The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 2 new columns ({' x4', ' x3'}) This happened while the csv dataset builder was generating data using hf://datasets/williamgilpin/dysts/coarse/ArnoldWeb_coarse.csv (at revision 5d305abb3c9010e36ca6a3e6c967b72932f6cca9) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast time: double x0: double x1: double x2: double x3: double x4: double -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 905 to {'time': Value(dtype='float64', id=None), 'x0': Value(dtype='float64', id=None), ' x1': Value(dtype='float64', id=None), ' x2': Value(dtype='float64', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1417, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1049, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 2 new columns ({' x4', ' x3'}) This happened while the csv dataset builder was generating data using hf://datasets/williamgilpin/dysts/coarse/ArnoldWeb_coarse.csv (at revision 5d305abb3c9010e36ca6a3e6c967b72932f6cca9) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
time
float64 | x0
float64 | x1
float64 | x2
float64 |
---|---|---|---|
0 | -0.784502 | -0.628877 | -0.176203 |
1 | -0.708158 | -0.681436 | -0.189307 |
2 | -0.628996 | -0.725622 | -0.201585 |
3 | -0.547893 | -0.761401 | -0.213058 |
4 | -0.465703 | -0.788828 | -0.223747 |
5 | -0.383247 | -0.808037 | -0.233671 |
6 | -0.301308 | -0.819242 | -0.242849 |
7 | -0.220621 | -0.822723 | -0.251298 |
8 | -0.141869 | -0.818824 | -0.259038 |
9 | -0.065683 | -0.807942 | -0.26609 |
10 | 0.007368 | -0.790522 | -0.272476 |
11 | 0.076775 | -0.767048 | -0.278218 |
12 | 0.14209 | -0.738035 | -0.28334 |
13 | 0.20293 | -0.704025 | -0.287866 |
14 | 0.258976 | -0.665576 | -0.291821 |
15 | 0.309968 | -0.623258 | -0.295228 |
16 | 0.355711 | -0.577646 | -0.298109 |
17 | 0.396067 | -0.529313 | -0.300486 |
18 | 0.430956 | -0.478826 | -0.302379 |
19 | 0.460351 | -0.426742 | -0.303804 |
20 | 0.484279 | -0.373599 | -0.304778 |
21 | 0.502812 | -0.319917 | -0.305315 |
22 | 0.516068 | -0.266191 | -0.305428 |
23 | 0.524204 | -0.212892 | -0.305127 |
24 | 0.527416 | -0.160458 | -0.304423 |
25 | 0.525931 | -0.109296 | -0.303324 |
26 | 0.520005 | -0.059781 | -0.301839 |
27 | 0.509919 | -0.012251 | -0.299974 |
28 | 0.495973 | 0.03299 | -0.297738 |
29 | 0.478486 | 0.075675 | -0.295138 |
30 | 0.45779 | 0.115575 | -0.29218 |
31 | 0.434223 | 0.152494 | -0.288872 |
32 | 0.408132 | 0.186276 | -0.285219 |
33 | 0.379866 | 0.216796 | -0.281229 |
34 | 0.349772 | 0.243967 | -0.276908 |
35 | 0.318193 | 0.267732 | -0.272262 |
36 | 0.285468 | 0.288065 | -0.267296 |
37 | 0.251926 | 0.304973 | -0.262014 |
38 | 0.217885 | 0.318486 | -0.256422 |
39 | 0.183649 | 0.328665 | -0.250522 |
40 | 0.14951 | 0.335591 | -0.244318 |
41 | 0.115741 | 0.339369 | -0.237812 |
42 | 0.082599 | 0.340123 | -0.231006 |
43 | 0.050323 | 0.337995 | -0.2239 |
44 | 0.019131 | 0.333142 | -0.216495 |
45 | -0.010778 | 0.325735 | -0.208789 |
46 | -0.039225 | 0.315956 | -0.200783 |
47 | -0.066052 | 0.303997 | -0.192475 |
48 | -0.091122 | 0.290055 | -0.183862 |
49 | -0.114319 | 0.274334 | -0.174943 |
50 | -0.135545 | 0.257042 | -0.165714 |
