1 pip: 19.0.3 setuptools: 41.0.1 Cython: None numpy: 1.15.4 scipy: 1.1.0 pyarrow: None xarray: None IPython: None sphinx: None patsy: 0.5.1 dateutil: 2.7.5 pytz: 2018.7 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: 3.0.2 openpyxl: 2.5.12 xlrd: 1.2.0 xlwt: 1.3.0 xlsxwriter: None lxml.etree: None bs4: None html5lib: None sqlalchemy: None pymysql: None psycopg2: None jinja2: None s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None gcsfs: None </details>
I suppose that would make this consistent with apply and agg: ```python >>> g[2].apply(lambda x: x) Series([], Name: 2, dtype: float64) >>> g[2].agg(lambda x: x) Series([], Name: 2, dtype: float64) ``` If you want to take a look and have a simple way of making it work would take a PR Related to #17093 Okay, thanks. I see a possible patch. Need to read over contribution guideline and set up a working env to create a PR.
2019-04-27T18:01:07Z
[]
[]
Traceback (most recent call last): File "<input>", line 1, in <module> File "C:\python37\lib\site-packages\pandas\core\groupby\generic.py", line 945, in transform result = concat(results).sort_index() File "C:\python37\lib\site-packages\pandas\core\reshape\concat.py", line 228, in concat copy=copy, sort=sort) File "C:\python37\lib\site-packages\pandas\core\reshape\concat.py", line 262, in __init__ raise ValueError('No objects to concatenate') ``` #### Problem description Crashes on SeriesGroupby obj with zero length, which came from an empty dataframe. Would be nicer if pandas can handle this case without raising errors, by for example, just return an empty series. Thanks.
12,700
pandas-dev/pandas
pandas-dev__pandas-26456
9c7e60403d60cdd3ab2991d31a5c293396fd0843
diff --git a/doc/source/whatsnew/v1.0.0.rst b/doc/source/whatsnew/v1.0.0.rst --- a/doc/source/whatsnew/v1.0.0.rst +++ b/doc/source/whatsnew/v1.0.0.rst @@ -229,6 +229,7 @@ Plotting - Bug in :meth:`DataFrame.plot` producing incorrect legend markers when plotting multiple series on the same axis (:issue:`18222`) - Bug in :meth:`DataFrame.plot` when ``kind='box'`` and data contains datetime or timedelta data. These types are now automatically dropped (:issue:`22799`) - Bug in :meth:`DataFrame.plot.line` and :meth:`DataFrame.plot.area` produce wrong xlim in x-axis (:issue:`27686`, :issue:`25160`, :issue:`24784`) +- Bug where :meth:`DataFrame.boxplot` would not accept a `color` parameter like `DataFrame.plot.box` (:issue:`26214`) - :func:`set_option` now validates that the plot backend provided to ``'plotting.backend'`` implements the backend when the option is set, rather than when a plot is created (:issue:`28163`) Groupby/resample/rolling diff --git a/pandas/plotting/_matplotlib/boxplot.py b/pandas/plotting/_matplotlib/boxplot.py --- a/pandas/plotting/_matplotlib/boxplot.py +++ b/pandas/plotting/_matplotlib/boxplot.py @@ -4,6 +4,7 @@ from matplotlib.artist import setp import numpy as np +from pandas.core.dtypes.common import is_dict_like from pandas.core.dtypes.generic import ABCSeries from pandas.core.dtypes.missing import remove_na_arraylike @@ -250,13 +251,38 @@ def boxplot( def _get_colors(): # num_colors=3 is required as method maybe_color_bp takes the colors # in positions 0 and 2. - return _get_standard_colors(color=kwds.get("color"), num_colors=3) + # if colors not provided, use same defaults as DataFrame.plot.box + result = _get_standard_colors(num_colors=3) + result = np.take(result, [0, 0, 2]) + result = np.append(result, "k") + + colors = kwds.pop("color", None) + if colors: + if is_dict_like(colors): + # replace colors in result array with user-specified colors + # taken from the colors dict parameter + # "boxes" value placed in position 0, "whiskers" in 1, etc. + valid_keys = ["boxes", "whiskers", "medians", "caps"] + key_to_index = dict(zip(valid_keys, range(4))) + for key, value in colors.items(): + if key in valid_keys: + result[key_to_index[key]] = value + else: + raise ValueError( + "color dict contains invalid " + "key '{0}' " + "The key must be either {1}".format(key, valid_keys) + ) + else: + result.fill(colors) + + return result def maybe_color_bp(bp): - if "color" not in kwds: - setp(bp["boxes"], color=colors[0], alpha=1) - setp(bp["whiskers"], color=colors[0], alpha=1) - setp(bp["medians"], color=colors[2], alpha=1) + setp(bp["boxes"], color=colors[0], alpha=1) + setp(bp["whiskers"], color=colors[1], alpha=1) + setp(bp["medians"], color=colors[2], alpha=1) + setp(bp["caps"], color=colors[3], alpha=1) def plot_group(keys, values, ax): keys = [pprint_thing(x) for x in keys]
_dataframe.boxplot_ with _where_ and _by_ does not respect color keyword ### Bug report **Bug summary** The boxplot method on a dataframe which is using the "column, by" keywords does not respect the _color_ keyword, and in fact crashes if it is present. This is not consistent with the documentation [here](http://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html#box-plots). **Code for reproduction** ```python import pandas as pd import matplotlib.pyplot as plt import numpy as np def make_dummy_data(): """ Return """ df1 = pd.DataFrame(np.random.rand(10, 3), columns = ['x', 'y', 'z']) df2 = pd.DataFrame(2*np.random.rand(10, 3), columns = ['x', 'y', 'z']) return df1, df2 def comparative_results(): """ stuff """ df1, df2 = make_dummy_data() def draw_plot(ax, data, edge_color, fill_color=None): """ Controls details of color""" colors = dict(boxes=edge_color, whiskers=edge_color, medians=edge_color, caps=edge_color) ax = data.boxplot(column=['x'], by=['z'], showfliers=False, ax=ax, color=colors) return ax ax = None ax = draw_plot(ax, df1, 'k') ax = draw_plot(ax, df2, 'r') ax.set_title('dummy to expose bug') plt.show() if __name__ == "__main__": comparative_results() ``` **Actual outcome** <!--The output produced by the above code, which may be a screenshot, console output, etc.--> ``` Traceback (most recent call last): File "/Users/BNL28/Code/DataPerformance/bug_report.py", line 33, in <module> comparative_results() File "/Users/BNL28/Code/DataPerformance/bug_report.py", line 26, in comparative_results ax = draw_plot(ax, df1, 'k') File "/Users/BNL28/Code/DataPerformance/bug_report.py", line 22, in draw_plot ax = data.boxplot(column=['x'], by=['z'], showfliers=False, ax=ax, color=colors) File "/Users/BNL28/anaconda3/lib/python3.6/site-packages/pandas/plotting/_core.py", line 2254, in boxplot_frame return_type=return_type, **kwds) File "/Users/BNL28/anaconda3/lib/python3.6/site-packages/pandas/plotting/_core.py", line 2223, in boxplot return_type=return_type) File "/Users/BNL28/anaconda3/lib/python3.6/site-packages/pandas/plotting/_core.py", line 2683, in _grouped_plot_by_column re_plotf = plotf(keys, values, ax, **kwargs) File "/Users/BNL28/anaconda3/lib/python3.6/site-packages/pandas/plotting/_core.py", line 2191, in plot_group bp = ax.boxplot(values, **kwds) File "/Users/BNL28/anaconda3/lib/python3.6/site-packages/matplotlib/__init__.py", line 1810, in inner return func(ax, *args, **kwargs) TypeError: boxplot() got an unexpected keyword argument 'color' Process finished with exit code 1 ``` **Expected outcome** Expect two sets of box plots, one coloured black, and one coloured red. Code runs ok with no color keyword, but the boxes are indistinguishable without colour control. **Environment** * Operating system: OSX * Matplotlib version: 3.0.2 * Matplotlib backend (`print(matplotlib.get_backend())`): * Python version: Python 3.6.8 |Anaconda, Inc.| (default, Dec 29 2018, 19:04:46) * Pandas version 0.24.2
Sorry about the title, and not noticing the mistake in the matplotlib backend version: 3.0.2
2019-05-19T04:30:48Z
[]
[]
Traceback (most recent call last): File "/Users/BNL28/Code/DataPerformance/bug_report.py", line 33, in <module> comparative_results() File "/Users/BNL28/Code/DataPerformance/bug_report.py", line 26, in comparative_results ax = draw_plot(ax, df1, 'k') File "/Users/BNL28/Code/DataPerformance/bug_report.py", line 22, in draw_plot ax = data.boxplot(column=['x'], by=['z'], showfliers=False, ax=ax, color=colors) File "/Users/BNL28/anaconda3/lib/python3.6/site-packages/pandas/plotting/_core.py", line 2254, in boxplot_frame return_type=return_type, **kwds) File "/Users/BNL28/anaconda3/lib/python3.6/site-packages/pandas/plotting/_core.py", line 2223, in boxplot return_type=return_type) File "/Users/BNL28/anaconda3/lib/python3.6/site-packages/pandas/plotting/_core.py", line 2683, in _grouped_plot_by_column re_plotf = plotf(keys, values, ax, **kwargs) File "/Users/BNL28/anaconda3/lib/python3.6/site-packages/pandas/plotting/_core.py", line 2191, in plot_group bp = ax.boxplot(values, **kwds) File "/Users/BNL28/anaconda3/lib/python3.6/site-packages/matplotlib/__init__.py", line 1810, in inner return func(ax, *args, **kwargs) TypeError: boxplot() got an unexpected keyword argument 'color'
12,744
pandas-dev/pandas
pandas-dev__pandas-26585
437efa6e974e506c7cc5f142d5186bf6a7f5ce13
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -529,6 +529,7 @@ Datetimelike - Bug in :func:`to_datetime` which does not replace the invalid argument with ``NaT`` when error is set to coerce (:issue:`26122`) - Bug in adding :class:`DateOffset` with nonzero month to :class:`DatetimeIndex` would raise ``ValueError`` (:issue:`26258`) - Bug in :func:`to_datetime` which raises unhandled ``OverflowError`` when called with mix of invalid dates and ``NaN`` values with ``format='%Y%m%d'`` and ``error='coerce'`` (:issue:`25512`) +- Bug in :func:`to_datetime` which raises ``TypeError`` for ``format='%Y%m%d'`` when called for invalid integer dates with length >= 6 digits with ``errors='ignore'`` Timedelta ^^^^^^^^^ diff --git a/pandas/_libs/tslibs/strptime.pyx b/pandas/_libs/tslibs/strptime.pyx --- a/pandas/_libs/tslibs/strptime.pyx +++ b/pandas/_libs/tslibs/strptime.pyx @@ -140,13 +140,13 @@ def array_strptime(object[:] values, object fmt, iresult[i] = NPY_NAT continue raise ValueError("time data %r does not match " - "format %r (match)" % (values[i], fmt)) + "format %r (match)" % (val, fmt)) if len(val) != found.end(): if is_coerce: iresult[i] = NPY_NAT continue raise ValueError("unconverted data remains: %s" % - values[i][found.end():]) + val[found.end():]) # search else: @@ -156,7 +156,7 @@ def array_strptime(object[:] values, object fmt, iresult[i] = NPY_NAT continue raise ValueError("time data %r does not match format " - "%r (search)" % (values[i], fmt)) + "%r (search)" % (val, fmt)) iso_year = -1 year = 1900
to_datetime returns TypeError for invalid integer dates with %Y%m%d format ```python In [1]: pd.__version__ Out[1]: '0.25.0.dev0+625.g8154efb0c' ``` ```python pd.to_datetime(20199911, format="%Y%m%d", errors='ignore') pd.to_datetime(2019121212, format="%Y%m%d", errors='ignore') ``` throws "TypeError: 'int' object is unsliceable" instead of returning initial values ```python Traceback (most recent call last): File "/home/talka/projects/pandas/tmp.py", line 21, in <module> pd.to_datetime(2019121212, format="%Y%m%d", errors='ignore') File "/home/talka/projects/pandas/pandas/util/_decorators.py", line 188, in wrapper return func(*args, **kwargs) File "/home/talka/projects/pandas/pandas/core/tools/datetimes.py", line 626, in to_datetime result = convert_listlike(np.array([arg]), box, format)[0] File "/home/talka/projects/pandas/pandas/core/tools/datetimes.py", line 270, in _convert_listlike_datetimes arg, format, exact=exact, errors=errors) File "pandas/_libs/tslibs/strptime.pyx", line 149, in pandas._libs.tslibs.strptime.array_strptime TypeError: 'int' object is unsliceable ```
2019-05-31T02:06:51Z
[]
[]
Traceback (most recent call last): File "/home/talka/projects/pandas/tmp.py", line 21, in <module> pd.to_datetime(2019121212, format="%Y%m%d", errors='ignore') File "/home/talka/projects/pandas/pandas/util/_decorators.py", line 188, in wrapper return func(*args, **kwargs) File "/home/talka/projects/pandas/pandas/core/tools/datetimes.py", line 626, in to_datetime result = convert_listlike(np.array([arg]), box, format)[0] File "/home/talka/projects/pandas/pandas/core/tools/datetimes.py", line 270, in _convert_listlike_datetimes arg, format, exact=exact, errors=errors) File "pandas/_libs/tslibs/strptime.pyx", line 149, in pandas._libs.tslibs.strptime.array_strptime TypeError: 'int' object is unsliceable
12,762
pandas-dev/pandas
pandas-dev__pandas-26607
a60888ce4ce9e106537fb410688b66baa109edc3
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -613,7 +613,7 @@ Strings ^^^^^^^ - Bug in the ``__name__`` attribute of several methods of :class:`Series.str`, which were set incorrectly (:issue:`23551`) -- +- Improved error message when passing :class:`Series` of wrong dtype to :meth:`Series.str.cat` (:issue:`22722`) - diff --git a/pandas/core/strings.py b/pandas/core/strings.py --- a/pandas/core/strings.py +++ b/pandas/core/strings.py @@ -2,7 +2,7 @@ from functools import wraps import re import textwrap -from typing import Dict +from typing import Dict, List import warnings import numpy as np @@ -31,7 +31,7 @@ _shared_docs = dict() # type: Dict[str, str] -def cat_core(list_of_columns, sep): +def cat_core(list_of_columns: List, sep: str): """ Auxiliary function for :meth:`str.cat` @@ -53,6 +53,41 @@ def cat_core(list_of_columns, sep): return np.sum(list_with_sep, axis=0) +def cat_safe(list_of_columns: List, sep: str): + """ + Auxiliary function for :meth:`str.cat`. + + Same signature as cat_core, but handles TypeErrors in concatenation, which + happen if the arrays in list_of columns have the wrong dtypes or content. + + Parameters + ---------- + list_of_columns : list of numpy arrays + List of arrays to be concatenated with sep; + these arrays may not contain NaNs! + sep : string + The separator string for concatenating the columns + + Returns + ------- + nd.array + The concatenation of list_of_columns with sep + """ + try: + result = cat_core(list_of_columns, sep) + except TypeError: + # if there are any non-string values (wrong dtype or hidden behind + # object dtype), np.sum will fail; catch and return with better message + for column in list_of_columns: + dtype = lib.infer_dtype(column, skipna=True) + if dtype not in ['string', 'empty']: + raise TypeError( + 'Concatenation requires list-likes containing only ' + 'strings (or missing values). Offending values found in ' + 'column {}'.format(dtype)) from None + return result + + def _na_map(f, arr, na_result=np.nan, dtype=object): # should really _check_ for NA return _map(f, arr, na_mask=True, na_value=na_result, dtype=dtype) @@ -2314,16 +2349,16 @@ def cat(self, others=None, sep=None, na_rep=None, join=None): np.putmask(result, union_mask, np.nan) not_masked = ~union_mask - result[not_masked] = cat_core([x[not_masked] for x in all_cols], + result[not_masked] = cat_safe([x[not_masked] for x in all_cols], sep) elif na_rep is not None and union_mask.any(): # fill NaNs with na_rep in case there are actually any NaNs all_cols = [np.where(nm, na_rep, col) for nm, col in zip(na_masks, all_cols)] - result = cat_core(all_cols, sep) + result = cat_safe(all_cols, sep) else: # no NaNs - can just concatenate - result = cat_core(all_cols, sep) + result = cat_safe(all_cols, sep) if isinstance(self._orig, Index): # add dtype for case that result is all-NA
Improve TypeError message for str.cat Currently, ``` s = pd.Series(['a', 'b', 'c']) s.str.cat([1, 2, 3]) ``` yields ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\Axel Obermeier\eclipse-workspace\pddev\pandas\core\strings.py", line 2222, in cat res = str_cat(data, others=others, sep=sep, na_rep=na_rep) File "C:\Users\Axel Obermeier\eclipse-workspace\pddev\pandas\core\strings.py", line 111, in str_cat cats = [sep.join(tup) for tup in tuples] File "C:\Users\Axel Obermeier\eclipse-workspace\pddev\pandas\core\strings.py", line 111, in <listcomp> cats = [sep.join(tup) for tup in tuples] TypeError: sequence item 1: expected str instance, int found ``` IMO, this should be improved to have a better error message, and shallower stack trace.
What are you suggesting exactly? Error message reflects what you would get from a standard Python operation: ```python >>> "".join(['foo', 1]) Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: sequence item 1: expected str instance, int found ``` @WillAyd That's of course correct, but users are not dealing with str/int instances, but usually with Series/ndarray, etc., and so the mentioned warning gives the right hint, but is not necessarily the best we can do. I opened this issue as it was a side product of cleaning up some internals/tests for #22725. @jreback I'll open another PR for this, but this will not be closed by #22725 (was split off due to review) @WillAyd The code for this was splitt off of #22725 to focus that PR (I had edited the OP to reflect that) - this issue is still open.
2019-06-01T15:51:00Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\Axel Obermeier\eclipse-workspace\pddev\pandas\core\strings.py", line 2222, in cat res = str_cat(data, others=others, sep=sep, na_rep=na_rep) File "C:\Users\Axel Obermeier\eclipse-workspace\pddev\pandas\core\strings.py", line 111, in str_cat cats = [sep.join(tup) for tup in tuples] File "C:\Users\Axel Obermeier\eclipse-workspace\pddev\pandas\core\strings.py", line 111, in <listcomp> cats = [sep.join(tup) for tup in tuples] TypeError: sequence item 1: expected str instance, int found
12,765
pandas-dev/pandas
pandas-dev__pandas-26746
13023c6515ca11a3353d98645f48a403243101cf
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -666,6 +666,7 @@ I/O - Added ``cache_dates=True`` parameter to :meth:`read_csv`, which allows to cache unique dates when they are parsed (:issue:`25990`) - :meth:`DataFrame.to_excel` now raises a ``ValueError`` when the caller's dimensions exceed the limitations of Excel (:issue:`26051`) - :func:`read_excel` now raises a ``ValueError`` when input is of type :class:`pandas.io.excel.ExcelFile` and ``engine`` param is passed since :class:`pandas.io.excel.ExcelFile` has an engine defined (:issue:`26566`) +- Bug while selecting from :class:`HDFStore` with ``where=''`` specified (:issue:`26610`). Plotting ^^^^^^^^ diff --git a/pandas/io/pytables.py b/pandas/io/pytables.py --- a/pandas/io/pytables.py +++ b/pandas/io/pytables.py @@ -98,7 +98,7 @@ def _ensure_term(where, scope_level): where = wlist elif maybe_expression(where): where = Term(where, scope_level=level) - return where + return where if where is None or len(where) else None class PossibleDataLossError(Exception):
Read from HDF with empty `where` throws an error #### Code Sample ```python df = pd.DataFrame(np.random.rand(4,4)) where = '' with pd.HDFStore('test.h5') as store: store.put('df', df, 't') store.select('df', where = where) ``` #### Problem description Wanted to be able construct "by hands" and save `where` condition for later, so declare it as variable. But some times constructed `where` becomes empty and code throws an error. ```python-traceback Traceback (most recent call last): File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3267, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-101-48181c3b59fb>", line 6, in <module> store.select('df', where = where) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 740, in select return it.get_result() File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 1518, in get_result results = self.func(self.start, self.stop, where) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 733, in func columns=columns) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 4254, in read if not self.read_axes(where=where, **kwargs): File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 3443, in read_axes self.selection = Selection(self, where=where, **kwargs) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 4815, in __init__ self.terms = self.generate(where) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 4828, in generate return Expr(where, queryables=q, encoding=self.table.encoding) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/core/computation/pytables.py", line 548, in __init__ self.terms = self.parse() File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/core/computation/expr.py", line 766, in parse return self._visitor.visit(self.expr) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/core/computation/expr.py", line 331, in visit return visitor(node, **kwargs) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/core/computation/expr.py", line 335, in visit_Module raise SyntaxError('only a single expression is allowed') File "<string>", line unknown SyntaxError: only a single expression is allowed ``` #### Expected Output When empty string is passed to `where` - just select whole DataFrame. It may be easily achieved by changing last statement to `store.select('df', where = where if where else None)`. But it would be better to add this checking inside pandas, so user may not worry about it all the times using selection from HDF with `where`. #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.7.3.final.0 python-bits: 64 OS: Linux OS-release: 5.0.0-16-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.24.2 pytest: 4.5.0 pip: 19.1.1 setuptools: 41.0.1 Cython: 0.29.7 numpy: 1.16.3 scipy: 1.2.1 pyarrow: None xarray: 0.12.1 IPython: 7.2.0 sphinx: None patsy: None dateutil: 2.8.0 pytz: 2019.1 blosc: None bottleneck: None tables: 3.5.1 numexpr: 2.6.9 feather: None matplotlib: 3.0.3 openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml.etree: None bs4: None html5lib: None sqlalchemy: None pymysql: None psycopg2: None jinja2: 2.10.1 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None gcsfs: None </details>
Where is documented as accepting a list so if you use an empty list instead of the string you should be able to manage this the way you want In API reference it is stated it accepts list, yes. But in [user_guide](http://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#querying-a-table) all examples are with using `where` as string. And also user_guide states: "If a list/tuple of expressions is passed they will be combined via &". The latter may become problem if one would create empty `where = []`, and starts to populate it with conditions - all of them will be forced to be combined via '&' (not '|' as may be wished). So in this case it would be ended to amending single condition inside `where = [condition]` list. But anyway even here problem is the same. If `where` will ends up as empty list after all processing: ```python df = pd.DataFrame(np.random.rand(4,4)) where = [] with pd.HDFStore('test.h5') as store: store.put('df', df, 't') store.select('df', where = where) ``` Same error will be raised: ```python Traceback (most recent call last): File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3267, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-90-507edb4b117e>", line 6, in <module> store.select('df', where = where) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 740, in select return it.get_result() File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 1518, in get_result results = self.func(self.start, self.stop, where) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 733, in func columns=columns) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 4254, in read if not self.read_axes(where=where, **kwargs): File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 3443, in read_axes self.selection = Selection(self, where=where, **kwargs) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 4815, in __init__ self.terms = self.generate(where) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 4828, in generate return Expr(where, queryables=q, encoding=self.table.encoding) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/core/computation/pytables.py", line 548, in __init__ self.terms = self.parse() File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/core/computation/expr.py", line 766, in parse return self._visitor.visit(self.expr) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/core/computation/expr.py", line 331, in visit return visitor(node, **kwargs) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/core/computation/expr.py", line 335, in visit_Module raise SyntaxError('only a single expression is allowed') File "<string>", line unknown SyntaxError: only a single expression is allowed ``` Thanks for the additional references. If you'd like to take a look and clean up implementation / documentation PRs would certainly be welcome! To make sure I understand, the proposed fix is for `where=[]` to be treaded the same as `where=None`, i.e. no filtering? @TomAugspurger, if you are asking me, yes I think it should be that way. Empty `where=[]` -> no filtering -> whole df will be return. Sounds right. Can you submit a PR with tests? > On Jun 3, 2019, at 17:17, BeforeFlight <notifications@github.com> wrote: > > If you are asking me, yes I think it should be that way. Empty where=[] -> no filtering -> whole df will be return. > > — > You are receiving this because you commented. > Reply to this email directly, view it on GitHub, or mute the thread. @TomAugspurger as I explained in neighbour theme with groupby issue - just don't know how to do it correctly. @BeforeFlight we have a contributing guide which could be helpful: https://pandas.pydata.org/pandas-docs/stable/development/contributing.html#testing-with-continuous-integration If you would like to try but run into specific issues we are of course here to help. You can also use Gitter for development questions @WillAyd well I would like to. But will start only tomorrow (now is 2pm here). If this api design proposal may serve for my 'github environment understanding' for some time - I would like to try for sure. I'm not sure how should I test it. While putting my test into pandas context get following for now: ```python def test_empty_where_lst(): with tm.ensure_clean() as path: df = pd.DataFrame([[1, 2, 3], [1, 2, 3]]) with pd.HDFStore(path) as store: store.put("df", df, "t") store.select("df", where=[]) ``` But this code raises very specific exception - `SyntaxError`. So should I prefix function with `@pytest.mark.xfail(raises=SyntaxError)`? So be more explicit on what exception is expected. The reason why I'm asking is [discourage](https://github.com/pandas-dev/pandas/wiki/Testing#additional-imports) of checking for Exceptions.
