metadata
dataset_info:
- config_name: default
features:
- name: image
dtype: image
- name: depth
dtype: image
- name: label
dtype: image
splits:
- name: train
num_bytes: 1829417279.14
num_examples: 5285
- name: test
num_bytes: 1747976639.6
num_examples: 5050
download_size: 2452649738
dataset_size: 3577393918.74
- config_name: uint8
features:
- name: image
dtype:
image:
mode: RGB
- name: depth
dtype:
image:
mode: L
- name: label
dtype:
image:
mode: L
splits:
- name: train
num_bytes: 673574397.52
num_examples: 5285
- name: test
num_bytes: 598216510.95
num_examples: 5050
download_size: 916719066
dataset_size: 1271790908.47
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- config_name: uint8
data_files:
- split: train
path: uint8/train-*
- split: test
path: uint8/test-*
SUN RGB-D
Easier version for semantic segmentation.
default
config contains RGB and uint16 version of depth images.
uint8
config contains RGB and uint8 version of depth images, I convert uint16 by divide the pixel values by 255 and save it in new depth image.
Comes from:
SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite (CVPR 2015) (PDF) (Website)