The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

Dataset Card for "COCO Captions"

Quick Start

Usage

>>> from datasets.load import load_dataset

>>> dataset = load_dataset('whyen-wang/coco_captions')
>>> example = dataset['train'][500]
>>> print(example)
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x426>,
 'captions': ['A plate that has food on top of it with powdered sugar.',
  'A breakfast item on a plate is sitting on a table.',
  'different kinds of food on a glass plate',
  'a bowl with some pancakes and toppings on it',
  'Pancakes on a plate with banana, sauce and whipped cream toppings']}

Visualization

>>> import cv2
>>> import numpy as np
>>> from PIL import Image

>>> def visualize(example):
    for caption in example['captions']:
        print(caption)
    image = np.array(example['image'])
    return image

>>> Image.fromarray(example)

Dataset Summary

COCO is a large-scale object detection, segmentation, and captioning dataset.

Supported Tasks and Leaderboards

Image to Text

Languages

en

Dataset Structure

Data Instances

An example looks as follows.

{
    "image": PIL.Image(mode="RGB"),
    "captions": [
        "Closeup of bins of food that include broccoli and bread.",
        "A meal is presented in brightly colored plastic trays.",
        "there are containers filled with different kinds of foods",
        "Colorful dishes holding meat, vegetables, fruit, and bread.",
        "A bunch of trays that have different food."
    ]
}

Data Fields

[More Information Needed]

Data Splits

name train validation
default 118,287 5,000

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

Creative Commons Attribution 4.0 License

Citation Information

@article{cocodataset,
  author    = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and Lubomir D. Bourdev and Ross B. Girshick and James Hays and Pietro Perona and Deva Ramanan and Piotr Doll{'{a} }r and C. Lawrence Zitnick},
  title     = {Microsoft {COCO:} Common Objects in Context},
  journal   = {CoRR},
  volume    = {abs/1405.0312},
  year      = {2014},
  url       = {http://arxiv.org/abs/1405.0312},
  archivePrefix = {arXiv},
  eprint    = {1405.0312},
  timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Contributions

Thanks to @github-whyen-wang for adding this dataset.

Downloads last month
47