2019-06-09T00:05:52Z
[]
[]
Traceback (most recent call last): File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3267, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-101-48181c3b59fb>", line 6, in <module> store.select('df', where = where) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 740, in select return it.get_result() File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 1518, in get_result results = self.func(self.start, self.stop, where) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 733, in func columns=columns) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 4254, in read if not self.read_axes(where=where, **kwargs): File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 3443, in read_axes self.selection = Selection(self, where=where, **kwargs) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 4815, in __init__ self.terms = self.generate(where) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/io/pytables.py", line 4828, in generate return Expr(where, queryables=q, encoding=self.table.encoding) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/core/computation/pytables.py", line 548, in __init__ self.terms = self.parse() File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/core/computation/expr.py", line 766, in parse return self._visitor.visit(self.expr) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/core/computation/expr.py", line 331, in visit return visitor(node, **kwargs) File "/home/beforeflight/Coding/Python/_venvs_/main/lib/python3.7/site-packages/pandas/core/computation/expr.py", line 335, in visit_Module raise SyntaxError('only a single expression is allowed') File "<string>", line unknown SyntaxError: only a single expression is allowed
12,788
pandas-dev/pandas
pandas-dev__pandas-2677
e1929f783bf87fa7b76b6420c290cc5dd7df9e59
FAIL: test_to_string_repr_unicode env: windows 7 32bit english python 2.7.3 when I run nose test: ``` nosetests pandas ``` issue: FAIL: test_to_string_repr_unicode (pandas.tests.test_format.TestDataFrameFormatting) Traceback (most recent call last): File "D:\Python27\lib\site-packages\pandas\tests\test_format.py", line 141, in test_to_string_repr_unicode self.assert_(len(line) == line_len) AssertionError: False is not true how to do?
what does the following produce on your system? ``` python In [8]: import locale ...: import sys ...: import pandas as pd ...: print(pd.__version__) ...: print( sys.stdout.encoding) ...: print( sys.stdin.encoding) ...: print(locale.getpreferredencoding()) ...: print(sys.getdefaultencoding()) ...: print(pd.options.display.encoding) ``` ``` In [1]: import locale, sys In [2]: import pandas as pd In [3]: print pd.__version__ 0.10.0 In [4]: print sys.stdout.encoding cp936 In [5]: print sys.std sys.stderr sys.stdin sys.stdout In [5]: print sys.stdin.encoding cp936 In [6]: print local Local\ Settings locale locals In [6]: print locale.get locale.getdefaultlocale locale.getpreferredencoding locale.getlocale In [6]: print locale.getpreferredencoding() cp936 In [7]: print sys.getdefaultencoding() ascii In [8]: print pd.options.display.encoding cp936 ```
2013-01-10T14:48:53Z
[]
[]
Traceback (most recent call last): File "D:\Python27\lib\site-packages\pandas\tests\test_format.py", line 141, in test_to_string_repr_unicode self.assert_(len(line) == line_len) AssertionError: False is not true
12,795
pandas-dev/pandas
pandas-dev__pandas-26825
a7f1d69b135bbbf649cf1af9a62d79acb963e47c
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -775,6 +775,7 @@ Reshaping - Bug in :func:`DataFrame.sort_index` where an error is thrown when a multi-indexed ``DataFrame`` is sorted on all levels with the initial level sorted last (:issue:`26053`) - Bug in :meth:`Series.nlargest` treats ``True`` as smaller than ``False`` (:issue:`26154`) - Bug in :func:`DataFrame.pivot_table` with a :class:`IntervalIndex` as pivot index would raise ``TypeError`` (:issue:`25814`) +- Bug in :meth:`DataFrame.transpose` where transposing a DataFrame with a timezone-aware datetime column would incorrectly raise ``ValueError`` (:issue:`26825`) Sparse ^^^^^^ @@ -802,6 +803,7 @@ Other - Removed unused C functions from vendored UltraJSON implementation (:issue:`26198`) - Allow :class:`Index` and :class:`RangeIndex` to be passed to numpy ``min`` and ``max`` functions (:issue:`26125`) - Use actual class name in repr of empty objects of a ``Series`` subclass (:issue:`27001`). +- Bug in :class:`DataFrame` where passing an object array of timezone-aware `datetime` objects would incorrectly raise ``ValueError`` (:issue:`13287`) .. _whatsnew_0.250.contributors: diff --git a/pandas/core/groupby/generic.py b/pandas/core/groupby/generic.py --- a/pandas/core/groupby/generic.py +++ b/pandas/core/groupby/generic.py @@ -21,10 +21,12 @@ from pandas.errors import AbstractMethodError from pandas.util._decorators import Appender, Substitution -from pandas.core.dtypes.cast import maybe_downcast_to_dtype +from pandas.core.dtypes.cast import ( + maybe_convert_objects, maybe_downcast_to_dtype) from pandas.core.dtypes.common import ( ensure_int64, ensure_platform_int, is_bool, is_datetimelike, - is_integer_dtype, is_interval_dtype, is_numeric_dtype, is_scalar) + is_integer_dtype, is_interval_dtype, is_numeric_dtype, is_object_dtype, + is_scalar) from pandas.core.dtypes.missing import isna, notna from pandas._typing import FrameOrSeries @@ -334,7 +336,6 @@ def _decide_output_index(self, output, labels): def _wrap_applied_output(self, keys, values, not_indexed_same=False): from pandas.core.index import _all_indexes_same - from pandas.core.tools.numeric import to_numeric if len(keys) == 0: return DataFrame(index=keys) @@ -406,7 +407,6 @@ def first_not_none(values): # provide a reduction (Frame -> Series) if groups are # unique if self.squeeze: - # assign the name to this series if singular_series: values[0].name = keys[0] @@ -481,14 +481,7 @@ def first_not_none(values): # as we are stacking can easily have object dtypes here so = self._selected_obj if so.ndim == 2 and so.dtypes.apply(is_datetimelike).any(): - result = result.apply( - lambda x: to_numeric(x, errors='ignore')) - date_cols = self._selected_obj.select_dtypes( - include=['datetime', 'timedelta']).columns - date_cols = date_cols.intersection(result.columns) - result[date_cols] = (result[date_cols] - ._convert(datetime=True, - coerce=True)) + result = _recast_datetimelike_result(result) else: result = result._convert(datetime=True) @@ -1710,3 +1703,35 @@ def _normalize_keyword_aggregation(kwargs): order.append((column, com.get_callable_name(aggfunc) or aggfunc)) return aggspec, columns, order + + +def _recast_datetimelike_result(result: DataFrame) -> DataFrame: + """ + If we have date/time like in the original, then coerce dates + as we are stacking can easily have object dtypes here. + + Parameters + ---------- + result : DataFrame + + Returns + ------- + DataFrame + + Notes + ----- + - Assumes Groupby._selected_obj has ndim==2 and at least one + datetimelike column + """ + result = result.copy() + + obj_cols = [idx for idx in range(len(result.columns)) + if is_object_dtype(result.dtypes[idx])] + + # See GH#26285 + for n in obj_cols: + converted = maybe_convert_objects(result.iloc[:, n].values, + convert_numeric=False) + + result.iloc[:, n] = converted + return result diff --git a/pandas/core/internals/construction.py b/pandas/core/internals/construction.py --- a/pandas/core/internals/construction.py +++ b/pandas/core/internals/construction.py @@ -159,9 +159,28 @@ def init_ndarray(values, index, columns, dtype=None, copy=False): # on the entire block; this is to convert if we have datetimelike's # embedded in an object type if dtype is None and is_object_dtype(values): - values = maybe_infer_to_datetimelike(values) - return create_block_manager_from_blocks([values], [columns, index]) + if values.ndim == 2 and values.shape[0] != 1: + # transpose and separate blocks + + dvals_list = [maybe_infer_to_datetimelike(row) for row in values] + for n in range(len(dvals_list)): + if isinstance(dvals_list[n], np.ndarray): + dvals_list[n] = dvals_list[n].reshape(1, -1) + + from pandas.core.internals.blocks import make_block + + # TODO: What about re-joining object columns? + block_values = [make_block(dvals_list[n], placement=[n]) + for n in range(len(dvals_list))] + + else: + datelike_vals = maybe_infer_to_datetimelike(values) + block_values = [datelike_vals] + else: + block_values = [values] + + return create_block_manager_from_blocks(block_values, [columns, index]) def init_dict(data, index, columns, dtype=None):
BUG: Pandas cannot create DataFrame from Numpy Array of TimeStamps I have the following array of Timestamps: ``` python ts_array = np.array([[Timestamp('2016-05-02 15:50:00+0000', tz='UTC', offset='5T'), Timestamp('2016-05-02 15:50:00+0000', tz='UTC', offset='5T'), Timestamp('2016-05-02 15:50:00+0000', tz='UTC', offset='5T')], [Timestamp('2016-05-02 17:10:00+0000', tz='UTC', offset='5T'), Timestamp('2016-05-02 17:10:00+0000', tz='UTC', offset='5T'), Timestamp('2016-05-02 17:10:00+0000', tz='UTC', offset='5T')], [Timestamp('2016-05-02 20:25:00+0000', tz='UTC', offset='5T'), Timestamp('2016-05-02 20:25:00+0000', tz='UTC', offset='5T'), Timestamp('2016-05-02 20:25:00+0000', tz='UTC', offset='5T')]], dtype=object) ``` I can't create a DataFrame from this array using the DataFrame constructor: ``` python pd.DataFrame(ts_array) ``` ``` Traceback (most recent call last): File "/Users/jkelleher/anaconda/lib/python2.7/site-packages/IPython/core/interactiveshell.py", line 2885, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-46-ae20c6b6248f>", line 1, in <module> pd.DataFrame(ts_array) File "/Users/jkelleher/anaconda/lib/python2.7/site-packages/pandas/core/frame.py", line 255, in __init__ copy=copy) File "/Users/jkelleher/anaconda/lib/python2.7/site-packages/pandas/core/frame.py", line 432, in _init_ndarray return create_block_manager_from_blocks([values], [columns, index]) File "/Users/jkelleher/anaconda/lib/python2.7/site-packages/pandas/core/internals.py", line 3986, in create_block_manager_from_blocks mgr = BlockManager(blocks, axes) File "/Users/jkelleher/anaconda/lib/python2.7/site-packages/pandas/core/internals.py", line 2591, in __init__ (block.ndim, self.ndim)) AssertionError: Number of Block dimensions (1) must equal number of axes (2) ``` I can create the DataFrame from the array using `from_records`: ``` python ts_df = pd.DataFrame.from_records(ts_array) ``` However, when I attempt to transpose this DataFrame, I wind up with the same `AssertionError` as before. ``` AssertionError: Number of Block dimensions (1) must equal number of axes (2) ``` If I convert the Timestamps to Datetimes, the error persists. I can, however, convert the Timestamps to Datetime64 objects, and this fixes the problem. ``` python dt64_array = np.array([[ts.to_datetime64() for ts in sublist] for sublist in ts_array]) pd.DataFrame(dt64_array) ``` ``` Out[56]: 0 1 2 0 2016-05-02 15:50:00 2016-05-02 15:50:00 2016-05-02 15:50:00 1 2016-05-02 17:10:00 2016-05-02 17:10:00 2016-05-02 17:10:00 2 2016-05-02 20:25:00 2016-05-02 20:25:00 2016-05-02 20:25:00 ``` ``` python pd.DataFrame(dt64_array).transpose() ``` ``` Out[57]: 0 1 2 0 2016-05-02 15:50:00 2016-05-02 17:10:00 2016-05-02 20:25:00 1 2016-05-02 15:50:00 2016-05-02 17:10:00 2016-05-02 20:25:00 2 2016-05-02 15:50:00 2016-05-02 17:10:00 2016-05-02 20:25:00 ``` Though I found a suitable workaround, I feel like pandas should be able to construct and operate on DataFrames of Timestamps as easily as other other objects. #### output of `pd.show_versions()` ``` INSTALLED VERSIONS ------------------ commit: None python: 2.7.11.final.0 python-bits: 64 OS: Darwin OS-release: 15.5.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: None pandas: 0.18.1 nose: 1.3.7 pip: 8.1.2 setuptools: 20.3 Cython: 0.24 numpy: 1.11.0 scipy: 0.17.1 statsmodels: 0.8.0.dev0+970e99e xarray: None IPython: 4.1.2 sphinx: 1.3.5 patsy: 0.4.0 dateutil: 2.5.3 pytz: 2016.4 blosc: None bottleneck: 1.0.0 tables: 3.2.2 numexpr: 2.5 matplotlib: 1.5.1 openpyxl: 2.3.2 xlrd: 0.9.4 xlwt: 1.0.0 xlsxwriter: 0.8.4 lxml: 3.6.0 bs4: 4.4.1 html5lib: None httplib2: None apiclient: None sqlalchemy: 1.0.12 pymysql: None psycopg2: None jinja2: 2.8 boto: 2.39.0 pandas_datareader: None ```
``` In [4]: DataFrame.from_records(ts_array) Out[4]: 0 1 2 0 2016-05-02 15:50:00+00:00 2016-05-02 15:50:00+00:00 2016-05-02 15:50:00+00:00 1 2016-05-02 17:10:00+00:00 2016-05-02 17:10:00+00:00 2016-05-02 17:10:00+00:00 2 2016-05-02 20:25:00+00:00 2016-05-02 20:25:00+00:00 2016-05-02 20:25:00+00:00 ``` I suppose its a bug, but you are just going about this the wrong way to have a 2- d numpy array of Timestamps (which is completely inefficient) THEN create a frame. yeah these are stored internally in a different way, so I guess `.T` is broken on these types of things. If you want to step thru and submit a PR have at it.
