williamgilpin
commited on
Commit
•
972b142
1
Parent(s):
628060d
Upload a dataloader file
Browse files
dysts.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""Chaotic Dynamical Systems (Dysts) dataset."""
|
15 |
+
from dataclasses import dataclass
|
16 |
+
|
17 |
+
import pandas as pd
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
|
22 |
+
_CITATION = """\
|
23 |
+
@article{gilpin2023model,
|
24 |
+
title={Model scale versus domain knowledge in statistical forecasting of chaotic systems},
|
25 |
+
author={Gilpin, William},
|
26 |
+
journal={Physical Review Research},
|
27 |
+
volume={5},
|
28 |
+
number={4},
|
29 |
+
pages={043252},
|
30 |
+
year={2023},
|
31 |
+
publisher={APS}
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
_DESCRIPTION = """\
|
36 |
+
A collection of long multivariate time series, each of which comes from a chaotic
|
37 |
+
dynamical system. The subdirectories coarse, medium, and fine each contain 135 .csv
|
38 |
+
files, each of which contains a single multivariate time series of length 10,000. The
|
39 |
+
number of channels varies depending on the specific dynamical system.
|
40 |
+
"""
|
41 |
+
|
42 |
+
_HOMEPAGE = "https://github.com/williamgilpin/dysts"
|
43 |
+
|
44 |
+
_LICENSE = "The Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/"
|
45 |
+
|
46 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
47 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
48 |
+
# _URLS = {
|
49 |
+
# "h1": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/Dysts-small/Dystsh1.csv",
|
50 |
+
# "h2": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/Dysts-small/Dystsh2.csv",
|
51 |
+
# "m1": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/Dysts-small/Dystsm1.csv",
|
52 |
+
# "m2": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/Dysts-small/Dystsm2.csv",
|
53 |
+
# }
|
54 |
+
|
55 |
+
@dataclass
|
56 |
+
class DystsBuilderConfig(datasets.BuilderConfig):
|
57 |
+
"""Dysts builder config."""
|
58 |
+
prediction_length: int = 100
|
59 |
+
multivariate: bool = True
|
60 |
+
|
61 |
+
|
62 |
+
class Dysts(datasets.GeneratorBasedBuilder):
|
63 |
+
"""Chaotic Dynamical Systems (Dysts) dataset"""
|
64 |
+
|
65 |
+
VERSION = datasets.Version("1.0.0")
|
66 |
+
|
67 |
+
# You will be able to load one or the other configurations in the following list with
|
68 |
+
# data = datasets.load_dataset('Dysts', 'h1')
|
69 |
+
# data = datasets.load_dataset('Dysts', 'm2')
|
70 |
+
BUILDER_CONFIGS = [
|
71 |
+
DystsBuilderConfig(
|
72 |
+
name="coarse",
|
73 |
+
version=VERSION,
|
74 |
+
description="Time series sampled at a coarse resolution of 10 points per period.",
|
75 |
+
),
|
76 |
+
DystsBuilderConfig(
|
77 |
+
name="medium",
|
78 |
+
version=VERSION,
|
79 |
+
description="Time series sampled at a coarse resolution of 30 points per period.",
|
80 |
+
),
|
81 |
+
DystsBuilderConfig(
|
82 |
+
name="m2",
|
83 |
+
version=VERSION,
|
84 |
+
description="Time series sampled at a coarse resolution of 100 points per period.",
|
85 |
+
),
|
86 |
+
]
|
87 |
+
|
88 |
+
DEFAULT_CONFIG_NAME = "medium"
|
89 |
+
|
90 |
+
def _info(self):
|
91 |
+
if self.config.multivariate:
|
92 |
+
features = datasets.Features(
|
93 |
+
{
|
94 |
+
"start": datasets.Value("Index"),
|
95 |
+
"target": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
|
96 |
+
"feat_static_cat": datasets.Sequence(datasets.Value("uint64")),
|
97 |
+
"item_id": datasets.Value("string"),
|
98 |
+
}
|
99 |
+
)
|
100 |
+
else:
|
101 |
+
features = datasets.Features(
|
102 |
+
{
|
103 |
+
"start": datasets.Value("Index"),
|
104 |
+
"target": datasets.Sequence(datasets.Value("float32")),
|
105 |
+
"feat_static_cat": datasets.Sequence(datasets.Value("uint64")),
|
106 |
+
"feat_dynamic_real": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
|
107 |
+
"item_id": datasets.Value("string"),
|
108 |
+
}
|
109 |
+
)
