Dataset Viewer
Auto-converted to Parquet
hexsha
string
size
int64
ext
string
lang
string
max_stars_repo_path
string
max_stars_repo_name
string
max_stars_repo_head_hexsha
string
max_stars_repo_licenses
list
max_stars_count
int64
max_stars_repo_stars_event_min_datetime
string
max_stars_repo_stars_event_max_datetime
string
max_issues_repo_path
string
max_issues_repo_name
string
max_issues_repo_head_hexsha
string
max_issues_repo_licenses
list
max_issues_count
int64
max_issues_repo_issues_event_min_datetime
string
max_issues_repo_issues_event_max_datetime
string
max_forks_repo_path
string
max_forks_repo_name
string
max_forks_repo_head_hexsha
string
max_forks_repo_licenses
list
max_forks_count
int64
max_forks_repo_forks_event_min_datetime
string
max_forks_repo_forks_event_max_datetime
string
content
string
avg_line_length
float64
max_line_length
int64
alphanum_fraction
float64
qsc_code_num_words_quality_signal
int64
qsc_code_num_chars_quality_signal
float64
qsc_code_mean_word_length_quality_signal
float64
qsc_code_frac_words_unique_quality_signal
float64
qsc_code_frac_chars_top_2grams_quality_signal
float64
qsc_code_frac_chars_top_3grams_quality_signal
float64
qsc_code_frac_chars_top_4grams_quality_signal
float64
qsc_code_frac_chars_dupe_5grams_quality_signal
float64
qsc_code_frac_chars_dupe_6grams_quality_signal
float64
qsc_code_frac_chars_dupe_7grams_quality_signal
float64
qsc_code_frac_chars_dupe_8grams_quality_signal
float64
qsc_code_frac_chars_dupe_9grams_quality_signal
float64
qsc_code_frac_chars_dupe_10grams_quality_signal
float64
qsc_code_frac_chars_replacement_symbols_quality_signal
float64
qsc_code_frac_chars_digital_quality_signal
float64
qsc_code_frac_chars_whitespace_quality_signal
float64
qsc_code_size_file_byte_quality_signal
float64
qsc_code_num_lines_quality_signal
float64
qsc_code_num_chars_line_max_quality_signal
float64
qsc_code_num_chars_line_mean_quality_signal
float64
qsc_code_frac_chars_alphabet_quality_signal
float64
qsc_code_frac_chars_comments_quality_signal
float64
qsc_code_cate_xml_start_quality_signal
float64
qsc_code_frac_lines_dupe_lines_quality_signal
float64
qsc_code_cate_autogen_quality_signal
float64
qsc_code_frac_lines_long_string_quality_signal
float64
qsc_code_frac_chars_string_length_quality_signal
float64
qsc_code_frac_chars_long_word_length_quality_signal
float64
qsc_code_frac_lines_string_concat_quality_signal
float64
qsc_code_cate_encoded_data_quality_signal
float64
qsc_code_frac_chars_hex_words_quality_signal
float64
qsc_code_frac_lines_prompt_comments_quality_signal
float64
qsc_code_frac_lines_assert_quality_signal
float64
qsc_codepython_cate_ast_quality_signal
float64
qsc_codepython_frac_lines_func_ratio_quality_signal
float64
qsc_codepython_cate_var_zero_quality_signal
bool
qsc_codepython_frac_lines_pass_quality_signal
float64
qsc_codepython_frac_lines_import_quality_signal
float64
qsc_codepython_frac_lines_simplefunc_quality_signal
float64
qsc_codepython_score_lines_no_logic_quality_signal
float64
qsc_codepython_frac_lines_print_quality_signal
float64
qsc_code_num_words
int64
qsc_code_num_chars
int64
qsc_code_mean_word_length
int64
qsc_code_frac_words_unique
null
qsc_code_frac_chars_top_2grams
int64
qsc_code_frac_chars_top_3grams
int64
qsc_code_frac_chars_top_4grams
int64
qsc_code_frac_chars_dupe_5grams
int64
qsc_code_frac_chars_dupe_6grams