2019-06-13T04:10:08Z
[]
[]
Traceback (most recent call last): File "/Users/jkelleher/anaconda/lib/python2.7/site-packages/IPython/core/interactiveshell.py", line 2885, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-46-ae20c6b6248f>", line 1, in <module> pd.DataFrame(ts_array) File "/Users/jkelleher/anaconda/lib/python2.7/site-packages/pandas/core/frame.py", line 255, in __init__ copy=copy) File "/Users/jkelleher/anaconda/lib/python2.7/site-packages/pandas/core/frame.py", line 432, in _init_ndarray return create_block_manager_from_blocks([values], [columns, index]) File "/Users/jkelleher/anaconda/lib/python2.7/site-packages/pandas/core/internals.py", line 3986, in create_block_manager_from_blocks mgr = BlockManager(blocks, axes) File "/Users/jkelleher/anaconda/lib/python2.7/site-packages/pandas/core/internals.py", line 2591, in __init__ (block.ndim, self.ndim)) AssertionError: Number of Block dimensions (1) must equal number of axes (2)
12,802
pandas-dev/pandas
pandas-dev__pandas-26916
83fe8d78b6b086f3ceabe81cd420a3c7affe9aba
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -603,6 +603,8 @@ Datetimelike - Bug when comparing a :class:`PeriodIndex` against a zero-dimensional numpy array (:issue:`26689`) - Bug in constructing a ``Series`` or ``DataFrame`` from a numpy ``datetime64`` array with a non-ns unit and out-of-bound timestamps generating rubbish data, which will now correctly raise an ``OutOfBoundsDatetime`` error (:issue:`26206`). - Bug in :func:`date_range` with unnecessary ``OverflowError`` being raised for very large or very small dates (:issue:`26651`) +- Bug where adding :class:`Timestamp` to a ``np.timedelta64`` object would raise instead of returning a :class:`Timestamp` (:issue:`24775`) +- Bug where comparing a zero-dimensional numpy array containing a ``np.datetime64`` object to a :class:`Timestamp` would incorrect raise ``TypeError`` (:issue:`26916`) Timedelta ^^^^^^^^^ diff --git a/pandas/_libs/tslibs/c_timestamp.pyx b/pandas/_libs/tslibs/c_timestamp.pyx --- a/pandas/_libs/tslibs/c_timestamp.pyx +++ b/pandas/_libs/tslibs/c_timestamp.pyx @@ -55,6 +55,9 @@ def maybe_integer_op_deprecated(obj): cdef class _Timestamp(datetime): + # higher than np.ndarray and np.matrix + __array_priority__ = 100 + def __hash__(_Timestamp self): if self.nanosecond: return hash(self.value) @@ -85,6 +88,15 @@ cdef class _Timestamp(datetime): if ndim == 0: if is_datetime64_object(other): other = self.__class__(other) + elif is_array(other): + # zero-dim array, occurs if try comparison with + # datetime64 scalar on the left hand side + # Unfortunately, for datetime64 values, other.item() + # incorrectly returns an integer, so we need to use + # the numpy C api to extract it. + other = cnp.PyArray_ToScalar(cnp.PyArray_DATA(other), + other) + other = self.__class__(other) else: return NotImplemented elif is_array(other):
BUG: timedelta64 + Timestamp raises ``` >>> np.timedelta64(3600*10**9, 'ns') + pd.Timestamp.now() Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: ufunc add cannot use operands with types dtype('<m8[ns]') and dtype('O') ``` I think we can fix this by defining `Timestamp.__array_priority__`
2019-06-18T03:08:55Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: ufunc add cannot use operands with types dtype('<m8[ns]') and dtype('O')
12,813
pandas-dev/pandas
pandas-dev__pandas-27144
af7f2ef73e449f01acc6de47463c9b1440c6b0fb
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -566,6 +566,7 @@ Other API changes - Removed support of gtk package for clipboards (:issue:`26563`) - Using an unsupported version of Beautiful Soup 4 will now raise an ``ImportError`` instead of a ``ValueError`` (:issue:`27063`) - :meth:`Series.to_excel` and :meth:`DataFrame.to_excel` will now raise a ``ValueError`` when saving timezone aware data. (:issue:`27008`, :issue:`7056`) +- :meth:`DataFrame.to_hdf` and :meth:`Series.to_hdf` will now raise a ``NotImplementedError`` when saving a :class:`MultiIndex` with extention data types for a ``fixed`` format. (:issue:`7775`) .. _whatsnew_0250.deprecations: @@ -719,6 +720,7 @@ Timezones - Bug in :func:`to_datetime` with ``unit='ns'`` would drop timezone information from the parsed argument (:issue:`26168`) - Bug in :func:`DataFrame.join` where joining a timezone aware index with a timezone aware column would result in a column of ``NaN`` (:issue:`26335`) - Bug in :func:`date_range` where ambiguous or nonexistent start or end times were not handled by the ``ambiguous`` or ``nonexistent`` keywords respectively (:issue:`27088`) +- Bug in :meth:`DatetimeIndex.union` when combining a timezone aware and timezone unaware :class:`DatetimeIndex` (:issue:`21671`) Numeric ^^^^^^^ @@ -814,6 +816,7 @@ I/O - :func:`read_excel` now raises a ``ValueError`` when input is of type :class:`pandas.io.excel.ExcelFile` and ``engine`` param is passed since :class:`pandas.io.excel.ExcelFile` has an engine defined (:issue:`26566`) - Bug while selecting from :class:`HDFStore` with ``where=''`` specified (:issue:`26610`). - Fixed bug in :func:`DataFrame.to_excel()` where custom objects (i.e. `PeriodIndex`) inside merged cells were not being converted into types safe for the Excel writer (:issue:`27006`) +- Bug in :meth:`read_hdf` where reading a timezone aware :class:`DatetimeIndex` would raise a ``TypeError`` (:issue:`11926`) Plotting ^^^^^^^^ @@ -868,6 +871,7 @@ Reshaping - Bug in :meth:`Series.nlargest` treats ``True`` as smaller than ``False`` (:issue:`26154`) - Bug in :func:`DataFrame.pivot_table` with a :class:`IntervalIndex` as pivot index would raise ``TypeError`` (:issue:`25814`) - Bug in :meth:`DataFrame.transpose` where transposing a DataFrame with a timezone-aware datetime column would incorrectly raise ``ValueError`` (:issue:`26825`) +- Bug in :func:`pivot_table` when pivoting a timezone aware column as the ``values`` would remove timezone information (:issue:`14948`) Sparse ^^^^^^ diff --git a/pandas/io/pytables.py b/pandas/io/pytables.py --- a/pandas/io/pytables.py +++ b/pandas/io/pytables.py @@ -23,7 +23,8 @@ from pandas.core.dtypes.common import ( ensure_object, is_categorical_dtype, is_datetime64_dtype, - is_datetime64tz_dtype, is_list_like, is_timedelta64_dtype) + is_datetime64tz_dtype, is_extension_type, is_list_like, + is_timedelta64_dtype) from pandas.core.dtypes.missing import array_equivalent from pandas import ( @@ -2647,6 +2648,9 @@ def write_multi_index(self, key, index): index.codes, index.names)): # write the level + if is_extension_type(lev): + raise NotImplementedError("Saving a MultiIndex with an " + "extension dtype is not supported.") level_key = '{key}_level{idx}'.format(key=key, idx=i) conv_level = _convert_index(lev, self.encoding, self.errors, self.format_type).set_name(level_key)
BUG: selecting from HDFStore with a tz-aware level of a multi-index I'm encountering a bug when I query for a multiindex dataframe with a timezoned DatetimeIndex in one of the multiindex levels. This only happens 1) for a multiindex with one of the levels as timestamps with timezones (As seen in [1]). If timestamps have no timezone set, there is no issue (As seen in [2]) 2) if the query returns no rows 3) in pandas 0.17.\* This was working fine in pandas 0.16.* ``` python In [1]: periods = 10 ...: dts = pd.date_range('20151201', periods=periods, freq='D', tz='UTC') #WITH TIMEZONE ...: mi = pd.MultiIndex.from_arrays([dts, range(periods)], names = ['DATE', 'NO']) ...: df = pd.DataFrame({'MYCOL':0}, index=mi) ...: file_path = 'table.h5' ...: key = 'mykey' ...: with pd.HDFStore(file_path, 'w') as store: ...: store.append(key, df, format='table', append=True) ...: dfres = store.select(key, where="""DATE > '20151220'""") ...: print(dfres) ...: ...: Traceback (most recent call last): File "<ipython-input-1-e0b7db50fd4d>", line 9, in <module> dfres = store.select(key, where="""DATE > '20151220'""") File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/io/pytables.py", line 669, in select return it.get_result() File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/io/pytables.py", line 1352, in get_result results = self.func(self.start, self.stop, where) File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/io/pytables.py", line 662, in func columns=columns, **kwargs) File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/io/pytables.py", line 4170, in read df = super(AppendableMultiFrameTable, self).read(**kwargs) File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/io/pytables.py", line 4029, in read df = concat(frames, axis=1, verify_integrity=False).consolidate() File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/tools/merge.py", line 813, in concat return op.get_result() File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/tools/merge.py", line 995, in get_result mgrs_indexers, self.new_axes, concat_axis=self.axis, copy=self.copy) File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/core/internals.py", line 4456, in concatenate_block_managers for placement, join_units in concat_plan] File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/core/internals.py", line 4456, in <listcomp> for placement, join_units in concat_plan] File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/core/internals.py", line 4553, in concatenate_join_units for ju in join_units] File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/core/internals.py", line 4553, in <listcomp> for ju in join_units] File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/core/internals.py", line 4801, in get_reindexed_values missing_arr = np.empty(self.shape, dtype=empty_dtype) TypeError: data type not understood In [2]: periods = 10 ...: dts = pd.date_range('20151201', periods=periods, freq='D') #WITHOUT TIMEZONE ...: mi = pd.MultiIndex.from_arrays([dts, range(periods)], names = ['DATE', 'NO']) ...: df = pd.DataFrame({'MYCOL':0}, index=mi) ...: file_path = 'table.h5' ...: key = 'mykey' ...: with pd.HDFStore(file_path, 'w') as store: ...: store.append(key, df, format='table', append=True) ...: dfres = store.select(key, where="""DATE > '20151220'""") ...: print(dfres) ...: ...: Empty DataFrame Columns: [MYCOL] Index: [] In [3]: pd.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 3.5.1.final.0 python-bits: 64 OS: Linux OS-release: 2.6.32-431.11.2.el6.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 pandas: 0.17.1 nose: 1.3.7 pip: 7.1.2 setuptools: 19.1.1 Cython: 0.23.4 numpy: 1.10.2 scipy: 0.16.1 statsmodels: None IPython: 4.0.1 sphinx: 1.3.1 patsy: 0.4.0 dateutil: 2.4.2 pytz: 2015.7 blosc: None bottleneck: 1.0.0 tables: 3.2.2 numexpr: 2.4.4 matplotlib: 1.5.0 openpyxl: 2.2.6 xlrd: 0.9.4 xlwt: 1.0.0 xlsxwriter: 0.7.7 lxml: 3.5.0 bs4: 4.4.1 html5lib: None httplib2: None apiclient: None sqlalchemy: 1.0.10 pymysql: None psycopg2: None Jinja2: None ```
So its the readback, not the writing. I _think_ that its taking the wrong path on the dtype conversion. ``` import numpy as np import pandas as pd periods = 10 dts = pd.date_range('20151201', periods=periods, freq='D', tz='UTC') #WITH TIMEZONE mi = pd.MultiIndex.from_arrays([dts, range(periods)], names = ['DATE', 'NO']) df = pd.DataFrame({'MYCOL':0}, index=mi) file_path = 'table.h5' key = 'mykey' with pd.HDFStore(file_path, 'w') as store: store.append(key, df, format='table', append=True) print(pd.read_hdf(file_path, key)) dfres = pd.read_hdf(file_path, key, where="DATE > 20151220") print(dfres) ``` Has there been any update to patch this? Any ideas on which commit broke this since 0.16\* -> 0.17*? I'm encountering the same issue when selecting datetime64[ns, tz] data using an iterator. there are vast changes to the way tz's work in 0.17 vs. 0.16. see the whatsnew [here](http://pandas.pydata.org/pandas-docs/stable/whatsnew.html#datetime-with-tz). This is a relatively simple fix however. pull-requests are welcome.
2019-06-30T15:37:34Z
[]
[]
Traceback (most recent call last): File "<ipython-input-1-e0b7db50fd4d>", line 9, in <module> dfres = store.select(key, where="""DATE > '20151220'""") File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/io/pytables.py", line 669, in select return it.get_result() File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/io/pytables.py", line 1352, in get_result results = self.func(self.start, self.stop, where) File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/io/pytables.py", line 662, in func columns=columns, **kwargs) File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/io/pytables.py", line 4170, in read df = super(AppendableMultiFrameTable, self).read(**kwargs) File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/io/pytables.py", line 4029, in read df = concat(frames, axis=1, verify_integrity=False).consolidate() File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/tools/merge.py", line 813, in concat return op.get_result() File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/tools/merge.py", line 995, in get_result mgrs_indexers, self.new_axes, concat_axis=self.axis, copy=self.copy) File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/core/internals.py", line 4456, in concatenate_block_managers for placement, join_units in concat_plan] File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/core/internals.py", line 4456, in <listcomp> for placement, join_units in concat_plan] File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/core/internals.py", line 4553, in concatenate_join_units for ju in join_units] File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/core/internals.py", line 4553, in <listcomp> for ju in join_units] File "/export/data/anaconda/anaconda3.2.4/lib/python3.5/site-packages/pandas/core/internals.py", line 4801, in get_reindexed_values missing_arr = np.empty(self.shape, dtype=empty_dtype) TypeError: data type not understood
12,843
pandas-dev/pandas
pandas-dev__pandas-27201
2efb60717bda9fc64344c5f6647d58564930808e
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -1094,6 +1094,7 @@ I/O - Bug while selecting from :class:`HDFStore` with ``where=''`` specified (:issue:`26610`). - Fixed bug in :func:`DataFrame.to_excel()` where custom objects (i.e. `PeriodIndex`) inside merged cells were not being converted into types safe for the Excel writer (:issue:`27006`) - Bug in :meth:`read_hdf` where reading a timezone aware :class:`DatetimeIndex` would raise a ``TypeError`` (:issue:`11926`) +- Bug in :meth:`to_msgpack` and :meth:`read_msgpack` which would raise a ``ValueError`` rather than a ``FileNotFoundError`` for an invalid path (:issue:`27160`) Plotting ^^^^^^^^ diff --git a/pandas/core/generic.py b/pandas/core/generic.py --- a/pandas/core/generic.py +++ b/pandas/core/generic.py @@ -2560,7 +2560,7 @@ def to_msgpack(self, path_or_buf=None, encoding="utf-8", **kwargs): Parameters ---------- path : string File path, buffer-like, or None - if None, return generated string + if None, return generated bytes append : bool whether to append to an existing msgpack (default is False) compress : type of compressor (zlib or blosc), default to None (no @@ -2568,9 +2568,9 @@ def to_msgpack(self, path_or_buf=None, encoding="utf-8", **kwargs): Returns ------- - None or str + None or bytes If path_or_buf is None, returns the resulting msgpack format as a - string. Otherwise returns None. + byte string. Otherwise returns None. """ from pandas.io import packers diff --git a/pandas/io/packers.py b/pandas/io/packers.py --- a/pandas/io/packers.py +++ b/pandas/io/packers.py @@ -108,7 +108,7 @@ def to_msgpack(path_or_buf, *args, **kwargs): Parameters ---------- path_or_buf : string File path, buffer-like, or None - if None, return generated string + if None, return generated bytes args : an object or objects to serialize encoding : encoding for unicode objects append : boolean whether to append to an existing msgpack @@ -139,8 +139,12 @@ def writer(fh): path_or_buf = _stringify_path(path_or_buf) if isinstance(path_or_buf, str): - with open(path_or_buf, mode) as fh: - writer(fh) + try: + with open(path_or_buf, mode) as fh: + writer(fh) + except FileNotFoundError: + msg = "File b'{}' does not exist".format(path_or_buf) + raise FileNotFoundError(msg) elif path_or_buf is None: buf = BytesIO() writer(buf) @@ -204,13 +208,11 @@ def read(fh): # see if we have an actual file if isinstance(path_or_buf, str): try: - exists = os.path.exists(path_or_buf) - except (TypeError, ValueError): - exists = False - - if exists: with open(path_or_buf, "rb") as fh: return read(fh) + except FileNotFoundError: + msg = "File b'{}' does not exist".format(path_or_buf) + raise FileNotFoundError(msg) if isinstance(path_or_buf, bytes): # treat as a binary-like
Misleading error for pd.read_msgpack #### Code Sample, a copy-pastable example if possible ```python import pandas as pd pd.read_msgpack('this/path/does/not/exist') ``` #### Problem description Such an error is misleading because it suggests that there is a problem with the datatype being passed, not that the path does not exist. The error raised is: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File ".local/anaconda3/lib/python3.7/site-packages/pandas/io/packers.py", line 226, in read_msgpack raise ValueError('path_or_buf needs to be a string file path or file-like') ValueError: path_or_buf needs to be a string file path or file-like ``` #### Expected Output Raise an error indicating that the path was not found. #### Output of ``pd.show_versions()`` <details> >>> pd.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 3.7.3.final.0 python-bits: 64 OS: Linux OS-release: 4.18.0-24-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.24.2 pytest: 4.3.1 pip: 19.0.3 setuptools: 40.8.0 Cython: 0.29.6 numpy: 1.16.2 scipy: 1.2.1 pyarrow: None xarray: None IPython: 7.4.0 sphinx: 1.8.5 patsy: 0.5.1 dateutil: 2.8.0 pytz: 2018.9 blosc: None bottleneck: 1.2.1 tables: 3.5.1 numexpr: 2.6.9 feather: None matplotlib: 3.0.3 openpyxl: 2.6.1 xlrd: 1.2.0 xlwt: 1.3.0 xlsxwriter: 1.1.5 lxml.etree: 4.3.2 bs4: 4.7.1 html5lib: 1.0.1 sqlalchemy: 1.3.1 pymysql: None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datarea </details>
I think the first argument of read_msgpack can *also* be data. ``` In [4]: pd.read_msgpack(b'') /Users/taugspurger/Envs/pandas-dev/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3296: FutureWarning: The read_msgpack is deprecated and will be removed in a future version. It is recommended to use pyarrow for on-the-wire transmission of pandas objects. exec(code_obj, self.user_global_ns, self.user_ns) Out[4]: [] ``` Regardless, I believe we're deprecating read_msgpack so this may not be worth changing. On Mon, Jul 1, 2019 at 8:02 AM Sam Spilsbury <notifications@github.com> wrote: > Code Sample, a copy-pastable example if possible > > import pandas as pd > pd.read_msgpack('this/path/does/not/exist') > > Problem description > > Such an error is misleading because it suggests that there is a problem > with the datatype being passed, not that the path does not exist. The error > raised is: > > Traceback (most recent call last): > File "<stdin>", line 1, in <module> > File ".local/anaconda3/lib/python3.7/site-packages/pandas/io/packers.py", line 226, in read_msgpack > raise ValueError('path_or_buf needs to be a string file path or file-like') > ValueError: path_or_buf needs to be a string file path or file-like > > Expected Output > > Raise an error indicating that the path was not found. > Output of pd.show_versions() >>> pd.show_versions() INSTALLED VERSIONS > > commit: None > python: 3.7.3.final.0 > python-bits: 64 > OS: Linux > OS-release: 4.18.0-24-generic > machine: x86_64 > processor: x86_64 > byteorder: little > LC_ALL: None > LANG: en_US.UTF-8 > LOCALE: en_US.UTF-8 > > pandas: 0.24.2 > pytest: 4.3.1 > pip: 19.0.3 > setuptools: 40.8.0 > Cython: 0.29.6 > numpy: 1.16.2 > scipy: 1.2.1 > pyarrow: None > xarray: None > IPython: 7.4.0 > sphinx: 1.8.5 > patsy: 0.5.1 > dateutil: 2.8.0 > pytz: 2018.9 > blosc: None > bottleneck: 1.2.1 > tables: 3.5.1 > numexpr: 2.6.9 > feather: None > matplotlib: 3.0.3 > openpyxl: 2.6.1 > xlrd: 1.2.0 > xlwt: 1.3.0 > xlsxwriter: 1.1.5 > lxml.etree: 4.3.2 > bs4: 4.7.1 > html5lib: 1.0.1 > sqlalchemy: 1.3.1 > pymysql: None > psycopg2: None > jinja2: 2.10 > s3fs: None > fastparquet: None > pandas_gbq: None > pandas_datarea > > — > You are receiving this because you are subscribed to this thread. > Reply to this email directly, view it on GitHub > <https://github.com/pandas-dev/pandas/issues/27160?email_source=notifications&email_token=AAKAOIWGKYF5VVZUERGDRRTP5H54ZA5CNFSM4H4SFK22YY3PNVWWK3TUL52HS4DFUVEXG43VMWVGG33NNVSW45C7NFSM4G4UIWEA>, > or mute the thread > <https://github.com/notifications/unsubscribe-auth/AAKAOIVMPWSJDZCUCOO5F3TP5H54ZANCNFSM4H4SFK2Q> > . > yeah this is true of several routines (e.g. read_json), there is an issue about this somewhere. but for msgpack since we are deprecated, this is out of scope (would take a reasonable patch though). as PR is submitted :-> > I think the first argument of read_msgpack can *also* be data. I think that assuming a string passed to `pd.read_msgpack` is a filepath and then raising if not found is OK? the data as `bytes` works as intended. the docs for `pandas.DataFrame.to_msgpack` are misleading https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_msgpack.html?highlight=to_msgpack#pandas-dataframe-to-msgpack suggest that a string is returned when bytes are returned... ``` path : string File path, buffer-like, or None if None, return generated string ``` ```python >>> import numpy as np >>> import pandas as pd >>> from pandas import DataFrame >>> df = DataFrame(np.random.randn(10, 2)) >>> >>> >>> df.to_msgpack(None) b'\x84\xa3typ\xadblock_manager\xa5klass\xa9DataFrame\xa4axes\x92\x86\xa3typ\xabrange_index\xa5klass\xaaRangeIndex\xa4name\xc0\xa5start\x00\xa4s top\x02\xa4step\x01\x86\xa3typ\xabrange_index\xa5klass\xaaRangeIndex\xa4name\xc0\xa5start\x00\xa4stop\n\xa4step\x01\xa6blocks\x91\x86\xa4locs\x 86\xa3typ\xa7ndarray\xa5shape\x91\x02\xa4ndim\x01\xa5dtype\xa5int64\xa4data\xd8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00 \x00\xa8compress\xc0\xa6values\xc7\xa0\x00A\x10\x94Z\x0f|\xd0?F]>R\xc7\xfc\xf5\xbf\xa4\xeb\xe2:\x07X\xc5\xbf&\x1bAje\t\xbb?\x98w9\x17:"\xe1?#\x e4\xc9\xda\x86\xdf\xaf\xbf\xec\xe63K2\x03\xee\xbf\xad0%v\x11$\xda\xbf\xa1\x02@\xff\xb7\xc8\xff?\xb0G\x11\x02\x80\x13\xe1?)\xf8l\xcb~/\xd2?\xb2\ x17I\xeb\x91k\x03@\xbf\xfaj\xb2\x89\x14\xc2\xbf\xbd5\xba\xb3j\x1c\xed?u\xe504\x17\xaf\xd0\xbf\xc7\xa5\xc3\xf3\x12\xf1\xf4?\xe6\xf0\x05\xf2\xef\ xd6\x05@\xec\xeb\xd1\x80w}\xf0\xbfx\x94\x82\x10"U\xeb?.\xbdZI\x89X\xea?\xa5shape\x92\x02\n\xa5dtype\xa7float64\xa5klass\xaaFloatBlock\xa8compre ss\xc0' >>> >>> pd.read_msgpack(df.to_msgpack(None)) sys:1: FutureWarning: The read_msgpack is deprecated and will be removed in a future version. It is recommended to use pyarrow for on-the-wire transmission of pandas objects. 0 1 0 0.257572 0.284149 1 -1.374214 2.427524 2 -0.166749 -0.141252 3 0.105612 0.909719 4 0.535428 -0.260687 5 -0.062252 1.308856 6 -0.937890 2.729950 7 -0.408451 -1.030632 8 1.986504 0.854142 9 0.533630 0.823308 >>> ```