|
110 |
+
|
111 |
+
return datasets.DatasetInfo(
|
112 |
+
# This is the description that will appear on the datasets page.
|
113 |
+
description=_DESCRIPTION,
|
114 |
+
# This defines the different columns of the dataset and their types
|
115 |
+
features=features, # Here we define them above because they are different between the two configurations
|
116 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
117 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
118 |
+
# supervised_keys=("sentence", "label"),
|
119 |
+
# Homepage of the dataset for documentation
|
120 |
+
homepage=_HOMEPAGE,
|
121 |
+
# License for the dataset if available
|
122 |
+
license=_LICENSE,
|
123 |
+
# Citation for the dataset
|
124 |
+
citation=_CITATION,
|
125 |
+
)
|
126 |
+
|
127 |
+
def _split_generators(self, dl_manager):
|
128 |
+
# urls = _URLS[self.config.name]
|
129 |
+
# filepath = dl_manager.download_and_extract(urls)
|
130 |
+
filepath = ""
|
131 |
+
|
132 |
+
return [
|
133 |
+
datasets.SplitGenerator(
|
134 |
+
name=datasets.Split.TRAIN,
|
135 |
+
# These kwargs will be passed to _generate_examples
|
136 |
+
gen_kwargs={
|
137 |
+
"filepath": filepath,
|
138 |
+
"split": "train",
|
139 |
+
},
|
140 |
+
),
|
141 |
+
datasets.SplitGenerator(
|
142 |
+
name=datasets.Split.TEST,
|
143 |
+
# These kwargs will be passed to _generate_examples
|
144 |
+
gen_kwargs={
|
145 |
+
"filepath": filepath,
|
146 |
+
"split": "test",
|
147 |
+
},
|
148 |
+
),
|
149 |
+
datasets.SplitGenerator(
|
150 |
+
name=datasets.Split.VALIDATION,
|
151 |
+
# These kwargs will be passed to _generate_examples
|
152 |
+
gen_kwargs={
|
153 |
+
"filepath": filepath,
|
154 |
+
"split": "val",
|
155 |
+
},
|
156 |
+
),
|
157 |
+
]
|
158 |
+
|
159 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
160 |
+
def _generate_examples(self, filepath, split):
|
161 |
+
data = pd.read_csv(filepath, parse_dates=True, index_col=0)
|
162 |
+
# data = np.loadtxt(f"./{granularity}/{equation_name}_{granularity}.csv", delimiter=",", skiprows=1)
|
163 |
+
start_date = data.index.min()
|
164 |
+
|
165 |
+
# if self.config.name in ["m1", "m2"]:
|
166 |
+
# factor = 4 # 15-min frequency
|
167 |
+
# else:
|
168 |
+
# factor = 1 # hourly frequency
|
169 |
+
# train_end_index = 12 * 30 * 24 * factor # 1 year
|
170 |
+
train_end_index = 7000
|
171 |
+
|
172 |
+
if split == "val":
|
173 |
+
end_index = train_end_index + 1500
|
174 |
+
else:
|
175 |
+
end_index = train_end_index + 3000
|
176 |
+
|
177 |
+
if self.config.multivariate:
|
178 |
+
if split in ["test", "val"]:
|
179 |
+
# rolling windows of prediction_length for val and test
|
180 |
+
for i, index in enumerate(
|
181 |
+
range(
|
182 |
+
train_end_index,
|
183 |
+
end_index,
|
184 |
+
self.config.prediction_length,
|
185 |
+
)
|
186 |
+
):
|
187 |
+
yield i, {
|
188 |
+
"start": start_date,
|
189 |
+
"target": data[: index + self.config.prediction_length].values.astype("float32").T,
|
190 |
+
"feat_static_cat": [0],
|
191 |
+
"item_id": "0",
|
192 |
+
}
|
193 |
+
else:
|
194 |
+
yield 0, {
|
195 |
+
"start": start_date,
|
196 |
+
"target": data[:train_end_index].values.astype("float32").T,
|
197 |
+
"feat_static_cat": [0],
|
198 |
+
"item_id": "0",
|
199 |
+
}
|
200 |
+
else:
|
201 |
+
if split in ["test", "val"]:
|
202 |
+
# rolling windows of prediction_length for val and test
|
203 |
+
for i, index in enumerate(
|
204 |
+
range(
|
205 |
+
train_end_index,
|
206 |
+
end_index,
|
207 |
+
self.config.prediction_length,
|
208 |
+
)
|
209 |
+
):
|
210 |
+
target = data[: index + self.config.prediction_length].values.astype("float32")
|
211 |
+
feat_dynamic_real = data[: index + self.config.prediction_length].values.T.astype("float32")
|
212 |
+
yield i, {
|
213 |
+
"start": start_date,
|
214 |
+
"target": target,
|
215 |
+
"feat_dynamic_real": feat_dynamic_real,
|
216 |
+
"feat_static_cat": [0],
|
217 |
+
"item_id": "OT",
|
218 |
+
}
|
219 |
+
else:
|
220 |
+
target = data[:train_end_index].values.astype("float32")
|
221 |
+
feat_dynamic_real = data[:train_end_index].values.T.astype("float32")
|
222 |
+
yield 0, {
|
223 |
+
"start": start_date,
|
224 |
+
"target": target,
|
225 |
+
"feat_dynamic_real": feat_dynamic_real,
|
226 |
+
"feat_static_cat": [0],
|
227 |
+
"item_id": "OT",
|
228 |
+
}
|