51 | -0.154726 | 0.238387 | -0.156173 |
52 | -0.171802 | 0.218578 | -0.146315 |
53 | -0.186737 | 0.197821 | -0.136138 |
54 | -0.199511 | 0.17632 | -0.125636 |
55 | -0.210119 | 0.154276 | -0.114806 |
56 | -0.218575 | 0.131882 | -0.103643 |
57 | -0.224907 | 0.109325 | -0.092141 |
58 | -0.229159 | 0.086784 | -0.080295 |
59 | -0.231384 | 0.064431 | -0.0681 |
60 | -0.231652 | 0.042427 | -0.05555 |
61 | -0.230041 | 0.020923 | -0.042638 |
62 | -0.226639 | 0.00006 | -0.029358 |
63 | -0.221543 | -0.020032 | -0.015702 |
64 | -0.214858 | -0.039234 | -0.001665 |
65 | -0.206693 | -0.057438 | 0.012762 |
66 | -0.197167 | -0.07455 | 0.027585 |
67 | -0.186398 | -0.090484 | 0.042812 |
68 | -0.174511 | -0.10517 | 0.058452 |
69 | -0.161632 | -0.118544 | 0.07451 |
70 | -0.147887 | -0.130558 | 0.090996 |
71 | -0.133405 | -0.141173 | 0.107916 |
72 | -0.118313 | -0.150361 | 0.125279 |
73 | -0.102736 | -0.158103 | 0.143091 |
74 | -0.0868 | -0.164392 | 0.16136 |
75 | -0.070625 | -0.169229 | 0.180092 |
76 | -0.054331 | -0.172625 | 0.199294 |
77 | -0.038033 | -0.174597 | 0.218972 |
78 | -0.021841 | -0.175174 | 0.239132 |
79 | -0.005863 | -0.174388 | 0.259779 |
80 | 0.009802 | -0.172281 | 0.280917 |
81 | 0.025056 | -0.168901 | 0.302551 |
82 | 0.039808 | -0.164299 | 0.324682 |
83 | 0.053974 | -0.158534 | 0.347313 |
84 | 0.067474 | -0.151668 | 0.370444 |
85 | 0.080235 | -0.143769 | 0.394076 |
86 | 0.092189 | -0.134907 | 0.418206 |
87 | 0.103274 | -0.125155 | 0.442832 |
88 | 0.113436 | -0.114589 | 0.467948 |
89 | 0.122625 | -0.103289 | 0.493548 |
90 | 0.130797 | -0.091334 | 0.519624 |
91 | 0.137914 | -0.078807 | 0.546166 |
92 | 0.143945 | -0.06579 | 0.57316 |
93 | 0.148863 | -0.052367 | 0.600593 |
94 | 0.152646 | -0.038623 | 0.628446 |
95 | 0.15528 | -0.024643 | 0.6567 |
96 | 0.156753 | -0.01051 | 0.685334 |
97 | 0.157061 | 0.00369 | 0.71432 |
98 | 0.156203 | 0.017874 | 0.743633 |
99 | 0.154183 | 0.031956 | 0.773242 |
Chaotic Time Series Dataset
Multivariate time series from chaotic dynamical systems.
Each multivariate time series is a drawn from one chaotic dynamical system over an extended duration, making this dataset suitable for long-horizon forecasting tasks.
There are 4 million total multivariate observations, grouped into 135 systems and three granularities
The subdirectories
coarse
,medium
, andfine
each contain 135.csv
files, each of which contains a single multivariate time series of length 10,000The number of channels varies depending on the specific dynamical system.
The time series are stationary due to the ergodic property of chaotic systems.
Reference
For more information, or if using this code for published work, please cite the accompanying papers.
William Gilpin. "Chaos as an interpretable benchmark for forecasting and data-driven modelling" Advances in Neural Information Processing Systems (NeurIPS) 2021 https://arxiv.org/abs/2110.05266
William Gilpin. "Model scale versus domain knowledge in statistical forecasting of chaotic systems" Physical Review Research 2023 https://arxiv.org/abs/2303.08011
Code
For executable code, or to simulate new trajectories, please see the dysts repository on GitHub
- Downloads last month
- 164