2019-07-03T05:29:48Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File ".local/anaconda3/lib/python3.7/site-packages/pandas/io/packers.py", line 226, in read_msgpack raise ValueError('path_or_buf needs to be a string file path or file-like') ValueError: path_or_buf needs to be a string file path or file-like
12,848
pandas-dev/pandas
pandas-dev__pandas-27243
2efb60717bda9fc64344c5f6647d58564930808e
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -1151,6 +1151,7 @@ Reshaping - Bug in :func:`DataFrame.pivot_table` with a :class:`IntervalIndex` as pivot index would raise ``TypeError`` (:issue:`25814`) - Bug in :meth:`DataFrame.transpose` where transposing a DataFrame with a timezone-aware datetime column would incorrectly raise ``ValueError`` (:issue:`26825`) - Bug in :func:`pivot_table` when pivoting a timezone aware column as the ``values`` would remove timezone information (:issue:`14948`) +- Bug in :func:`merge_asof` when specifying multiple ``by`` columns where one is ``datetime64[ns, tz]`` dtype (:issue:`26649`) Sparse ^^^^^^ diff --git a/pandas/core/reshape/merge.py b/pandas/core/reshape/merge.py --- a/pandas/core/reshape/merge.py +++ b/pandas/core/reshape/merge.py @@ -1686,6 +1686,9 @@ def _get_join_indexers(self): def flip(xs): """ unlike np.transpose, this returns an array of tuples """ + xs = [ + x if not is_extension_array_dtype(x) else x._ndarray_values for x in xs + ] labels = list(string.ascii_lowercase[: len(xs)]) dtypes = [x.dtype for x in xs] labeled_dtypes = list(zip(labels, dtypes))
merge_asof with one tz-aware datetime "by" parameter and another parameter raises #### Code Sample, a copy-pastable example if possible ```python import pandas as pd left = pd.DataFrame({ 'by_col1': pd.DatetimeIndex(['2018-01-01']).tz_localize('UTC'), 'by_col2': ['HELLO'], 'on_col': [2], 'value': ['a']}) right = pd.DataFrame({ 'by_col1': pd.DatetimeIndex(['2018-01-01']).tz_localize('UTC'), 'by_col2': ['WORLD'], 'on_col': [1], 'value': ['b']}) pd.merge_asof(left, right, by=['by_col1', 'by_col2'], on='on_col') ``` #### Problem description This is very similar to: https://github.com/pandas-dev/pandas/issues/21184 The only difference is that the `merge_asof` `by` is made of 2 columns (instead of one): * one is tz-aware * the other one is something else (string, number etc...) When running this, I get: ``` Traceback (most recent call last): File "test.py", line 13, in <module> pd.merge_asof(left, right, by=['by_col1', 'by_col2'], on='on_col') File "myenv/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 462, in merge_asof return op.get_result() File "myenv/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 1256, in get_result join_index, left_indexer, right_indexer = self._get_join_info() File "myenv/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 756, in _get_join_info right_indexer) = self._get_join_indexers() File "myenv/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 1504, in _get_join_indexers left_by_values = flip(left_by_values) File "myenv/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 1457, in flip return np.array(lzip(*xs), labeled_dtypes) File "myenv/lib/python3.6/site-packages/pandas/core/dtypes/dtypes.py", line 150, in __repr__ return str(self) File "myenv/lib/python3.6/site-packages/pandas/core/dtypes/dtypes.py", line 129, in __str__ return self.__unicode__() File "myenv/lib/python3.6/site-packages/pandas/core/dtypes/dtypes.py", line 704, in __unicode__ return "datetime64[{unit}, {tz}]".format(unit=self.unit, tz=self.tz) SystemError: PyEval_EvalFrameEx returned a result with an error set ``` #### Expected Output I expect the merge_asof to work, and pick up the by column accordingly #### Output of ``0.24.2`` <details> [paste the output of ``pd.show_versions()`` here below this line] INSTALLED VERSIONS ------------------ commit: None python: 3.6.3.final.0 python-bits: 64 OS: Linux OS-release: 3.10.0-862.3.3.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.24.2 pytest: 4.5.0 pip: 19.1.1 setuptools: 40.8.0 Cython: 0.28.5 numpy: 1.16.4 scipy: 1.1.0 pyarrow: 0.12.1 xarray: None IPython: 7.3.0 sphinx: 1.4.6 patsy: 0.5.1 dateutil: 2.8.0 pytz: 2019.1 blosc: None bottleneck: 1.2.1 tables: 3.4.4 numexpr: 2.6.9 feather: None matplotlib: 3.0.2 openpyxl: 2.5.3 xlrd: None xlwt: None xlsxwriter: None lxml.etree: 4.3.1 bs4: None html5lib: None sqlalchemy: 1.2.18 pymysql: None psycopg2: 2.7.1 (dt dec pq3 ext lo64) jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: 0.7.0 gcsfs: None </details>
Thanks for the report. Here's the traceback I get on master. Investigations and PRs welcome! ``` In [4]: import pandas as pd ...: ...: left = pd.DataFrame({ ...: 'by_col1': pd.DatetimeIndex(['2018-01-01']).tz_localize('UTC'), ...: 'by_col2': ['HELLO'], ...: 'on_col': [2], ...: 'value': ['a']}) ...: right = pd.DataFrame({ ...: 'by_col1': pd.DatetimeIndex(['2018-01-01']).tz_localize('UTC'), ...: 'by_col2': ['WORLD'], ...: 'on_col': [1], ...: 'value': ['b']}) ...: pd.merge_asof(left, right, by=['by_col1', 'by_col2'], on='on_col') <DatetimeTZDtype object at 0x1180be080>--------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-4-450ebb8f2376> in <module> 11 'on_col': [1], 12 'value': ['b']}) ---> 13 pd.merge_asof(left, right, by=['by_col1', 'by_col2'], on='on_col') ~/pandas-mroeschke/pandas/core/reshape/merge.py in merge_asof(left, right, on, left_on, right_on, left_index, right_index, by, left_by, right_by, suffixes, tolerance, allow_exact_matches, direction) 465 allow_exact_matches=allow_exact_matches, 466 direction=direction) --> 467 return op.get_result() 468 469 ~/pandas-mroeschke/pandas/core/reshape/merge.py in get_result(self) 1296 1297 def get_result(self): -> 1298 join_index, left_indexer, right_indexer = self._get_join_info() 1299 1300 # this is a bit kludgy ~/pandas-mroeschke/pandas/core/reshape/merge.py in _get_join_info(self) 759 else: 760 (left_indexer, --> 761 right_indexer) = self._get_join_indexers() 762 763 if self.right_index: ~/pandas-mroeschke/pandas/core/reshape/merge.py in _get_join_indexers(self) 1560 right_by_values = right_by_values[0] 1561 else: -> 1562 left_by_values = flip(left_by_values) 1563 right_by_values = flip(right_by_values) 1564 ~/pandas-mroeschke/pandas/core/reshape/merge.py in flip(xs) 1513 dtypes = [x.dtype for x in xs] 1514 labeled_dtypes = list(zip(labels, dtypes)) -> 1515 return np.array(list(zip(*xs)), labeled_dtypes) 1516 1517 # values to compare TypeError: data type not understood In [5]: pd.__version__ Out[5]: '0.25.0.dev0+657.gc07d71d13' ``` Good day, when debug I found this. There seems to be an error in the second column type. There's got to be, `[('a', datetime64[ns, UTC]), ('b', dtype('U'))]` or we have to send back the object. Judging by the description of the error, it looks plausible. https://github.com/pandas-dev/pandas/blob/ea06f8d1157601b5fdb48598e27b02149828fba0/pandas/core/reshape/merge.py#L1510-L1515 ``` (Pdb) xs [<DatetimeArray> ['2018-01-01 00:00:00+00:00'] Length: 1, dtype: datetime64[ns, UTC], array(['HELLO'], dtype=object)] (Pdb) lzip(*xs) [(Timestamp('2018-01-01 00:00:00+0000', tz='UTC'), 'HELLO')] (Pdb) labeled_dtypes [('a', datetime64[ns, UTC]), ('b', dtype('O'))] (Pdb) ``` `DatetimeArray[ns, tz].__iter__` will return an ndarray of Timestamp objects. I'm not familiar with this section of the code, but can we use i8values rather that the datetimes at this point? > `DatetimeArray[ns, tz].__iter__` will return an ndarray of Timestamp objects. I'm not familiar with this section of the code, but can we use i8values rather that the datetimes at this point? https://github.com/pandas-dev/pandas/blob/ea06f8d1157601b5fdb48598e27b02149828fba0/pandas/core/reshape/merge.py#L1510-L1515 Rewrote the conversion in type 'i8' thus: ``` dtypes = [x.view('i8') if needs_i8_conversion(x.dtype) else x.dtype for x in xs] ``` Error: ``` TypeError: data type not understood The above exception was the direct cause of the following exception: Traceback (most recent call last): File "TestStand/Main.py", line 16, in <module> pd.merge_asof(left, right, by=['by_col1', 'by_col2'], on='on_col') File "venv/lib/python3.7/site-packages/pandas/core/reshape/merge.py", line 462, in merge_asof return op.get_result() File "venv/lib/python3.7/site-packages/pandas/core/reshape/merge.py", line 1258, in get_result join_index, left_indexer, right_indexer = self._get_join_info() File "venv/lib/python3.7/site-packages/pandas/core/reshape/merge.py", line 758, in _get_join_info right_indexer) = self._get_join_indexers() File "venv/lib/python3.7/site-packages/pandas/core/reshape/merge.py", line 1507, in _get_join_indexers left_by_values = flip(left_by_values) File "venv/lib/python3.7/site-packages/pandas/core/reshape/merge.py", line 1459, in flip return np.array(buff, labeled_dtypes) File "venv/lib/python3.7/site-packages/numpy/core/arrayprint.py", line 1404, in _array_repr_implementation if type(arr) is not ndarray: SystemError: <class 'type'> returned a result with an error set ``` And here is what prints out on one of the stages, if you go deep into using pdb. ``` next array([1514764800000000000])TypeError: data type not understood ``` It seems to me that there should be a type of float. Looks like a bug or normal? ``` (Pdb) dtypes [array([1514764800000000000]), dtype('O')] ``` I don't really understand what `flip` is doing, but we're making a numpy record array / structured dtype. We apparently can't pass a `datetime64[ns, tz]` array into `flip`.
2019-07-05T07:14:18Z
[]
[]
Traceback (most recent call last): File "test.py", line 13, in <module> pd.merge_asof(left, right, by=['by_col1', 'by_col2'], on='on_col') File "myenv/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 462, in merge_asof return op.get_result() File "myenv/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 1256, in get_result join_index, left_indexer, right_indexer = self._get_join_info() File "myenv/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 756, in _get_join_info right_indexer) = self._get_join_indexers() File "myenv/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 1504, in _get_join_indexers left_by_values = flip(left_by_values) File "myenv/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 1457, in flip return np.array(lzip(*xs), labeled_dtypes) File "myenv/lib/python3.6/site-packages/pandas/core/dtypes/dtypes.py", line 150, in __repr__ return str(self) File "myenv/lib/python3.6/site-packages/pandas/core/dtypes/dtypes.py", line 129, in __str__ return self.__unicode__() File "myenv/lib/python3.6/site-packages/pandas/core/dtypes/dtypes.py", line 704, in __unicode__ return "datetime64[{unit}, {tz}]".format(unit=self.unit, tz=self.tz) SystemError: PyEval_EvalFrameEx returned a result with an error set
12,853
pandas-dev/pandas
pandas-dev__pandas-27317
c74a853add15425cf44e6c6943ade28eb3240d19
diff --git a/pandas/core/dtypes/dtypes.py b/pandas/core/dtypes/dtypes.py --- a/pandas/core/dtypes/dtypes.py +++ b/pandas/core/dtypes/dtypes.py @@ -219,7 +219,7 @@ class CategoricalDtype(PandasExtensionDtype, ExtensionDtype): kind = "O" # type: str_type str = "|O08" base = np.dtype("O") - _metadata = ("categories", "ordered") + _metadata = ("categories", "ordered", "_ordered_from_sentinel") _cache = {} # type: Dict[str_type, PandasExtensionDtype] def __init__(self, categories=None, ordered: OrderedType = ordered_sentinel): @@ -356,6 +356,7 @@ def __setstate__(self, state: Dict[str_type, Any]) -> None: # pickle -> need to set the settable private ones here (see GH26067) self._categories = state.pop("categories", None) self._ordered = state.pop("ordered", False) + self._ordered_from_sentinel = state.pop("_ordered_from_sentinel", False) def __hash__(self) -> int: # _hash_categories returns a uint64, so use the negative
BUG: Calling Series.astype('category') on a categorical series loaded using pd.read_pickle errors on pandas-0.25.0rc0 #### Code Sample, a copy-pastable example if possible ```python import os import pandas as pd s = pd.Series(["a", "b", "c", "a"], dtype="category") s.astype('category') FILEPATH = 'example.pickle' s.to_pickle(FILEPATH) s = pd.read_pickle(FILEPATH) os.remove(FILEPATH) s.astype('category') ``` Output ```python-traceback Traceback (most recent call last): File "mre.py", line 13, in <module> s.astype('category') File "/Users/roy/pandas/pandas/core/generic.py", line 5935, in astype dtype=dtype, copy=copy, errors=errors, **kwargs File "/Users/roy/pandas/pandas/core/internals/managers.py", line 581, in astype return self.apply("astype", dtype=dtype, **kwargs) File "/Users/roy/pandas/pandas/core/internals/managers.py", line 438, in apply applied = getattr(b, f)(**kwargs) File "/Users/roy/pandas/pandas/core/internals/blocks.py", line 555, in astype return self._astype(dtype, copy=copy, errors=errors, values=values, **kwargs) File "/Users/roy/pandas/pandas/core/internals/blocks.py", line 606, in _astype return self.make_block(self.values.astype(dtype, copy=copy)) File "/Users/roy/pandas/pandas/core/arrays/categorical.py", line 524, in astype self = self.copy() if copy else self File "/Users/roy/pandas/pandas/core/arrays/categorical.py", line 503, in copy values=self._codes.copy(), dtype=self.dtype, fastpath=True File "/Users/roy/pandas/pandas/core/arrays/categorical.py", line 353, in __init__ self._dtype = self._dtype.update_dtype(dtype) File "/Users/roy/pandas/pandas/core/dtypes/dtypes.py", line 556, in update_dtype new_ordered_from_sentinel = dtype._ordered_from_sentinel AttributeError: 'CategoricalDtype' object has no attribute '_ordered_from_sentinel' ``` #### Problem description Calling `Series.astype('category')` on a categorical series loaded using `pd.read_pickle` errors with pandas 0.25.0rc0. The example code ran without error using pandas 0.24.2 #### Expected Output ``` 0 a 1 b 2 c 3 a dtype: category ``` #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit : c64c9cb44222a42f7b02d4d6007919cd0645f1be python : 3.7.3.final.0 python-bits : 64 OS : Darwin OS-release : 18.6.0 machine : x86_64 processor : i386 byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 pandas : 0.25.0rc0+23.gc64c9cb44 numpy : 1.16.4 pytz : 2019.1 dateutil : 2.8.0 pip : 19.1.1 setuptools : 41.0.1 Cython : 0.29.12 pytest : None hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : None psycopg2 : None jinja2 : None IPython : None pandas_datareader: None bs4 : None bottleneck : None fastparquet : None gcsfs : None lxml.etree : None matplotlib : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None pyarrow : None pytables : None s3fs : None scipy : None sqlalchemy : None tables : None xarray : None xlrd : None xlwt : None xlsxwriter : None </details>
Thanks for trying the RC. cc @jschendel Looks like it's just a matter of adding `_ordered_from_sentinel` to `CategoricalDtype.__setstate__`: ```diff diff --git a/pandas/core/dtypes/dtypes.py b/pandas/core/dtypes/dtypes.py index d8d910a16..54f2c6551 100644 --- a/pandas/core/dtypes/dtypes.py +++ b/pandas/core/dtypes/dtypes.py @@ -360,6 +360,7 @@ class CategoricalDtype(PandasExtensionDtype, ExtensionDtype): # pickle -> need to set the settable private ones here (see GH26067) self._categories = state.pop('categories', None) self._ordered = state.pop('ordered', False) + self._ordered_from_sentinel = state.pop('ordered_from_sentinel', False) def __hash__(self) -> int: # _hash_categories returns a uint64, so use the negative ``` Should be able to get a fix in tonight or tomorrow.
2019-07-10T04:44:36Z
[]
[]
Traceback (most recent call last): File "mre.py", line 13, in <module> s.astype('category') File "/Users/roy/pandas/pandas/core/generic.py", line 5935, in astype dtype=dtype, copy=copy, errors=errors, **kwargs File "/Users/roy/pandas/pandas/core/internals/managers.py", line 581, in astype return self.apply("astype", dtype=dtype, **kwargs) File "/Users/roy/pandas/pandas/core/internals/managers.py", line 438, in apply applied = getattr(b, f)(**kwargs) File "/Users/roy/pandas/pandas/core/internals/blocks.py", line 555, in astype return self._astype(dtype, copy=copy, errors=errors, values=values, **kwargs) File "/Users/roy/pandas/pandas/core/internals/blocks.py", line 606, in _astype return self.make_block(self.values.astype(dtype, copy=copy)) File "/Users/roy/pandas/pandas/core/arrays/categorical.py", line 524, in astype self = self.copy() if copy else self File "/Users/roy/pandas/pandas/core/arrays/categorical.py", line 503, in copy values=self._codes.copy(), dtype=self.dtype, fastpath=True File "/Users/roy/pandas/pandas/core/arrays/categorical.py", line 353, in __init__ self._dtype = self._dtype.update_dtype(dtype) File "/Users/roy/pandas/pandas/core/dtypes/dtypes.py", line 556, in update_dtype new_ordered_from_sentinel = dtype._ordered_from_sentinel AttributeError: 'CategoricalDtype' object has no attribute '_ordered_from_sentinel'
12,864
pandas-dev/pandas
pandas-dev__pandas-27426
26bd34df233e3f103922fe11e238c1532f3e58a0
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -1087,7 +1087,6 @@ I/O - Bug in :meth:`DataFrame.to_html` where header numbers would ignore display options when rounding (:issue:`17280`) - Bug in :func:`read_hdf` where reading a table from an HDF5 file written directly with PyTables fails with a ``ValueError`` when using a sub-selection via the ``start`` or ``stop`` arguments (:issue:`11188`) - Bug in :func:`read_hdf` not properly closing store after a ``KeyError`` is raised (:issue:`25766`) -- Bug in ``read_csv`` which would not raise ``ValueError`` if a column index in ``usecols`` was out of bounds (:issue:`25623`) - Improved the explanation for the failure when value labels are repeated in Stata dta files and suggested work-arounds (:issue:`25772`) - Improved :meth:`pandas.read_stata` and :class:`pandas.io.stata.StataReader` to read incorrectly formatted 118 format files saved by Stata (:issue:`25960`) - Improved the ``col_space`` parameter in :meth:`DataFrame.to_html` to accept a string so CSS length values can be set correctly (:issue:`25941`) diff --git a/pandas/io/parsers.py b/pandas/io/parsers.py --- a/pandas/io/parsers.py +++ b/pandas/io/parsers.py @@ -1947,12 +1947,6 @@ def __init__(self, src, **kwds): ): _validate_usecols_names(usecols, self.orig_names) - # GH 25623 - # validate that column indices in usecols are not out of bounds - elif self.usecols_dtype == "integer": - indices = range(self._reader.table_width) - _validate_usecols_names(usecols, indices) - if len(self.names) > len(usecols): self.names = [ n @@ -2258,7 +2252,7 @@ def __init__(self, f, **kwds): self.skipinitialspace = kwds["skipinitialspace"] self.lineterminator = kwds["lineterminator"] self.quoting = kwds["quoting"] - self.usecols, self.usecols_dtype = _validate_usecols_arg(kwds["usecols"]) + self.usecols, _ = _validate_usecols_arg(kwds["usecols"]) self.skip_blank_lines = kwds["skip_blank_lines"] self.warn_bad_lines = kwds["warn_bad_lines"] @@ -2665,13 +2659,6 @@ def _infer_columns(self): if clear_buffer: self._clear_buffer() - # GH 25623 - # validate that column indices in usecols are not out of bounds - if self.usecols_dtype == "integer": - for col in columns: - indices = range(len(col)) - _validate_usecols_names(self.usecols, indices) - if names is not None: if (self.usecols is not None and len(names) != len(self.usecols)) or ( self.usecols is None and len(names) != len(columns[0]) @@ -2706,11 +2693,6 @@ def _infer_columns(self): ncols = len(line) num_original_columns = ncols - # GH 25623 - # validate that column indices in usecols are not out of bounds - if self.usecols_dtype == "integer": - _validate_usecols_names(self.usecols, range(ncols)) - if not names: if self.prefix: columns = [
read_excel in version 0.25.0rc0 treats empty columns differently I'm using this code to load an Excel file. ```python df = pandas.read_excel( "data.xlsx", sheet_name="sheet1", usecols=[0, 1], header=None, names=["foo", "bar"] ) print(df.head()) ``` The Excel file has the cells `A7`=`1`, `A8`=`2`, `A9`=`3`, everything else is empty. With pandas 0.24.2 I get this: ``` foo bar 0 1 NaN 1 2 NaN 2 3 NaN ``` With pandas 0.25.0rc0 I get: ``` Traceback (most recent call last): File "tester.py", line 8, in <module> names=["foo", "bar"] File "/home/me/.env/lib/python3.7/site-packages/pandas/util/_decorators.py", line 196, in wrapper return func(*args, **kwargs) File "/home/me/.env/lib/python3.7/site-packages/pandas/io/excel/_base.py", line 334, in read_excel **kwds File "/home/me/.env/lib/python3.7/site-packages/pandas/io/excel/_base.py", line 877, in parse **kwds File "/home/me/.env/lib/python3.7/site-packages/pandas/io/excel/_base.py", line 507, in parse **kwds File "/home/me/.env/lib/python3.7/site-packages/pandas/io/parsers.py", line 2218, in TextParser return TextFileReader(*args, **kwds) File "/home/me/.env/lib/python3.7/site-packages/pandas/io/parsers.py", line 895, in __init__ self._make_engine(self.engine) File "/home/me/.env/lib/python3.7/site-packages/pandas/io/parsers.py", line 1147, in _make_engine self._engine = klass(self.f, **self.options) File "/home/me/.env/lib/python3.7/site-packages/pandas/io/parsers.py", line 2305, in __init__ ) = self._infer_columns() File "/home/me/.env/lib/python3.7/site-packages/pandas/io/parsers.py", line 2712, in _infer_columns _validate_usecols_names(self.usecols, range(ncols)) File "/home/me/.env/lib/python3.7/site-packages/pandas/io/parsers.py", line 1255, in _validate_usecols_names "columns expected but not found: {missing}".format(missing=missing) ValueError: Usecols do not match columns, columns expected but not found: [1] ``` The problem happens because the `bar` column does not contain any data. As soon as I put a value into it, both versions do the same thing. I'm using Python 3.7.3 in Ubuntu 19.04.
I think this is intentional ref #25623 so not really a regression. Do you have a particular use case for this? @WillAyd Our use case is that we have daily reports and one of the columns only contains data when something unusual happened. Consequently, in some files this column is completely empty and "the column is completely empty" is exactly the information that we are looking for. The change in #25623 that you referenced mentions CSV files. For CSV files I agree that the change is very useful, since the CSV file really does not contain the column. But for Excel files, there is no such thing as a non-existing column. I don't think this is something likely to be reverted as it was a bug in core IO handling before that allowed this not to raise but let's see what others think shouldn’t just specifying names work? Seems to work for me locally - @snordhausen how about on your end? @WillAyd To make sure that we are both testing the same thing, I extended my test program to also create the `data.xlsx` file: ``` import pandas from openpyxl import Workbook wb = Workbook() ws = wb.active ws['A7'] = 1 ws['A8'] = 2 ws['A9'] = 3 wb.save("data.xlsx") df = pandas.read_excel( "data.xlsx", sheet_name="Sheet", usecols=[0, 1], header=None, names=["foo", "bar"] ) print(df) ``` I also tried this out in a fresh Ubuntu 18.04 docker container and could reproduce the issue. Try removing usecols from your call Sent from my iPhone > On Jul 8, 2019, at 2:41 AM, Stefan Nordhausen <notifications@github.com> wrote: > > @WillAyd To make sure that we are both testing the same thing, I extended my test program to also create the data.xlsx file: > > import pandas > from openpyxl import Workbook > > wb = Workbook() > ws = wb.active > ws['A7'] = 1 > ws['A8'] = 2 > ws['A9'] = 3 > wb.save("data.xlsx") > > df = pandas.read_excel( > "data.xlsx", > sheet_name="Sheet", > usecols=[0, 1], > header=None, > names=["foo", "bar"] > ) > > print(df) > I also tried this out in a fresh Ubuntu 18.04 docker container and could reproduce the issue. > > — > You are receiving this because you were mentioned. > Reply to this email directly, view it on GitHub, or mute the thread. Removing `usecols` makes the program work with 0.25.0rc0. However, that looks inconsistent to me: why can I implicitly load empty columns, but when I explicitly ask for them I get an error? Also, it means I cannot load (potentially) empty columns in the middle of the table, e.g. if I only wanted column 0 and 20. > However, that looks inconsistent to me: why can I implicitly load empty columns, but when I explicitly ask for them I get an error? The fact that this worked previously is inconsistent with read_csv. `usecols` is typically validated and missing indexes or labels throws errors. For example: ```python >>> data = """a,b,c\n1,2,3""" >>> pd.read_csv(io.StringIO(test), usecols=['x']) ValueError: Usecols do not match columns, columns expected but not found: ['x'] >>> pd.read_csv(io.StringIO(test), usecols=[10]) ValueError: Usecols do not match columns, columns expected but not found: [10] ``` So I don't think there is any reason to have Excel be excepted from that validation. You can use `names` as suggested above or reindex the output on your own The biggest issue is using the parser to read multiple sheets from 1 excel file. Trying to read multiple sheets in 1 IO causes a lot of issues if the column length varies within a range (eg. "AA, AG:BZ") with AA being the index and AG:BZ the potential columns. This example will throw an error instead of omitting the empty columns, which caused a lot of headaches and let me to revert to 0.24. @pandas-dev/pandas-core would anyone object to reverting #25623 ? It looks like this is causing confusion in the Excel world as described by users above To support use cases above with that in place we would need to break Excel `usecols` handling from the CSV one. I'm not sure this is desired but at the same time I don't think the issue we solved to raise for bad `usecols` is that urgent so could defer that if its a hang up for RC users I have no objections to reverting the original PR. However, I would meet that issue half-way and issue warnings instead. A FutureWarning or did you have something else in mind? I would go with `UserWarning`. `FutureWarning` to me implies some kind of deprecation, which I don't think will happen at this point (unless we have some really strong feelings about keeping this behavior). I am fine with reverting to restore the functionality of excel for 0.25.0. But I also wanted to mention that from a user perspective, I wouldn't mind that some options behave differently between csv and excel (in the end, they are different formats with different capabilities). Whether this is possible/desirable from a code perspective, don't know the parsing code well enough for that. > I wouldn't mind that some options behave differently between csv and excel (in the end, they are different formats with different capabilities) > Whether this is possible/desirable from a code perspective, don't know the parsing code well enough for that It's definitely possible, but I would want more feedback from users, hence why I suggested the warning. That way we can draw people's attention to it (maybe even reference the two issues).
2019-07-16T21:58:23Z
[]
[]
Traceback (most recent call last): File "tester.py", line 8, in <module> names=["foo", "bar"] File "/home/me/.env/lib/python3.7/site-packages/pandas/util/_decorators.py", line 196, in wrapper return func(*args, **kwargs) File "/home/me/.env/lib/python3.7/site-packages/pandas/io/excel/_base.py", line 334, in read_excel **kwds File "/home/me/.env/lib/python3.7/site-packages/pandas/io/excel/_base.py", line 877, in parse **kwds File "/home/me/.env/lib/python3.7/site-packages/pandas/io/excel/_base.py", line 507, in parse **kwds File "/home/me/.env/lib/python3.7/site-packages/pandas/io/parsers.py", line 2218, in TextParser return TextFileReader(*args, **kwds) File "/home/me/.env/lib/python3.7/site-packages/pandas/io/parsers.py", line 895, in __init__ self._make_engine(self.engine) File "/home/me/.env/lib/python3.7/site-packages/pandas/io/parsers.py", line 1147, in _make_engine self._engine = klass(self.f, **self.options) File "/home/me/.env/lib/python3.7/site-packages/pandas/io/parsers.py", line 2305, in __init__ ) = self._infer_columns() File "/home/me/.env/lib/python3.7/site-packages/pandas/io/parsers.py", line 2712, in _infer_columns _validate_usecols_names(self.usecols, range(ncols)) File "/home/me/.env/lib/python3.7/site-packages/pandas/io/parsers.py", line 1255, in _validate_usecols_names "columns expected but not found: {missing}".format(missing=missing) ValueError: Usecols do not match columns, columns expected but not found: [1]
12,883
pandas-dev/pandas
pandas-dev__pandas-27511
3b96ada3a17f5fcc8c32a238457075ec4dd8433a
diff --git a/doc/source/whatsnew/v0.25.1.rst b/doc/source/whatsnew/v0.25.1.rst --- a/doc/source/whatsnew/v0.25.1.rst +++ b/doc/source/whatsnew/v0.25.1.rst @@ -57,6 +57,7 @@ Timezones Numeric ^^^^^^^ - Bug in :meth:`Series.interpolate` when using a timezone aware :class:`DatetimeIndex` (:issue:`27548`) +- Bug when printing negative floating point complex numbers would raise an ``IndexError`` (:issue:`27484`) - - diff --git a/pandas/core/frame.py b/pandas/core/frame.py --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -2593,12 +2593,12 @@ def memory_usage(self, index=True, deep=False): ... for t in dtypes]) >>> df = pd.DataFrame(data) >>> df.head() - int64 float64 complex128 object bool - 0 1 1.0 1.0+0.0j 1 True - 1 1 1.0 1.0+0.0j 1 True - 2 1 1.0 1.0+0.0j 1 True - 3 1 1.0 1.0+0.0j 1 True - 4 1 1.0 1.0+0.0j 1 True + int64 float64 complex128 object bool + 0 1 1.0 1.000000+0.000000j 1 True + 1 1 1.0 1.000000+0.000000j 1 True + 2 1 1.0 1.000000+0.000000j 1 True + 3 1 1.0 1.000000+0.000000j 1 True + 4 1 1.0 1.000000+0.000000j 1 True >>> df.memory_usage() Index 128 diff --git a/pandas/io/formats/format.py b/pandas/io/formats/format.py --- a/pandas/io/formats/format.py +++ b/pandas/io/formats/format.py @@ -5,6 +5,7 @@ from functools import partial from io import StringIO +import re from shutil import get_terminal_size from typing import ( TYPE_CHECKING, @@ -1688,17 +1689,10 @@ def _trim_zeros_complex(str_complexes: ndarray, na_rep: str = "NaN") -> List[str Separates the real and imaginary parts from the complex number, and executes the _trim_zeros_float method on each of those. """ - - def separate_and_trim(str_complex, na_rep): - num_arr = str_complex.split("+") - return ( - _trim_zeros_float([num_arr[0]], na_rep) - + ["+"] - + _trim_zeros_float([num_arr[1][:-1]], na_rep) - + ["j"] - ) - - return ["".join(separate_and_trim(x, na_rep)) for x in str_complexes] + return [ + "".join(_trim_zeros_float(re.split(r"([j+-])", x), na_rep)) + for x in str_complexes + ] def _trim_zeros_float(
IndexError in repr of series objects containing complex numbers with negative imaginary parts #### Code Sample, a copy-pastable example if possible ```python from pandas import Series print(Series([-1j])) ``` #### Problem description This raises the following error: ``` Traceback (most recent call last): File "foo.py", line 3, in <module> print(Series([-1j])) File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/core/series.py", line 1611, in __repr__ length=show_dimensions, File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/core/series.py", line 1677, in to_string result = formatter.to_string() File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 312, in to_string fmt_values = self._get_formatted_values() File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 299, in _get_formatted_values values_to_format, None, float_format=self.float_format, na_rep=self.na_rep File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 1032, in format_array return fmt_obj.get_result() File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 1063, in get_result fmt_values = self._format_strings() File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 1288, in _format_strings return list(self.get_result_as_array()) File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 1252, in get_result_as_array formatted_values = format_values_with(float_format) File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 1234, in format_values_with return _trim_zeros_complex(values, na_rep) File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 1597, in _trim_zeros_complex return ["".join(separate_and_trim(x, na_rep)) for x in str_complexes] File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 1597, in <listcomp> return ["".join(separate_and_trim(x, na_rep)) for x in str_complexes] File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 1594, in separate_and_trim + ["j"] IndexError: list index out of range ``` #### Expected Output This should print something like the following: ``` 0 0.0-1.0j dtype: complex128 ``` #### Output of ``pd.show_versions()`` <details> [paste the output of ``pd.show_versions()`` here below this line] INSTALLED VERSIONS ------------------ commit : None python : 3.7.4.final.0 python-bits : 64 OS : Linux OS-release : 4.4.0-17134-Microsoft machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 pandas : 0.25.0 numpy : 1.16.4 pytz : 2019.1 dateutil : 2.8.0 pip : 19.0.3 setuptools : 40.8.0 Cython : None pytest : 5.0.1 hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : None psycopg2 : None jinja2 : None IPython : 7.6.1 pandas_datareader: None bs4 : None bottleneck : None fastparquet : None gcsfs : None lxml.etree : None matplotlib : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None pyarrow : None pytables : None s3fs : None scipy : None sqlalchemy : None tables : None xarray : None xlrd : None xlwt : None xlsxwriter : None </details>
PR https://github.com/pandas-dev/pandas/pull/25745 is probably the culprit for this regression. Investigation and PR's welcome!
2019-07-22T00:58:27Z
[]
[]
Traceback (most recent call last): File "foo.py", line 3, in <module> print(Series([-1j])) File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/core/series.py", line 1611, in __repr__ length=show_dimensions, File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/core/series.py", line 1677, in to_string result = formatter.to_string() File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 312, in to_string fmt_values = self._get_formatted_values() File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 299, in _get_formatted_values values_to_format, None, float_format=self.float_format, na_rep=self.na_rep File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 1032, in format_array return fmt_obj.get_result() File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 1063, in get_result fmt_values = self._format_strings() File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 1288, in _format_strings return list(self.get_result_as_array()) File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 1252, in get_result_as_array formatted_values = format_values_with(float_format) File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 1234, in format_values_with return _trim_zeros_complex(values, na_rep) File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 1597, in _trim_zeros_complex return ["".join(separate_and_trim(x, na_rep)) for x in str_complexes] File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 1597, in <listcomp> return ["".join(separate_and_trim(x, na_rep)) for x in str_complexes] File "/home/david/.pyenv/versions/3.7.4/lib/python3.7/site-packages/pandas/io/formats/format.py", line 1594, in separate_and_trim + ["j"] IndexError: list index out of range
12,890
pandas-dev/pandas
pandas-dev__pandas-27580
3b96ada3a17f5fcc8c32a238457075ec4dd8433a
diff --git a/doc/source/install.rst b/doc/source/install.rst --- a/doc/source/install.rst +++ b/doc/source/install.rst @@ -15,35 +15,10 @@ Instructions for installing from source, `PyPI <https://pypi.org/project/pandas>`__, `ActivePython <https://www.activestate.com/activepython/downloads>`__, various Linux distributions, or a `development version <http://github.com/pandas-dev/pandas>`__ are also provided. -.. _install.dropping-27: - -Plan for dropping Python 2.7 ----------------------------- - -The Python core team plans to stop supporting Python 2.7 on January 1st, 2020. -In line with `NumPy's plans`_, all pandas releases through December 31, 2018 -will support Python 2. - -The 0.24.x feature release will be the last release to -support Python 2. The released package will continue to be available on -PyPI and through conda. - - Starting **January 1, 2019**, all new feature releases (> 0.24) will be Python 3 only. - -If there are people interested in continued support for Python 2.7 past December -31, 2018 (either backporting bug fixes or funding) please reach out to the -maintainers on the issue tracker. - -For more information, see the `Python 3 statement`_ and the `Porting to Python 3 guide`_. - -.. _NumPy's plans: https://github.com/numpy/numpy/blob/master/doc/neps/nep-0014-dropping-python2.7-proposal.rst#plan-for-dropping-python-27-support -.. _Python 3 statement: http://python3statement.org/ -.. _Porting to Python 3 guide: https://docs.python.org/3/howto/pyporting.html - Python version support ---------------------- -Officially Python 2.7, 3.5, 3.6, and 3.7. +Officially Python 3.5.3 and above, 3.6, and 3.7. Installing pandas ----------------- diff --git a/doc/source/whatsnew/v0.23.0.rst b/doc/source/whatsnew/v0.23.0.rst --- a/doc/source/whatsnew/v0.23.0.rst +++ b/doc/source/whatsnew/v0.23.0.rst @@ -31,7 +31,7 @@ Check the :ref:`API Changes <whatsnew_0230.api_breaking>` and :ref:`deprecations .. warning:: Starting January 1, 2019, pandas feature releases will support Python 3 only. - See :ref:`install.dropping-27` for more. + See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more. .. contents:: What's new in v0.23.0 :local: diff --git a/doc/source/whatsnew/v0.23.1.rst b/doc/source/whatsnew/v0.23.1.rst --- a/doc/source/whatsnew/v0.23.1.rst +++ b/doc/source/whatsnew/v0.23.1.rst @@ -12,7 +12,7 @@ and bug fixes. We recommend that all users upgrade to this version. .. warning:: Starting January 1, 2019, pandas feature releases will support Python 3 only. - See :ref:`install.dropping-27` for more. + See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more. .. contents:: What's new in v0.23.1 :local: diff --git a/doc/source/whatsnew/v0.23.2.rst b/doc/source/whatsnew/v0.23.2.rst --- a/doc/source/whatsnew/v0.23.2.rst +++ b/doc/source/whatsnew/v0.23.2.rst @@ -17,7 +17,7 @@ and bug fixes. We recommend that all users upgrade to this version. .. warning:: Starting January 1, 2019, pandas feature releases will support Python 3 only. - See :ref:`install.dropping-27` for more. + See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more. .. contents:: What's new in v0.23.2 :local: diff --git a/doc/source/whatsnew/v0.23.4.rst b/doc/source/whatsnew/v0.23.4.rst --- a/doc/source/whatsnew/v0.23.4.rst +++ b/doc/source/whatsnew/v0.23.4.rst @@ -12,7 +12,7 @@ and bug fixes. We recommend that all users upgrade to this version. .. warning:: Starting January 1, 2019, pandas feature releases will support Python 3 only. - See :ref:`install.dropping-27` for more. + See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more. .. contents:: What's new in v0.23.4 :local: diff --git a/doc/source/whatsnew/v0.24.0.rst b/doc/source/whatsnew/v0.24.0.rst --- a/doc/source/whatsnew/v0.24.0.rst +++ b/doc/source/whatsnew/v0.24.0.rst @@ -6,7 +6,7 @@ What's new in 0.24.0 (January 25, 2019) .. warning:: The 0.24.x series of releases will be the last to support Python 2. Future feature - releases will support Python 3 only. See :ref:`install.dropping-27` for more + releases will support Python 3 only. See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more details. {{ header }} diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst --- a/doc/source/whatsnew/v0.24.1.rst +++ b/doc/source/whatsnew/v0.24.1.rst @@ -6,7 +6,7 @@ Whats new in 0.24.1 (February 3, 2019) .. warning:: The 0.24.x series of releases will be the last to support Python 2. Future feature - releases will support Python 3 only. See :ref:`install.dropping-27` for more. + releases will support Python 3 only. See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more. {{ header }} diff --git a/doc/source/whatsnew/v0.24.2.rst b/doc/source/whatsnew/v0.24.2.rst --- a/doc/source/whatsnew/v0.24.2.rst +++ b/doc/source/whatsnew/v0.24.2.rst @@ -6,7 +6,7 @@ Whats new in 0.24.2 (March 12, 2019) .. warning:: The 0.24.x series of releases will be the last to support Python 2. Future feature - releases will support Python 3 only. See :ref:`install.dropping-27` for more. + releases will support Python 3 only. See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more. {{ header }} diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -6,7 +6,7 @@ What's new in 0.25.0 (July 18, 2019) .. warning:: Starting with the 0.25.x series of releases, pandas only supports Python 3.5.3 and higher. - See :ref:`install.dropping-27` for more details. + See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more details. .. warning:: diff --git a/doc/source/whatsnew/v1.0.0.rst b/doc/source/whatsnew/v1.0.0.rst --- a/doc/source/whatsnew/v1.0.0.rst +++ b/doc/source/whatsnew/v1.0.0.rst @@ -6,7 +6,7 @@ What's new in 1.0.0 (??) .. warning:: Starting with the 0.25.x series of releases, pandas only supports Python 3.5.3 and higher. - See :ref:`install.dropping-27` for more details. + See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more details. .. warning::
DOC: Unable to import pandas on python 3.5.2 #### Code Sample, a copy-pastable example if possible ```python import pandas ``` #### Problem description Although it seems like a typing issue pandas is still affected, error: ``` root@ae9a5374fe6d:/buildbot# python -c "import pandas" Traceback (most recent call last): File "<string>", line 1, in <module> File "/usr/local/lib/python3.5/dist-packages/pandas/__init__.py", line 55, in <module> from pandas.core.api import ( File "/usr/local/lib/python3.5/dist-packages/pandas/core/api.py", line 5, in <module> from pandas.core.arrays.integer import ( File "/usr/local/lib/python3.5/dist-packages/pandas/core/arrays/__init__.py", line 1, in <module> from .array_ import array # noqa: F401 File "/usr/local/lib/python3.5/dist-packages/pandas/core/arrays/array_.py", line 7, in <module> from pandas.core.dtypes.common import ( File "/usr/local/lib/python3.5/dist-packages/pandas/core/dtypes/common.py", line 11, in <module> from pandas.core.dtypes.dtypes import ( File "/usr/local/lib/python3.5/dist-packages/pandas/core/dtypes/dtypes.py", line 53, in <module> class Registry: File "/usr/local/lib/python3.5/dist-packages/pandas/core/dtypes/dtypes.py", line 84, in Registry self, dtype: Union[Type[ExtensionDtype], str] File "/usr/lib/python3.5/typing.py", line 552, in __getitem__ dict(self.__dict__), parameters, _root=True) File "/usr/lib/python3.5/typing.py", line 512, in __new__ for t2 in all_params - {t1} if not isinstance(t2, TypeVar)): File "/usr/lib/python3.5/typing.py", line 512, in <genexpr> for t2 in all_params - {t1} if not isinstance(t2, TypeVar)): File "/usr/lib/python3.5/typing.py", line 1077, in __subclasscheck__ if super().__subclasscheck__(cls): File "/usr/lib/python3.5/abc.py", line 225, in __subclasscheck__ for scls in cls.__subclasses__(): TypeError: descriptor '__subclasses__' of 'type' object needs an argument ``` To reproduce: ``` $ docker pull ursalab/amd64-ubuntu-16.04-python-3:worker $ docker run -it ursalab/amd64-ubuntu-16.04-python-3:worker bash # python -c "import pandas" ``` #### Output of ``pip freeze | grep pandas`` ``` pandas==0.25.0 ```
3.5.3 is the minimum on 0.25; see the release notes @jreback Thanks! May I suggest to update the documentation about that https://pandas.pydata.org/pandas-docs/stable/install.html#python-version-support ? yes that needs updating (and removing the 2.7)
2019-07-25T06:05:45Z
[]
[]
Traceback (most recent call last): File "<string>", line 1, in <module> File "/usr/local/lib/python3.5/dist-packages/pandas/__init__.py", line 55, in <module> from pandas.core.api import ( File "/usr/local/lib/python3.5/dist-packages/pandas/core/api.py", line 5, in <module> from pandas.core.arrays.integer import ( File "/usr/local/lib/python3.5/dist-packages/pandas/core/arrays/__init__.py", line 1, in <module> from .array_ import array # noqa: F401 File "/usr/local/lib/python3.5/dist-packages/pandas/core/arrays/array_.py", line 7, in <module> from pandas.core.dtypes.common import ( File "/usr/local/lib/python3.5/dist-packages/pandas/core/dtypes/common.py", line 11, in <module> from pandas.core.dtypes.dtypes import ( File "/usr/local/lib/python3.5/dist-packages/pandas/core/dtypes/dtypes.py", line 53, in <module> class Registry: File "/usr/local/lib/python3.5/dist-packages/pandas/core/dtypes/dtypes.py", line 84, in Registry self, dtype: Union[Type[ExtensionDtype], str] File "/usr/lib/python3.5/typing.py", line 552, in __getitem__ dict(self.__dict__), parameters, _root=True) File "/usr/lib/python3.5/typing.py", line 512, in __new__ for t2 in all_params - {t1} if not isinstance(t2, TypeVar)): File "/usr/lib/python3.5/typing.py", line 512, in <genexpr> for t2 in all_params - {t1} if not isinstance(t2, TypeVar)): File "/usr/lib/python3.5/typing.py", line 1077, in __subclasscheck__ if super().__subclasscheck__(cls): File "/usr/lib/python3.5/abc.py", line 225, in __subclasscheck__ for scls in cls.__subclasses__(): TypeError: descriptor '__subclasses__' of 'type' object needs an argument
12,897
pandas-dev/pandas
pandas-dev__pandas-27691
ac6dca29cd4b433d7436c2bbd408a03542a576e3
diff --git a/doc/source/install.rst b/doc/source/install.rst --- a/doc/source/install.rst +++ b/doc/source/install.rst @@ -15,35 +15,10 @@ Instructions for installing from source, `PyPI <https://pypi.org/project/pandas>`__, `ActivePython <https://www.activestate.com/activepython/downloads>`__, various Linux distributions, or a `development version <http://github.com/pandas-dev/pandas>`__ are also provided. -.. _install.dropping-27: - -Plan for dropping Python 2.7 ----------------------------- - -The Python core team plans to stop supporting Python 2.7 on January 1st, 2020. -In line with `NumPy's plans`_, all pandas releases through December 31, 2018 -will support Python 2. - -The 0.24.x feature release will be the last release to -support Python 2. The released package will continue to be available on -PyPI and through conda. - - Starting **January 1, 2019**, all new feature releases (> 0.24) will be Python 3 only. - -If there are people interested in continued support for Python 2.7 past December -31, 2018 (either backporting bug fixes or funding) please reach out to the -maintainers on the issue tracker. - -For more information, see the `Python 3 statement`_ and the `Porting to Python 3 guide`_. - -.. _NumPy's plans: https://github.com/numpy/numpy/blob/master/doc/neps/nep-0014-dropping-python2.7-proposal.rst#plan-for-dropping-python-27-support -.. _Python 3 statement: http://python3statement.org/ -.. _Porting to Python 3 guide: https://docs.python.org/3/howto/pyporting.html - Python version support ---------------------- -Officially Python 2.7, 3.5, 3.6, and 3.7. +Officially Python 3.5.3 and above, 3.6, and 3.7. Installing pandas ----------------- diff --git a/doc/source/whatsnew/v0.23.0.rst b/doc/source/whatsnew/v0.23.0.rst --- a/doc/source/whatsnew/v0.23.0.rst +++ b/doc/source/whatsnew/v0.23.0.rst @@ -31,7 +31,7 @@ Check the :ref:`API Changes <whatsnew_0230.api_breaking>` and :ref:`deprecations .. warning:: Starting January 1, 2019, pandas feature releases will support Python 3 only. - See :ref:`install.dropping-27` for more. + See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more. .. contents:: What's new in v0.23.0 :local: diff --git a/doc/source/whatsnew/v0.23.1.rst b/doc/source/whatsnew/v0.23.1.rst --- a/doc/source/whatsnew/v0.23.1.rst +++ b/doc/source/whatsnew/v0.23.1.rst @@ -12,7 +12,7 @@ and bug fixes. We recommend that all users upgrade to this version. .. warning:: Starting January 1, 2019, pandas feature releases will support Python 3 only. - See :ref:`install.dropping-27` for more. + See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more. .. contents:: What's new in v0.23.1 :local: diff --git a/doc/source/whatsnew/v0.23.2.rst b/doc/source/whatsnew/v0.23.2.rst --- a/doc/source/whatsnew/v0.23.2.rst +++ b/doc/source/whatsnew/v0.23.2.rst @@ -17,7 +17,7 @@ and bug fixes. We recommend that all users upgrade to this version. .. warning:: Starting January 1, 2019, pandas feature releases will support Python 3 only. - See :ref:`install.dropping-27` for more. + See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more. .. contents:: What's new in v0.23.2 :local: diff --git a/doc/source/whatsnew/v0.23.4.rst b/doc/source/whatsnew/v0.23.4.rst --- a/doc/source/whatsnew/v0.23.4.rst +++ b/doc/source/whatsnew/v0.23.4.rst @@ -12,7 +12,7 @@ and bug fixes. We recommend that all users upgrade to this version. .. warning:: Starting January 1, 2019, pandas feature releases will support Python 3 only. - See :ref:`install.dropping-27` for more. + See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more. .. contents:: What's new in v0.23.4 :local: diff --git a/doc/source/whatsnew/v0.24.0.rst b/doc/source/whatsnew/v0.24.0.rst --- a/doc/source/whatsnew/v0.24.0.rst +++ b/doc/source/whatsnew/v0.24.0.rst @@ -6,7 +6,7 @@ What's new in 0.24.0 (January 25, 2019) .. warning:: The 0.24.x series of releases will be the last to support Python 2. Future feature - releases will support Python 3 only. See :ref:`install.dropping-27` for more + releases will support Python 3 only. See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more details. {{ header }} diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst --- a/doc/source/whatsnew/v0.24.1.rst +++ b/doc/source/whatsnew/v0.24.1.rst @@ -6,7 +6,7 @@ Whats new in 0.24.1 (February 3, 2019) .. warning:: The 0.24.x series of releases will be the last to support Python 2. Future feature - releases will support Python 3 only. See :ref:`install.dropping-27` for more. + releases will support Python 3 only. See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more. {{ header }} diff --git a/doc/source/whatsnew/v0.24.2.rst b/doc/source/whatsnew/v0.24.2.rst --- a/doc/source/whatsnew/v0.24.2.rst +++ b/doc/source/whatsnew/v0.24.2.rst @@ -6,7 +6,7 @@ Whats new in 0.24.2 (March 12, 2019) .. warning:: The 0.24.x series of releases will be the last to support Python 2. Future feature - releases will support Python 3 only. See :ref:`install.dropping-27` for more. + releases will support Python 3 only. See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more. {{ header }} diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -6,7 +6,7 @@ What's new in 0.25.0 (July 18, 2019) .. warning:: Starting with the 0.25.x series of releases, pandas only supports Python 3.5.3 and higher. - See :ref:`install.dropping-27` for more details. + See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more details. .. warning::
DOC: Unable to import pandas on python 3.5.2 #### Code Sample, a copy-pastable example if possible ```python import pandas ``` #### Problem description Although it seems like a typing issue pandas is still affected, error: ``` root@ae9a5374fe6d:/buildbot# python -c "import pandas" Traceback (most recent call last): File "<string>", line 1, in <module> File "/usr/local/lib/python3.5/dist-packages/pandas/__init__.py", line 55, in <module> from pandas.core.api import ( File "/usr/local/lib/python3.5/dist-packages/pandas/core/api.py", line 5, in <module> from pandas.core.arrays.integer import ( File "/usr/local/lib/python3.5/dist-packages/pandas/core/arrays/__init__.py", line 1, in <module> from .array_ import array # noqa: F401 File "/usr/local/lib/python3.5/dist-packages/pandas/core/arrays/array_.py", line 7, in <module> from pandas.core.dtypes.common import ( File "/usr/local/lib/python3.5/dist-packages/pandas/core/dtypes/common.py", line 11, in <module> from pandas.core.dtypes.dtypes import ( File "/usr/local/lib/python3.5/dist-packages/pandas/core/dtypes/dtypes.py", line 53, in <module> class Registry: File "/usr/local/lib/python3.5/dist-packages/pandas/core/dtypes/dtypes.py", line 84, in Registry self, dtype: Union[Type[ExtensionDtype], str] File "/usr/lib/python3.5/typing.py", line 552, in __getitem__ dict(self.__dict__), parameters, _root=True) File "/usr/lib/python3.5/typing.py", line 512, in __new__ for t2 in all_params - {t1} if not isinstance(t2, TypeVar)): File "/usr/lib/python3.5/typing.py", line 512, in <genexpr> for t2 in all_params - {t1} if not isinstance(t2, TypeVar)): File "/usr/lib/python3.5/typing.py", line 1077, in __subclasscheck__ if super().__subclasscheck__(cls): File "/usr/lib/python3.5/abc.py", line 225, in __subclasscheck__ for scls in cls.__subclasses__(): TypeError: descriptor '__subclasses__' of 'type' object needs an argument ``` To reproduce: ``` $ docker pull ursalab/amd64-ubuntu-16.04-python-3:worker $ docker run -it ursalab/amd64-ubuntu-16.04-python-3:worker bash # python -c "import pandas" ``` #### Output of ``pip freeze | grep pandas`` ``` pandas==0.25.0 ```
3.5.3 is the minimum on 0.25; see the release notes @jreback Thanks! May I suggest to update the documentation about that https://pandas.pydata.org/pandas-docs/stable/install.html#python-version-support ? yes that needs updating (and removing the 2.7) @kszucs how is pandas being installed? (I don't directly find this profile in the configuration) As normally this should be catched during installation (see discussion i https://github.com/pandas-dev/pandas/pull/27288) @jorisvandenbossche ```dockerfile FROM ubuntu:16.04 RUN apt-get update -y && \ apt-get install -y python3 python3-pip RUN pip3 install pandas CMD python3 -c "import pandas" ``` ```bash $ docker build -t pandas-py35 -f <the-dockerfile-above> . $ docker run pandas-py35 ``` @kszucs that had a warning for me locally ``` Step 3/4 : RUN pip3 install pandas ---> Running in 2181656518ff Collecting pandas Downloading https://files.pythonhosted.org/packages/a7/d9/e03b615e973c2733ff8fd53d95bd3633ecbfa81b5af2f83fe39647c02344/pandas-0.25.0-cp35-cp35m-manylinux1_x86_64.whl (10.3MB) Collecting python-dateutil>=2.6.1 (from pandas) Downloading https://files.pythonhosted.org/packages/41/17/c62faccbfbd163c7f57f3844689e3a78bae1f403648a6afb1d0866d87fbb/python_dateutil-2.8.0-py2.py3-none-any.whl (226kB) Collecting numpy>=1.13.3 (from pandas) Downloading https://files.pythonhosted.org/packages/69/25/eef8d362bd216b11e7d005331a3cca3d19b0aa57569bde680070109b745c/numpy-1.17.0-cp35-cp35m-manylinux1_x86_64.whl (20.2MB) Collecting pytz>=2017.2 (from pandas) Downloading https://files.pythonhosted.org/packages/3d/73/fe30c2daaaa0713420d0382b16fbb761409f532c56bdcc514bf7b6262bb6/pytz-2019.1-py2.py3-none-any.whl (510kB) Collecting six>=1.5 (from python-dateutil>=2.6.1->pandas) Downloading https://files.pythonhosted.org/packages/73/fb/00a976f728d0d1fecfe898238ce23f502a721c0ac0ecfedb80e0d88c64e9/six-1.12.0-py2.py3-none-any.whl Installing collected packages: six, python-dateutil, numpy, pytz, pandas Successfully installed numpy-1.17.0 pandas-0.25.0 python-dateutil-2.8.0 pytz-2019.1 six-1.12.0 You are using pip version 8.1.1, however version 19.2.1 is available. You should consider upgrading via the 'pip install --upgrade pip' command. ``` I suspect that with a newer version of pip `(RUN pip3 install -U pip setuptools`), the build would error. Probably.
2019-08-01T12:24:09Z
[]
[]
Traceback (most recent call last): File "<string>", line 1, in <module> File "/usr/local/lib/python3.5/dist-packages/pandas/__init__.py", line 55, in <module> from pandas.core.api import ( File "/usr/local/lib/python3.5/dist-packages/pandas/core/api.py", line 5, in <module> from pandas.core.arrays.integer import ( File "/usr/local/lib/python3.5/dist-packages/pandas/core/arrays/__init__.py", line 1, in <module> from .array_ import array # noqa: F401 File "/usr/local/lib/python3.5/dist-packages/pandas/core/arrays/array_.py", line 7, in <module> from pandas.core.dtypes.common import ( File "/usr/local/lib/python3.5/dist-packages/pandas/core/dtypes/common.py", line 11, in <module> from pandas.core.dtypes.dtypes import ( File "/usr/local/lib/python3.5/dist-packages/pandas/core/dtypes/dtypes.py", line 53, in <module> class Registry: File "/usr/local/lib/python3.5/dist-packages/pandas/core/dtypes/dtypes.py", line 84, in Registry self, dtype: Union[Type[ExtensionDtype], str] File "/usr/lib/python3.5/typing.py", line 552, in __getitem__ dict(self.__dict__), parameters, _root=True) File "/usr/lib/python3.5/typing.py", line 512, in __new__ for t2 in all_params - {t1} if not isinstance(t2, TypeVar)): File "/usr/lib/python3.5/typing.py", line 512, in <genexpr> for t2 in all_params - {t1} if not isinstance(t2, TypeVar)): File "/usr/lib/python3.5/typing.py", line 1077, in __subclasscheck__ if super().__subclasscheck__(cls): File "/usr/lib/python3.5/abc.py", line 225, in __subclasscheck__ for scls in cls.__subclasses__(): TypeError: descriptor '__subclasses__' of 'type' object needs an argument
12,916
pandas-dev/pandas
pandas-dev__pandas-27773
584b154cbf667ec4dd3482025718ea28b5827a46
diff --git a/doc/source/whatsnew/v0.25.1.rst b/doc/source/whatsnew/v0.25.1.rst --- a/doc/source/whatsnew/v0.25.1.rst +++ b/doc/source/whatsnew/v0.25.1.rst @@ -54,7 +54,7 @@ Numeric ^^^^^^^ - Bug in :meth:`Series.interpolate` when using a timezone aware :class:`DatetimeIndex` (:issue:`27548`) - Bug when printing negative floating point complex numbers would raise an ``IndexError`` (:issue:`27484`) -- +- Bug where :class:`DataFrame` arithmetic operators such as :meth:`DataFrame.mul` with a :class:`Series` with axis=1 would raise an ``AttributeError`` on :class:`DataFrame` larger than the minimum threshold to invoke numexpr (:issue:`27636`) - Conversion diff --git a/pandas/core/computation/expressions.py b/pandas/core/computation/expressions.py --- a/pandas/core/computation/expressions.py +++ b/pandas/core/computation/expressions.py @@ -76,16 +76,17 @@ def _can_use_numexpr(op, op_str, a, b, dtype_check): # required min elements (otherwise we are adding overhead) if np.prod(a.shape) > _MIN_ELEMENTS: - # check for dtype compatibility dtypes = set() for o in [a, b]: - if hasattr(o, "dtypes"): + # Series implements dtypes, check for dimension count as well + if hasattr(o, "dtypes") and o.ndim > 1: s = o.dtypes.value_counts() if len(s) > 1: return False dtypes |= set(s.index.astype(str)) - elif isinstance(o, np.ndarray): + # ndarray and Series Case + elif hasattr(o, "dtype"): dtypes |= {o.dtype.name} # allowed are a superset
Operators between DataFrame and Series fail on large dataframes #### Code Sample ```python import pandas as pd ind = list(range(0, 100)) cols = list(range(0, 300)) df = pd.DataFrame(index=ind, columns=cols, data=1.0) series = pd.Series(index=cols, data=cols) print(df.multiply(series, axis=1).head()) # Works fine ind = list(range(0, 100000)) cols = list(range(0, 300)) df = pd.DataFrame(index=ind, columns=cols, data=1.0) series = pd.Series(index=cols, data=cols) print(df.add(series,axis=1).head()) ``` #### Code Output: ``` 0 1 2 3 4 5 ... 294 295 296 297 298 299 0 0.0 1.0 2.0 3.0 4.0 5.0 ... 294.0 295.0 296.0 297.0 298.0 299.0 1 0.0 1.0 2.0 3.0 4.0 5.0 ... 294.0 295.0 296.0 297.0 298.0 299.0 2 0.0 1.0 2.0 3.0 4.0 5.0 ... 294.0 295.0 296.0 297.0 298.0 299.0 3 0.0 1.0 2.0 3.0 4.0 5.0 ... 294.0 295.0 296.0 297.0 298.0 299.0 4 0.0 1.0 2.0 3.0 4.0 5.0 ... 294.0 295.0 296.0 297.0 298.0 299.0 [5 rows x 300 columns] Traceback (most recent call last): File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\IPython\core\interactiveshell.py", line 2963, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-25-4d9165e5df4a>", line 15, in <module> print(df.add(series,axis=1).head()) File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\ops\__init__.py", line 1499, in f self, other, pass_op, fill_value=fill_value, axis=axis, level=level File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\ops\__init__.py", line 1388, in _combine_series_frame return self._combine_match_columns(other, func, level=level) File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\frame.py", line 5392, in _combine_match_columns return ops.dispatch_to_series(left, right, func, axis="columns") File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\ops\__init__.py", line 596, in dispatch_to_series new_data = expressions.evaluate(column_op, str_rep, left, right) File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\computation\expressions.py", line 220, in evaluate return _evaluate(op, op_str, a, b, **eval_kwargs) File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\computation\expressions.py", line 126, in _evaluate_numexpr result = _evaluate_standard(op, op_str, a, b) File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\computation\expressions.py", line 70, in _evaluate_standard return op(a, b) File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\ops\__init__.py", line 584, in column_op return {i: func(a.iloc[:, i], b.iloc[i]) for i in range(len(a.columns))} File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\ops\__init__.py", line 584, in <dictcomp> return {i: func(a.iloc[:, i], b.iloc[i]) for i in range(len(a.columns))} File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\ops\__init__.py", line 1473, in na_op result = expressions.evaluate(op, str_rep, x, y, **eval_kwargs) File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\computation\expressions.py", line 220, in evaluate return _evaluate(op, op_str, a, b, **eval_kwargs) File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\computation\expressions.py", line 101, in _evaluate_numexpr if _can_use_numexpr(op, op_str, a, b, "evaluate"): File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\computation\expressions.py", line 84, in _can_use_numexpr s = o.dtypes.value_counts() AttributeError: 'numpy.dtype' object has no attribute 'value_counts' ``` #### Problem description I think this is a regression somewhere between pandas 0.19.2 and 0.25. If you multiply or use any other operator function such as add/divide on a DataFrame by a Series where axis=1 pandas will crash in the `_can_use_numexpr` functon when the DataFrame/Series becomes very large. This is presumably down to check of the size of the objects being operated on not passing for small datasets but for larger ones it gets to the failing line. ```python #pandas/core/computation/expressions.py : 73 def _can_use_numexpr(op, op_str, a, b, dtype_check): """ return a boolean if we WILL be using numexpr """ if op_str is not None: # required min elements (otherwise we are adding overhead) if np.prod(a.shape) > _MIN_ELEMENTS: # check for dtype compatibility dtypes = set() for o in [a, b]: if hasattr(o, "dtypes"): s = o.dtypes.value_counts() # Fails here ``` In pandas 0.19.2 the function uses the get_dtype_counts() method instead to inspect if the dtype is uniform in the object: ```python def _can_use_numexpr(op, op_str, a, b, dtype_check): """ return a boolean if we WILL be using numexpr """ if op_str is not None: # required min elements (otherwise we are adding overhead) if np.prod(a.shape) > _MIN_ELEMENTS: # check for dtype compatiblity dtypes = set() for o in [a, b]: if hasattr(o, 'get_dtype_counts'): s = o.get_dtype_counts() ``` I have a workaround which is to transpose the dataframe and use axis=0: ```python df.T.add(series,axis=0).T.head() ``` I noticed get_dtype_counts() is deprecated ( #27145 ) which appears to be the PR that has caused this regression as a Series only returns a single numpy dtype which does not have a value_counts() method. #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit : None python : 3.6.5.final.0 python-bits : 64 OS : Windows OS-release : 7 machine : AMD64 processor : Intel64 Family 6 Model 60 Stepping 3, GenuineIntel byteorder : little LC_ALL : None LANG : None LOCALE : None.None pandas : 0.25.0 numpy : 1.16.4 pytz : 2018.4 dateutil : 2.7.3 pip : 10.0.1 setuptools : 39.1.0 Cython : None pytest : 3.5.1 hypothesis : None sphinx : 1.8.2 blosc : None feather : None xlsxwriter : 1.0.4 lxml.etree : 4.1.1 html5lib : 1.0.1 pymysql : None psycopg2 : None jinja2 : 2.10 IPython : 6.4.0 pandas_datareader: None bs4 : 4.7.1 bottleneck : None fastparquet : None gcsfs : None lxml.etree : 4.1.1 matplotlib : 2.2.2 numexpr : 2.6.5 odfpy : None openpyxl : None pandas_gbq : None pyarrow : None pytables : None s3fs : None scipy : 1.1.0 sqlalchemy : 1.2.8 tables : 3.5.2 xarray : None xlrd : 1.1.0 xlwt : None xlsxwriter : 1.0.4 </details>
cc @jbrockmendel. Looks like this was changed from obj.get_dtype_counts, which returns Series for either Series or DataFrame, to obj.dtypes.value_counts, but Series.dtypes returns a Scalar, which is why value_counts raises AttributeError. I can raise a PR to do an extra hasattr on the dtypes. That should fix it? maybe change ``` if hasattr(o, "dtypes"): ``` to ``` if hasattr(o, "dtypes") and o.ndim > 1: ... ``` But yes, a PR with tests and a release note in 0.25.1.rst would be very welcome. Your suggestion worked as well and removed the extra if statement. I added to the test suite in test_expression.py which has uncovered some more issues with operators on DataFrames and Series, with axis=1. Will update this issue once I know the cause. > Will update this issue once I know the cause. If its feasible, it would be easier if you made a small PR specific to the bug here, then address the newly-found bugs in separate steps. It is feasible but it would require a very narrow test. The issue I am having now is that numexpr is failing to work on floordiv when operating on a DataFrame by a series with axis=1. This issue was never caught because the test suite doesn't cover this case currently. If we modify the example code snippet, with the fix suggested by @TomAugspurger to: ```python import pandas as pd ind = list(range(0, 100)) cols = list(range(0, 300)) df = pd.DataFrame(index=ind, columns=cols, data=1.0) series = pd.Series(index=cols, data=cols) print(df.floordiv(series, axis=1).head()) # Works fine ind = list(range(0, 100000)) cols = list(range(0, 300)) df = pd.DataFrame(index=ind, columns=cols, data=1.0) series = pd.Series(index=cols, data=cols) print(df.floordiv(series,axis=1).head()) ``` We get the following traceback: <details> ``` Traceback (most recent call last): File "C:\dev\bin\anaconda\envs\py36pd25\lib\site-packages\pandas\core\ops\__init__.py", line 1473, in na_op result = expressions.evaluate(op, str_rep, x, y, **eval_kwargs) File "C:\dev\bin\anaconda\envs\py36pd25\lib\site-packages\pandas\core\computation\expressions.py", line 220, in evaluate return _evaluate(op, op_str, a, b, **eval_kwargs) File "C:\dev\bin\anaconda\envs\py36pd25\lib\site-packages\pandas\core\computation\expressions.py", line 116, in _evaluate_numexpr **eval_kwargs File "C:\dev\bin\anaconda\envs\py36pd25\lib\site-packages\numexpr\necompiler.py", line 802, in evaluate * 'no' means the data types should not be cast at all. File "C:\dev\bin\anaconda\envs\py36pd25\lib\site-packages\numexpr\necompiler.py", line 709, in getExprNames input_order = getInputOrder(ast, None) File "C:\dev\bin\anaconda\envs\py36pd25\lib\site-packages\numexpr\necompiler.py", line 299, in stringToExpression ex = eval(c, names) File "<expr>", line 1, in <module> TypeError: unsupported operand type(s) for //: 'VariableNode' and 'VariableNode' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "<input>", line 12, in <module> File "C:\dev\bin\anaconda\envs\py36pd25\lib\site-packages\pandas\core\ops\__init__.py", line 1499, in f self, other, pass_op, fill_value=fill_value, axis=axis, level=level File "C:\dev\bin\anaconda\envs\py36pd25\lib\site-packages\pandas\core\ops\__init__.py", line 1388, in _combine_series_frame return self._combine_match_columns(other, func, level=level) File "C:\dev\bin\anaconda\envs\py36pd25\lib\site-packages\pandas\core\frame.py", line 5392, in _combine_match_columns return ops.dispatch_to_series(left, right, func, axis="columns") File "C:\dev\bin\anaconda\envs\py36pd25\lib\site-packages\pandas\core\ops\__init__.py", line 596, in dispatch_to_series new_data = expressions.evaluate(column_op, str_rep, left, right) File "C:\dev\bin\anaconda\envs\py36pd25\lib\site-packages\pandas\core\computation\expressions.py", line 220, in evaluate return _evaluate(op, op_str, a, b, **eval_kwargs) File "C:\dev\bin\anaconda\envs\py36pd25\lib\site-packages\pandas\core\computation\expressions.py", line 126, in _evaluate_numexpr result = _evaluate_standard(op, op_str, a, b) File "C:\dev\bin\anaconda\envs\py36pd25\lib\site-packages\pandas\core\computation\expressions.py", line 70, in _evaluate_standard return op(a, b) File "C:\dev\bin\anaconda\envs\py36pd25\lib\site-packages\pandas\core\ops\__init__.py", line 584, in column_op return {i: func(a.iloc[:, i], b.iloc[i]) for i in range(len(a.columns))} File "C:\dev\bin\anaconda\envs\py36pd25\lib\site-packages\pandas\core\ops\__init__.py", line 584, in <dictcomp> return {i: func(a.iloc[:, i], b.iloc[i]) for i in range(len(a.columns))} File "C:\dev\bin\anaconda\envs\py36pd25\lib\site-packages\pandas\core\ops\__init__.py", line 1475, in na_op result = masked_arith_op(x, y, op) File "C:\dev\bin\anaconda\envs\py36pd25\lib\site-packages\pandas\core\ops\__init__.py", line 451, in masked_arith_op assert isinstance(x, np.ndarray), type(x) AssertionError: <class 'pandas.core.series.Series'> ``` </details> masked_arith_op expects its params x and y to be ndarray but in this specific case x is a Series: ```python # pandas/core/ops/__init__.py : 423 # For Series `x` is 1D so ravel() is a no-op; calling it anyway makes # the logic valid for both Series and DataFrame ops. xrav = x.ravel() assert isinstance(x, np.ndarray), type(x) ``` Modifying this function to use xrav instead of just x does fix the issue and all unit tests still pass but I am not sure if this is the true intention of the in line comment here? Happy to restrict the tests to try every operator BUT floordiv if that is better to reduce the scope of the PR. > Happy to restrict the tests to try every operator BUT floordiv if that is better to reduce the scope of the PR. Let's do that for now. You can open another issue for the floordiv problem I think.
2019-08-06T10:27:57Z
[]
[]
Traceback (most recent call last): File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\IPython\core\interactiveshell.py", line 2963, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-25-4d9165e5df4a>", line 15, in <module> print(df.add(series,axis=1).head()) File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\ops\__init__.py", line 1499, in f self, other, pass_op, fill_value=fill_value, axis=axis, level=level File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\ops\__init__.py", line 1388, in _combine_series_frame return self._combine_match_columns(other, func, level=level) File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\frame.py", line 5392, in _combine_match_columns return ops.dispatch_to_series(left, right, func, axis="columns") File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\ops\__init__.py", line 596, in dispatch_to_series new_data = expressions.evaluate(column_op, str_rep, left, right) File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\computation\expressions.py", line 220, in evaluate return _evaluate(op, op_str, a, b, **eval_kwargs) File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\computation\expressions.py", line 126, in _evaluate_numexpr result = _evaluate_standard(op, op_str, a, b) File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\computation\expressions.py", line 70, in _evaluate_standard return op(a, b) File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\ops\__init__.py", line 584, in column_op return {i: func(a.iloc[:, i], b.iloc[i]) for i in range(len(a.columns))} File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\ops\__init__.py", line 584, in <dictcomp> return {i: func(a.iloc[:, i], b.iloc[i]) for i in range(len(a.columns))} File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\ops\__init__.py", line 1473, in na_op result = expressions.evaluate(op, str_rep, x, y, **eval_kwargs) File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\computation\expressions.py", line 220, in evaluate return _evaluate(op, op_str, a, b, **eval_kwargs) File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\computation\expressions.py", line 101, in _evaluate_numexpr if _can_use_numexpr(op, op_str, a, b, "evaluate"): File "C:\dev\bin\anaconda\envs\py36\lib\site-packages\pandas\core\computation\expressions.py", line 84, in _can_use_numexpr s = o.dtypes.value_counts() AttributeError: 'numpy.dtype' object has no attribute 'value_counts'
12,925
pandas-dev/pandas
pandas-dev__pandas-27777
61819aba14dd7b3996336aaed84d07cd936d92b5
diff --git a/doc/source/whatsnew/v0.25.1.rst b/doc/source/whatsnew/v0.25.1.rst --- a/doc/source/whatsnew/v0.25.1.rst +++ b/doc/source/whatsnew/v0.25.1.rst @@ -103,7 +103,7 @@ MultiIndex I/O ^^^ -- +- Avoid calling ``S3File.s3`` when reading parquet, as this was removed in s3fs version 0.3.0 (:issue:`27756`) - - diff --git a/pandas/io/parquet.py b/pandas/io/parquet.py --- a/pandas/io/parquet.py +++ b/pandas/io/parquet.py @@ -184,12 +184,14 @@ def write( def read(self, path, columns=None, **kwargs): if is_s3_url(path): + from pandas.io.s3 import get_file_and_filesystem + # When path is s3:// an S3File is returned. # We need to retain the original path(str) while also # pass the S3File().open function to fsatparquet impl. - s3, _, _, should_close = get_filepath_or_buffer(path) + s3, filesystem = get_file_and_filesystem(path) try: - parquet_file = self.api.ParquetFile(path, open_with=s3.s3.open) + parquet_file = self.api.ParquetFile(path, open_with=filesystem.open) finally: s3.close() else: diff --git a/pandas/io/s3.py b/pandas/io/s3.py --- a/pandas/io/s3.py +++ b/pandas/io/s3.py @@ -1,8 +1,11 @@ """ s3 support for remote file interactivity """ +from typing import IO, Any, Optional, Tuple from urllib.parse import urlparse as parse_url from pandas.compat._optional import import_optional_dependency +from pandas._typing import FilePathOrBuffer + s3fs = import_optional_dependency( "s3fs", extra="The s3fs package is required to handle s3 files." ) @@ -14,9 +17,9 @@ def _strip_schema(url): return result.netloc + result.path -def get_filepath_or_buffer( - filepath_or_buffer, encoding=None, compression=None, mode=None -): +def get_file_and_filesystem( + filepath_or_buffer: FilePathOrBuffer, mode: Optional[str] = None +) -> Tuple[IO, Any]: from botocore.exceptions import NoCredentialsError if mode is None: @@ -24,7 +27,7 @@ def get_filepath_or_buffer( fs = s3fs.S3FileSystem(anon=False) try: - filepath_or_buffer = fs.open(_strip_schema(filepath_or_buffer), mode) + file = fs.open(_strip_schema(filepath_or_buffer), mode) except (FileNotFoundError, NoCredentialsError): # boto3 has troubles when trying to access a public file # when credentialed... @@ -33,5 +36,15 @@ def get_filepath_or_buffer( # A NoCredentialsError is raised if you don't have creds # for that bucket. fs = s3fs.S3FileSystem(anon=True) - filepath_or_buffer = fs.open(_strip_schema(filepath_or_buffer), mode) - return filepath_or_buffer, None, compression, True + file = fs.open(_strip_schema(filepath_or_buffer), mode) + return file, fs + + +def get_filepath_or_buffer( + filepath_or_buffer: FilePathOrBuffer, + encoding: Optional[str] = None, + compression: Optional[str] = None, + mode: Optional[str] = None, +) -> Tuple[IO, Optional[str], Optional[str], bool]: + file, _fs = get_file_and_filesystem(filepath_or_buffer, mode=mode) + return file, None, compression, True
Error reading parquet from s3 with s3fs >= 0.3.0 #### Code Sample, a copy-pastable example if possible ```python import pandas as pd df = pd.read_parquet('s3://my-bucket/df.parquet') ``` Raises ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/.../pandas/io/parquet.py", line 294, in read_parquet return impl.read(path, columns=columns, **kwargs) File "/.../pandas/io/parquet.py", line 192, in read parquet_file = self.api.ParquetFile(path, open_with=s3.s3.open) AttributeError: 'S3File' object has no attribute 's3' ``` #### Problem description In version 0.3.0 s3fs removed the `S3File.s3` attribute. It is replaced by `S3File.fs` (which is inherited from `fsspec.AbstractBufferedFile.fs`. Should pandas check the s3fs version and call the right attribute based on that? #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit : None python : 3.7.3.final.0 python-bits : 64 OS : Darwin OS-release : 18.6.0 machine : x86_64 processor : i386 byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 pandas : 0.25.0 numpy : 1.17.0 pytz : 2019.1 dateutil : 2.8.0 pip : 19.2.1 setuptools : 41.0.1 Cython : None pytest : 4.4.1 hypothesis : None sphinx : 2.1.2 blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : None psycopg2 : 2.8.3 (dt dec pq3 ext lo64) jinja2 : 2.10.1 IPython : None pandas_datareader: None bs4 : None bottleneck : None fastparquet : 0.3.1 gcsfs : None lxml.etree : None matplotlib : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None pyarrow : None pytables : None s3fs : 0.3.1 scipy : 1.3.0 sqlalchemy : 1.3.5 tables : None xarray : None xlrd : None xlwt : None xlsxwriter : None </details>
> Should pandas check the s3fs version and call the right attribute based on that? Sure. cc @martindurant for the (possibly unintentional) API change. So the `open_with` in https://github.com/pandas-dev/pandas/blob/61362be9ea4d69b33ae421f1f98b8db50be611a2/pandas/io/parquet.py#L192 will need to depend on the version of s3fs. Indeed this is an API change. However, I am surprised that anyone is opening a file and then using the FS methods of the attribute of that file - you presumably have the FS available directly anyway at this point. Indeed, rather than test specifically for s3 URLs, I would strongly encourage pandas to use fsspec directly, so that then you can read from any of the implementations supported by fsspec. Perhaps there should be a function returning both the file and the filesystem, which can be used here instead of `get_filepath_or_buffer`. That would avoid `S3File.s3`/`S3File.fs`. If that sounds like a reasonable direction I will work on a PR. I'm not sure what's best. On Mon, Aug 5, 2019 at 9:58 AM Chris Stadler <notifications@github.com> wrote: > Perhaps there should be a function returning both the file and the > filesystem, which can be used here instead of get_filepath_or_buffer. > That would avoid S3File.s3/S3File.fs. > > If that sounds like a reasonable direction I will work on a PR. > > — > You are receiving this because you commented. > Reply to this email directly, view it on GitHub > <https://github.com/pandas-dev/pandas/issues/27756?email_source=notifications&email_token=AAKAOIX27VNYLVWZZADDDFTQDA5Z3A5CNFSM4IJLDNJ2YY3PNVWWK3TUL52HS4DFVREXG43VMVBW63LNMVXHJKTDN5WW2ZLOORPWSZGOD3SCWKI#issuecomment-518269737>, > or mute the thread > <https://github.com/notifications/unsubscribe-auth/AAKAOIX6R6HBTG6K5TWDRYLQDA5Z3ANCNFSM4IJLDNJQ> > . > Ran into this issue today; just made a local, hacky in-vivo fix to the API break. Happy to help in any way to fix the issue properly. Cheers. For the sake of compatibility, I can make S3File.s3 -> S3File.fs alias, if that makes life easier.
2019-08-06T12:48:03Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/.../pandas/io/parquet.py", line 294, in read_parquet return impl.read(path, columns=columns, **kwargs) File "/.../pandas/io/parquet.py", line 192, in read parquet_file = self.api.ParquetFile(path, open_with=s3.s3.open) AttributeError: 'S3File' object has no attribute 's3'
12,926
pandas-dev/pandas
pandas-dev__pandas-27788
54e58039fddc79492e598e85279c42e85d06967c
DataFrame.groupby(grp, axis=1) with categorical grp breaks While attempting to use `pd.qcut` (which returned a Categorical) to bin some data in groups for plotting, I encountered the following error. The idea is to group a DataFrame by columns (`axis=1`) using a Categorical. #### Minimal breaking example ``` >>> import pandas >>> df = pandas.DataFrame({'a':[1,2,3,4], 'b':[-1,-2,-3,-4], 'c':[5,6,7,8]}) >>> df a b c 0 1 -1 5 1 2 -2 6 2 3 -3 7 3 4 -4 8 >>> grp = pandas.Categorical([1,0,1]) >>> df.groupby(grp, axis=1).mean() Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/ntawolf/anaconda3/lib/python3.5/site-packages/pandas/core/generic.py", line 3778, in groupby **kwargs) File "/home/ntawolf/anaconda3/lib/python3.5/site-packages/pandas/core/groupby.py", line 1427, in groupby return klass(obj, by, **kwds) File "/home/ntawolf/anaconda3/lib/python3.5/site-packages/pandas/core/groupby.py", line 354, in __init__ mutated=self.mutated) File "/home/ntawolf/anaconda3/lib/python3.5/site-packages/pandas/core/groupby.py", line 2390, in _get_grouper raise ValueError("Categorical dtype grouper must " ValueError: Categorical dtype grouper must have len(grouper) == len(data) ``` #### Expected behaviour Same as ``` >>> df.T.groupby(grp, axis=0).mean().T 0 1 0 -1 3 1 -2 4 2 -3 5 3 -4 6 ``` So, it works as expected when doubly transposed. This makes it appear as a bug to me. #### Proposed solution In [`if is_categorical_dtype(gpr) and len(gpr) != len(obj):`](https://github.com/pydata/pandas/blob/master/pandas/core/groupby.py#L2406), change `len(obj)` to `obj.shape[axis]`. This assumes that `len(obj) == obj.shape[0]` for all `obj`. So, supposing you agree that this is a bug, should a test be put in [`test_groupby_categorical`](https://github.com/pydata/pandas/blob/master/pandas/tests/test_groupby.py#L3968)? #### output of `pd.show_versions()` ``` INSTALLED VERSIONS ------------------ commit: None python: 3.5.1.final.0 python-bits: 64 OS: Linux OS-release: 3.19.0-59-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 pandas: 0.18.1 nose: 1.3.7 pip: 8.1.2 setuptools: 22.0.5 Cython: 0.24 numpy: 1.10.4 scipy: 0.17.1 statsmodels: 0.6.1 xarray: None IPython: 4.2.0 sphinx: 1.4.1 patsy: 0.4.1 dateutil: 2.5.3 pytz: 2016.4 blosc: None bottleneck: 1.0.0 tables: 3.2.2 numexpr: 2.5.2 matplotlib: 1.5.1 openpyxl: 2.3.2 xlrd: 1.0.0 xlwt: 1.1.1 xlsxwriter: 0.8.9 lxml: 3.6.0 bs4: 4.4.1 html5lib: None httplib2: None apiclient: None sqlalchemy: 1.0.13 pymysql: None psycopg2: None jinja2: 2.8 boto: 2.40.0 pandas_datareader: None ```
Your grouper is not a valid categorical as it doesn't map anything. Though this still fails. ``` In [30]: grp = pd.Categorical.from_codes([1,0,1],categories=list('abc')) In [31]: grp Out[31]: [b, a, b] Categories (3, object): [a, b, c] In [32]: grp.codes Out[32]: array([1, 0, 1], dtype=int8) ``` So i'd say this is a bug, but need a bit of workout on the tests. That's great! A question for your answer, though: You say that `grp = pd.Categorical([1,0,1])` is > not a valid categorical as it doesn't map anything. What do you mean by this? The counter-example shown above has the categories given explicitly, but the first example (giving only values) should work fine, as [the categories, if not given, are assumed to be the unique values of values.](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Categorical.html#pandas.Categorical). What am I missing? #### Small demo of codes and categories from first example ``` In [4]: grp = pd.Categorical([1,0,1]) In [5]: grp Out[5]: [1, 0, 1] Categories (2, int64): [0, 1] In [6]: grp.codes Out[6]: array([1, 0, 1], dtype=int8) In [7]: grp.categories Out[7]: Int64Index([0, 1], dtype='int64') ``` Thank you for your work! the problem in your example is that nothing maps iow need to map the column names to groups but you are mapping integers - I don't think we error on this but everything gets into the man group and it should return an empty frame I think This is in fact related to grouping by categories. Here is an example: ``` In [1]: import pandas ...: df = pandas.DataFrame({'A': ["pos", "neg", "pos"], 'B': [1, -1, 2]}) ...: df.A = df.A.astype("category") ...: df Out[1]: A B 0 pos 1 1 neg -1 2 pos 2 In [2]: grp = df.A[1:] # Same indexing, different lengths In [4]: df.groupby(grp).mean() # Categorical + different length = bug ~/Library/Python/3.6/lib/python/site-packages/pandas/core/groupby.py in _get_grouper(obj, key, axis, level, sort, mutated) 2624 2625 if is_categorical_dtype(gpr) and len(gpr) != len(obj): -> 2626 raise ValueError("Categorical dtype grouper must " 2627 "have len(grouper) == len(data)") 2628 ValueError: Categorical dtype grouper must have len(grouper) == len(data) In [5]: df.groupby(grp.astype(str)).mean() # Convert to string to avoid the buggy check Out[5]: B A neg -1 pos 2 ```
2019-08-06T20:05:29Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/ntawolf/anaconda3/lib/python3.5/site-packages/pandas/core/generic.py", line 3778, in groupby **kwargs) File "/home/ntawolf/anaconda3/lib/python3.5/site-packages/pandas/core/groupby.py", line 1427, in groupby return klass(obj, by, **kwds) File "/home/ntawolf/anaconda3/lib/python3.5/site-packages/pandas/core/groupby.py", line 354, in __init__ mutated=self.mutated) File "/home/ntawolf/anaconda3/lib/python3.5/site-packages/pandas/core/groupby.py", line 2390, in _get_grouper raise ValueError("Categorical dtype grouper must " ValueError: Categorical dtype grouper must have len(grouper) == len(data)
12,929
pandas-dev/pandas
pandas-dev__pandas-27814
8f6118c6a1547ffd39d9b89df1b8e52128b63aa0
diff --git a/doc/source/whatsnew/v0.25.1.rst b/doc/source/whatsnew/v0.25.1.rst --- a/doc/source/whatsnew/v0.25.1.rst +++ b/doc/source/whatsnew/v0.25.1.rst @@ -108,6 +108,7 @@ Other ^^^^^ - Bug in :meth:`Series.replace` and :meth:`DataFrame.replace` when replacing timezone-aware timestamps using a dict-like replacer (:issue:`27720`) +- Bug in :meth:`Series.rename` when using a custom type indexer. Now any value that isn't callable or dict-like is treated as a scalar. (:issue:`27814`) .. _whatsnew_0.251.contributors: diff --git a/pandas/core/series.py b/pandas/core/series.py --- a/pandas/core/series.py +++ b/pandas/core/series.py @@ -4165,12 +4165,10 @@ def rename(self, index=None, **kwargs): """ kwargs["inplace"] = validate_bool_kwarg(kwargs.get("inplace", False), "inplace") - non_mapping = is_scalar(index) or ( - is_list_like(index) and not is_dict_like(index) - ) - if non_mapping: + if callable(index) or is_dict_like(index): + return super().rename(index=index, **kwargs) + else: return self._set_name(index, inplace=kwargs.get("inplace")) - return super().rename(index=index, **kwargs) @Substitution(**_shared_doc_kwargs) @Appender(generic.NDFrame.reindex.__doc__)
BUG: Series.rename raises error on values accepted by Series constructor. #### Sample ```python import pandas as pd class MyIndexer: pass i1 = MyIndexer() s = pd.Series([1, 2, 3], name=i1) # allowed s.rename(i1) # raises error ``` The error stack trace is the following: ```python Traceback (most recent call last): File "test.py", line 8, in <module> s.rename(i1) # raises error File "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py", line 3736, in rename return super(Series, self).rename(index=index, **kwargs) File "/usr/local/lib/python3.6/dist-packages/pandas/core/generic.py", line 1091, in rename level=level) File "/usr/local/lib/python3.6/dist-packages/pandas/core/internals/managers.py", line 171, in rename_axis obj.set_axis(axis, _transform_index(self.axes[axis], mapper, level)) File "/usr/local/lib/python3.6/dist-packages/pandas/core/internals/managers.py", line 2004, in _transform_index items = [func(x) for x in index] File "/usr/local/lib/python3.6/dist-packages/pandas/core/internals/managers.py", line 2004, in <listcomp> items = [func(x) for x in index] TypeError: 'MyIndexer' object is not callable ``` #### Description Series.rename handle anything that isn't a scalar or list-like as a mapping. #### Proposed change Change the following code (from Series.rename): ```python non_mapping = is_scalar(index) or (is_list_like(index) and not is_dict_like(index)) if non_mapping: return self._set_name(index, inplace=kwargs.get("inplace")) return super().rename(index=index, **kwargs) ``` to ```python if callable(index) or is_dict_like(index): return super().rename(index=index, **kwargs) else: return self._set_name(index, inplace=kwargs.get("inplace")) ```` so anything that isn't a dict or a callable will be treated the same way as a scalar or list-like. #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit: None python: 3.6.8.final.0 python-bits: 64 OS: Linux OS-release: 4.15.0-55-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: pt_BR.UTF-8 pandas: 0.24.2 pytest: 3.6.0 pip: 19.1.1 setuptools: 41.0.0 Cython: 0.26.1 numpy: 1.16.4 scipy: 1.3.0 pyarrow: None xarray: None IPython: 6.4.0 sphinx: None patsy: 0.5.1 dateutil: 2.7.3 pytz: 2018.4 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: 3.1.1 openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml.etree: 4.2.1 bs4: 4.6.0 html5lib: 0.999999999 sqlalchemy: None pymysql: None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None gcsfs: None </details>
2019-08-08T02:04:10Z
[]
[]
Traceback (most recent call last): File "test.py", line 8, in <module> s.rename(i1) # raises error File "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py", line 3736, in rename return super(Series, self).rename(index=index, **kwargs) File "/usr/local/lib/python3.6/dist-packages/pandas/core/generic.py", line 1091, in rename level=level) File "/usr/local/lib/python3.6/dist-packages/pandas/core/internals/managers.py", line 171, in rename_axis obj.set_axis(axis, _transform_index(self.axes[axis], mapper, level)) File "/usr/local/lib/python3.6/dist-packages/pandas/core/internals/managers.py", line 2004, in _transform_index items = [func(x) for x in index] File "/usr/local/lib/python3.6/dist-packages/pandas/core/internals/managers.py", line 2004, in <listcomp> items = [func(x) for x in index] TypeError: 'MyIndexer' object is not callable
12,934
pandas-dev/pandas
pandas-dev__pandas-27827
69c58da27cb61a81a94cc3a5da3a2c1870b4e693
diff --git a/doc/source/whatsnew/v0.25.1.rst b/doc/source/whatsnew/v0.25.1.rst --- a/doc/source/whatsnew/v0.25.1.rst +++ b/doc/source/whatsnew/v0.25.1.rst @@ -117,6 +117,7 @@ Plotting Groupby/resample/rolling ^^^^^^^^^^^^^^^^^^^^^^^^ +- Fixed regression in :meth:`pands.core.groupby.DataFrameGroupBy.quantile` raising when multiple quantiles are given (:issue:`27526`) - Bug in :meth:`pandas.core.groupby.DataFrameGroupBy.transform` where applying a timezone conversion lambda function would drop timezone information (:issue:`27496`) - Bug in windowing over read-only arrays (:issue:`27766`) - Fixed segfault in `pandas.core.groupby.DataFrameGroupBy.quantile` when an invalid quantile was passed (:issue:`27470`) diff --git a/pandas/core/groupby/groupby.py b/pandas/core/groupby/groupby.py --- a/pandas/core/groupby/groupby.py +++ b/pandas/core/groupby/groupby.py @@ -1870,6 +1870,7 @@ def quantile(self, q=0.5, interpolation="linear"): a 2.0 b 3.0 """ + from pandas import concat def pre_processor(vals: np.ndarray) -> Tuple[np.ndarray, Optional[Type]]: if is_object_dtype(vals): @@ -1897,18 +1898,57 @@ def post_processor(vals: np.ndarray, inference: Optional[Type]) -> np.ndarray: return vals - return self._get_cythonized_result( - "group_quantile", - self.grouper, - aggregate=True, - needs_values=True, - needs_mask=True, - cython_dtype=np.float64, - pre_processing=pre_processor, - post_processing=post_processor, - q=q, - interpolation=interpolation, - ) + if is_scalar(q): + return self._get_cythonized_result( + "group_quantile", + self.grouper, + aggregate=True, + needs_values=True, + needs_mask=True, + cython_dtype=np.float64, + pre_processing=pre_processor, + post_processing=post_processor, + q=q, + interpolation=interpolation, + ) + else: + results = [ + self._get_cythonized_result( + "group_quantile", + self.grouper, + aggregate=True, + needs_values=True, + needs_mask=True, + cython_dtype=np.float64, + pre_processing=pre_processor, + post_processing=post_processor, + q=qi, + interpolation=interpolation, + ) + for qi in q + ] + result = concat(results, axis=0, keys=q) + # fix levels to place quantiles on the inside + # TODO(GH-10710): Ideally, we could write this as + # >>> result.stack(0).loc[pd.IndexSlice[:, ..., q], :] + # but this hits https://github.com/pandas-dev/pandas/issues/10710 + # which doesn't reorder the list-like `q` on the inner level. + order = np.roll(list(range(result.index.nlevels)), -1) + result = result.reorder_levels(order) + result = result.reindex(q, level=-1) + + # fix order. + hi = len(q) * self.ngroups + arr = np.arange(0, hi, self.ngroups) + arrays = [] + + for i in range(self.ngroups): + arr = arr + i + arrays.append(arr) + + indices = np.concatenate(arrays) + assert len(indices) == len(result) + return result.take(indices) @Substitution(name="groupby") def ngroup(self, ascending=True):
Groupby Array-Type Quantiles Broken in 0.25.0 #### Code Sample ```python import pandas as pd df = pd.DataFrame({ 'category': ['A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B'], 'value': [1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6] }) quantiles = df.groupby('category').quantile([0.25, 0.5, 0.75]) print(quantiles) ``` #### Problem description In previous versions of Pandas `< 0.25.0` and in the documentation it is possible to pass an array-type of quantiles into the `DataFrameGroupBy.quantile()` method to return multiple quantile values in a single call. However, upon installation of `0.25.0` the following error results instead: ``` Traceback (most recent call last): File "example.py", line 8, in <module> quantiles = df.groupby('category').quantile([0.25, 0.5, 0.75]) File "/usr/local/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 1908, in quantile interpolation=interpolation, File "/usr/local/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 2248, in _get_cythonized_result func(**kwargs) # Call func to modify indexer values in place File "pandas/_libs/groupby.pyx", line 69 ``` #### Expected Output Using Pandas `0.24.2` the output is: ``` value category A 0.25 2.25 0.50 3.50 0.75 4.75 B 0.25 2.25 0.50 3.50 0.75 4.75 ``` #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit : None python : 3.7.4.final.0 python-bits : 64 OS : Linux OS-release : 4.9.125-linuxkit machine : x86_64 processor : byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 pandas : 0.25.0 numpy : 1.16.4 pytz : 2019.1 dateutil : 2.8.0 pip : 19.1.1 setuptools : 41.0.1 Cython : None pytest : 5.0.1 hypothesis : None sphinx : 2.1.2 blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : None psycopg2 : None jinja2 : 2.10.1 IPython : None pandas_datareader: None bs4 : 4.8.0 bottleneck : None fastparquet : None gcsfs : None lxml.etree : None matplotlib : 3.1.1 numexpr : 2.6.9 odfpy : None openpyxl : None pandas_gbq : None pyarrow : None pytables : None s3fs : 0.3.0 scipy : 1.3.0 sqlalchemy : None tables : 3.5.2 xarray : None xlrd : None xlwt : None xlsxwriter : None </details>
I got this error message when using a numpy array (form np.linspace()): TypeError: only size-1 arrays can be converted to Python scalars Downgrade to pandas 0.24 solves this. my test code (snipplet): percs = (np.linspace(0, 1, num=intervals + 1).round(decimals=3)) d = df[['x', 'y']] g = d.groupby('x') quants = g.quantile(percs) breaks in last line with 0.25, works in 0.24 there is a PR #27473 which solves this and just needs some touching up to fix That PR was about #20405 not validating inputs. This issue is about #20405 deleting functionality so different bugs. Is the fix to change https://github.com/pandas-dev/pandas/blob/c0ff67a22df9c18da1172766e313732ed2ab6c30/pandas/core/groupby/groupby.py#L1900-L1911 to be called once per value in `q`, when a list of quintiles is provide? Then concat the results together with `concat(results, axis=1, keys=q)`? The output of `DataFrameGroupBy.quantile` is a DataFrame whose * index is the group keys * columns are the (numeric) columns ```python In [68]: df = pd.DataFrame({"A": [0, 1, 2, 3, 4]}) In [69]: df.groupby([0, 0, 1, 1, 1]).quantile(0.25) Out[69]: A 0 0.25 ``` What's the expected output of `.quantile(List[float])`? It's not the most useful, but I think the best option is a MultiIndex in the columns. ```python In [70]: a = df.iloc[:2].quantile([0.25]).unstack() In [71]: b = df.iloc[2:].quantile([0.25]).unstack() In [72]: pd.concat([a, b], keys=[0, 1]).unstack([1, 2]) Out[72]: A 0.25 0 0.25 1 2.50 ``` The other option is to have the `q`s in the index, but that breaks my mental model that the index should be the unique group keys. Oh, whoops, I missed the 0.24 output. We'll match that.
2019-08-08T20:36:24Z
[]
[]
Traceback (most recent call last): File "example.py", line 8, in <module> quantiles = df.groupby('category').quantile([0.25, 0.5, 0.75]) File "/usr/local/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 1908, in quantile interpolation=interpolation, File "/usr/local/lib/python3.7/site-packages/pandas/core/groupby/groupby.py", line 2248, in _get_cythonized_result func(**kwargs) # Call func to modify indexer values in place File "pandas/_libs/groupby.pyx", line 69 ``` #### Expected Output Using Pandas `0.24.2` the output is:
12,937
pandas-dev/pandas
pandas-dev__pandas-27926
6813d7796e759435e915f3dda84ad9db81ebbadb
diff --git a/doc/source/whatsnew/v0.25.1.rst b/doc/source/whatsnew/v0.25.1.rst --- a/doc/source/whatsnew/v0.25.1.rst +++ b/doc/source/whatsnew/v0.25.1.rst @@ -85,6 +85,7 @@ Indexing - Bug in partial-string indexing returning a NumPy array rather than a ``Series`` when indexing with a scalar like ``.loc['2015']`` (:issue:`27516`) - Break reference cycle involving :class:`Index` to allow garbage collection of :class:`Index` objects without running the GC. (:issue:`27585`) - Fix regression in assigning values to a single column of a DataFrame with a ``MultiIndex`` columns (:issue:`27841`). +- Fix regression in ``.ix`` fallback with an ``IntervalIndex`` (:issue:`27865`). - Missing diff --git a/pandas/core/indexing.py b/pandas/core/indexing.py --- a/pandas/core/indexing.py +++ b/pandas/core/indexing.py @@ -124,7 +124,7 @@ def __getitem__(self, key): key = tuple(com.apply_if_callable(x, self.obj) for x in key) try: values = self.obj._get_value(*key) - except (KeyError, TypeError, InvalidIndexError): + except (KeyError, TypeError, InvalidIndexError, AttributeError): # TypeError occurs here if the key has non-hashable entries, # generally slice or list. # TODO(ix): most/all of the TypeError cases here are for ix, @@ -132,6 +132,9 @@ def __getitem__(self, key): # The InvalidIndexError is only catched for compatibility # with geopandas, see # https://github.com/pandas-dev/pandas/issues/27258 + # TODO: The AttributeError is for IntervalIndex which + # incorrectly implements get_value, see + # https://github.com/pandas-dev/pandas/issues/27865 pass else: if is_scalar(values):
Cannot use .ix in IntervaIndex('pandas._libs.interval.IntervalTree' object has no attribute 'get_value') #### Code Sample, a copy-pastable example if possible ```python x = pd.Series([-2.801298, -2.882724, -3.007899, -2.704554, -3.398761, -2.805034, -2.87554, -2.805034, -2.886459, -2.471618]) y= pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) init_cut = pd.qcut(x, 5, duplicates='drop') retbin = pd.Series(init_cut.values.categories).sort_values() retbin.iloc[0] = pd.Interval(-np.inf, retbin.iloc[0].right) retbin.iloc[-1] = pd.Interval(retbin.iloc[-1].left, np.inf) init_cut = pd.cut(x, pd.IntervalIndex(retbin)) init_cut = init_cut.astype(object) bin_df = pd.crosstab(index=init_cut, columns=y) bin_df = bin_df.reindex(retbin) bin_df = bin_df.sort_index() bin_df = bin_df.fillna(0.0) bin_df['nbin'] = np.nan ``` #### Problem description bin_df = col_0 0 nbin (-inf, -2.911] 2 NaN (-2.911, -2.878] 2 NaN (-2.878, -2.805] 3 NaN (-2.805, -2.782] 1 NaN (-2.782, inf] 2 NaN if I use bin_df.ix[0:2,0], I got an error like: ```pytb Traceback (most recent call last): File "D:\anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 2961, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-12-1ae8ba69565c>", line 1, in <module> bin_df.ix[0:1,'nbin'] File "D:\PyTest\venv\lib\site-packages\pandas\core\indexing.py", line 125, in __getitem__ values = self.obj._get_value(*key) File "D:\PyTest\venv\lib\site-packages\pandas\core\frame.py", line 2827, in _get_value return engine.get_value(series._values, index) AttributeError: 'pandas._libs.interval.IntervalTree' object has no attribute 'get_value' ``` the version is 0.25.0 but it works well in 0.24.x #### Expected Output #### Output of ``pd.show_versions()`` <details> [paste the output of ``pd.show_versions()`` here below this line] </details>
In fact I've got another problem beside, I cannot use: init_cut = init_cut.astype(pd.Interval) I've got another error: Traceback (most recent call last): File "D:\anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 2961, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-14-614614131098>", line 1, in <module> init_cut.astype(pd.Interval) File "D:\PyTest\venv\lib\site-packages\pandas\core\generic.py", line 5883, in astype dtype=dtype, copy=copy, errors=errors, **kwargs File "D:\PyTest\venv\lib\site-packages\pandas\core\internals\managers.py", line 581, in astype return self.apply("astype", dtype=dtype, **kwargs) File "D:\PyTest\venv\lib\site-packages\pandas\core\internals\managers.py", line 438, in apply applied = getattr(b, f)(**kwargs) File "D:\PyTest\venv\lib\site-packages\pandas\core\internals\blocks.py", line 557, in astype return self._astype(dtype, copy=copy, errors=errors, values=values, **kwargs) File "D:\PyTest\venv\lib\site-packages\pandas\core\internals\blocks.py", line 612, in _astype dtype = pandas_dtype(dtype) File "D:\PyTest\venv\lib\site-packages\pandas\core\dtypes\common.py", line 2067, in pandas_dtype raise TypeError("dtype '{}' not understood".format(dtype)) TypeError: dtype '<class 'pandas._libs.interval.Interval'>' not understood which is ok in version 0.23.4 but error in version 0.24.x and later version Any can help me....
2019-08-15T06:54:38Z
[]
[]
Traceback (most recent call last): File "D:\anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 2961, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-12-1ae8ba69565c>", line 1, in <module> bin_df.ix[0:1,'nbin'] File "D:\PyTest\venv\lib\site-packages\pandas\core\indexing.py", line 125, in __getitem__ values = self.obj._get_value(*key) File "D:\PyTest\venv\lib\site-packages\pandas\core\frame.py", line 2827, in _get_value return engine.get_value(series._values, index) AttributeError: 'pandas._libs.interval.IntervalTree' object has no attribute 'get_value'
12,955
pandas-dev/pandas
pandas-dev__pandas-28131
5c0da7dd4034427745038381e8e2b77ac8c59d08
diff --git a/doc/source/whatsnew/v1.0.0.rst b/doc/source/whatsnew/v1.0.0.rst --- a/doc/source/whatsnew/v1.0.0.rst +++ b/doc/source/whatsnew/v1.0.0.rst @@ -140,7 +140,7 @@ Interval Indexing ^^^^^^^^ -- +- Bug in assignment using a reverse slicer (:issue:`26939`) - Missing diff --git a/pandas/core/indexers.py b/pandas/core/indexers.py --- a/pandas/core/indexers.py +++ b/pandas/core/indexers.py @@ -226,6 +226,7 @@ def length_of_indexer(indexer, target=None) -> int: if step is None: step = 1 elif step < 0: + start, stop = stop + 1, start + 1 step = -step return (stop - start + step - 1) // step elif isinstance(indexer, (ABCSeries, ABCIndexClass, np.ndarray, list)):
BUG: cannot set Series with reverse slicer Minimal example: ``` >>> import pandas as pd >>> s = pd.Series(index=range(2010, 2020)) >>> s.loc[2015:2010:-1] = [6, 5, 4, 3, 2, 1] Traceback (most recent call last): [...] ValueError: cannot set using a slice indexer with a different length than the value ``` I see no reason why this shouldn't work, as setting with the forward slicer works without problems, and *getting* with the reverse slicer also works without issue: ``` >>> # turn list around because slicer is (not) reversed compared to above >>> s.loc[2010:2015] = [6, 5, 4, 3, 2, 1][::-1] >>> s 2010 1.0 2011 2.0 2012 3.0 2013 4.0 2014 5.0 2015 6.0 2016 NaN 2017 NaN 2018 NaN 2019 NaN dtype: float64 >>> s.loc[2015:2010:-1] == [6, 5, 4, 3, 2, 1] # comparison, not assignment 2015 True 2014 True 2013 True 2012 True 2011 True 2010 True dtype: bool ``` PS: For the failure, it does not matter if the RHS is a np.array, etc.
can I try it? Sure, thanks. On Thu, Aug 15, 2019 at 10:17 PM kmin-jeong <notifications@github.com> wrote: > can I try it? > > — > You are receiving this because you are subscribed to this thread. > Reply to this email directly, view it on GitHub > <https://github.com/pandas-dev/pandas/issues/26939?email_source=notifications&email_token=AAKAOIVUYC6UPJGLYUEX65LQEYL3LA5CNFSM4HZIJBZKYY3PNVWWK3TUL52HS4DFVREXG43VMVBW63LNMVXHJKTDN5WW2ZLOORPWSZGOD4NRRUA#issuecomment-521869520>, > or mute the thread > <https://github.com/notifications/unsubscribe-auth/AAKAOIS7VDSD6W53V2S2X43QEYL3LANCNFSM4HZIJBZA> > . >
2019-08-25T03:07:38Z
[]
[]
Traceback (most recent call last): [...] ValueError: cannot set using a slice indexer with a different length than the value
12,983
pandas-dev/pandas
pandas-dev__pandas-28412
0ab32e88481440bfb4a102bb7731cbde2e5ceafe
diff --git a/doc/source/whatsnew/v1.0.0.rst b/doc/source/whatsnew/v1.0.0.rst --- a/doc/source/whatsnew/v1.0.0.rst +++ b/doc/source/whatsnew/v1.0.0.rst @@ -234,7 +234,7 @@ Other - Trying to set the ``display.precision``, ``display.max_rows`` or ``display.max_columns`` using :meth:`set_option` to anything but a ``None`` or a positive int will raise a ``ValueError`` (:issue:`23348`) - Using :meth:`DataFrame.replace` with overlapping keys in a nested dictionary will no longer raise, now matching the behavior of a flat dictionary (:issue:`27660`) - :meth:`DataFrame.to_csv` and :meth:`Series.to_csv` now support dicts as ``compression`` argument with key ``'method'`` being the compression method and others as additional compression options when the compression method is ``'zip'``. (:issue:`26023`) -- +- :meth:`Series.append` will no longer raise a ``TypeError`` when passed a tuple of ``Series`` (:issue:`28410`) .. _whatsnew_1000.contributors: diff --git a/pandas/core/series.py b/pandas/core/series.py --- a/pandas/core/series.py +++ b/pandas/core/series.py @@ -2730,7 +2730,8 @@ def append(self, to_append, ignore_index=False, verify_integrity=False): from pandas.core.reshape.concat import concat if isinstance(to_append, (list, tuple)): - to_concat = [self] + to_append + to_concat = [self] + to_concat.extend(to_append) else: to_concat = [self, to_append] return concat(
Series.append raises TypeError with tuple of Series mypy error: ``` pandas\core\series.py:2733:25: error: Unsupported operand types for + ("List[Any]" and "Tuple[Any, ...]") pandas\core\series.py:2733:25: note: Right operand is of type "Union[List[Any], Tuple[Any, ...]]" ``` #### Code Sample, a copy-pastable example if possible ```python >>> import pandas as pd >>> pd.__version__ '0.25.0+332.g261c3a667' >>> >>> ser = pd.Series([1,2,3]) >>> >>> ser 0 1 1 2 2 3 dtype: int64 >>> >>> ser.append(ser) 0 1 1 2 2 3 0 1 1 2 2 3 dtype: int64 >>> >>> ser.append([ser,ser]) 0 1 1 2 2 3 0 1 1 2 2 3 0 1 1 2 2 3 dtype: int64 >>> >>> ser.append((ser,ser)) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\simon\OneDrive\code\pandas-simonjayhawkins\pandas\core\series.py", line 2733, in append to_concat = [self] + to_append TypeError: can only concatenate list (not "tuple") to list ``` #### Problem description The docstring for Series.append states `to_append : Series or list/tuple of Series`. Appending a tuple of Series raises `TypeError: can only concatenate list (not "tuple") to list`
2019-09-12T14:41:37Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\simon\OneDrive\code\pandas-simonjayhawkins\pandas\core\series.py", line 2733, in append to_concat = [self] + to_append TypeError: can only concatenate list (not "tuple") to list
13,019