int64
qsc_code_frac_chars_dupe_7grams
int64
qsc_code_frac_chars_dupe_8grams
int64
qsc_code_frac_chars_dupe_9grams
int64
qsc_code_frac_chars_dupe_10grams
int64
qsc_code_frac_chars_replacement_symbols
int64
qsc_code_frac_chars_digital
int64
qsc_code_frac_chars_whitespace
int64
qsc_code_size_file_byte
int64
qsc_code_num_lines
int64
qsc_code_num_chars_line_max
int64
qsc_code_num_chars_line_mean
int64
qsc_code_frac_chars_alphabet
int64
qsc_code_frac_chars_comments
int64
qsc_code_cate_xml_start
int64
qsc_code_frac_lines_dupe_lines
int64
qsc_code_cate_autogen
int64
qsc_code_frac_lines_long_string
int64
qsc_code_frac_chars_string_length
int64
qsc_code_frac_chars_long_word_length
int64
qsc_code_frac_lines_string_concat
null
qsc_code_cate_encoded_data
int64
qsc_code_frac_chars_hex_words
int64
qsc_code_frac_lines_prompt_comments
int64
qsc_code_frac_lines_assert
int64
qsc_codepython_cate_ast
int64
qsc_codepython_frac_lines_func_ratio
int64
qsc_codepython_cate_var_zero
int64
qsc_codepython_frac_lines_pass
int64
qsc_codepython_frac_lines_import
int64
qsc_codepython_frac_lines_simplefunc
int64
qsc_codepython_score_lines_no_logic
int64
qsc_codepython_frac_lines_print
int64
effective
string
hits
int64
d99a20277c32bb1e28312f42ab6d732f38323169
241
py
Python
quick_search/admin.py
naman1901/django-quick-search
7b93554ed9fa4721e52372f9fd1a395d94cc04a7
[ "MIT" ]
null
null
null
quick_search/admin.py
naman1901/django-quick-search
7b93554ed9fa4721e52372f9fd1a395d94cc04a7
[ "MIT" ]
2
2020-02-11T23:28:22.000Z
2020-06-05T19:27:40.000Z
quick_search/admin.py
HereWithoutPermission/django-quick-search
7b93554ed9fa4721e52372f9fd1a395d94cc04a7
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import SearchResult # Register your models here. class SearchResultAdmin(admin.ModelAdmin): fields = ["query", "heading", "url", "text"] admin.site.register(SearchResult, SearchResultAdmin)
30.125
52
0.771784
27
241
6.888889
0.703704
0
0
0
0
0
0
0
0
0
0
0
0.116183
241
8
52
30.125
0.873239
0.107884
0
0
0
0
0.088785
0
0
0
0
0
0
1
0
false
0
0.4
0
0.8
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
0
0
0
3
d9a88e74a4ac032ae6e8218d9ec1ed42e6092d32
375
py
Python
app/views/web/homestack.py
geudrik/hautomation
0baae29e85cd68658a0f8578de2e36e42945053f
[ "MIT" ]
null
null
null
app/views/web/homestack.py
geudrik/hautomation
0baae29e85cd68658a0f8578de2e36e42945053f
[ "MIT" ]
null
null
null
app/views/web/homestack.py
geudrik/hautomation
0baae29e85cd68658a0f8578de2e36e42945053f
[ "MIT" ]
null
null
null
#! /usr/bin/env python2.7 # -*- coding: latin-1 -*- from flask import Blueprint from flask import current_app from flask import render_template from flask_login import login_required homestack = Blueprint("homestack", __name__, url_prefix="/homestack") @homestack.route("/", methods=["GET"]) @login_required def home(): return render_template("homestack/home.html")
22.058824
69
0.749333
49
375
5.510204
0.591837
0.133333
0.166667
0
0
0
0
0
0
0
0
0.009091
0.12
375
16
70
23.4375
0.809091
0.128
0
0
0
0
0.129231
0
0
0
0
0
0
1
0.111111
false
0
0.444444
0.111111
0.666667
0.222222
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
1
1
0
0
3
d9b55a7ee025f94a0ef3f125fa9c30f974dd7d6e
211
py
Python
abc/abc165/abc165e.py
c-yan/atcoder
940e49d576e6a2d734288fadaf368e486480a948
[ "MIT" ]
1
2019-08-21T00:49:34.000Z
2019-08-21T00:49:34.000Z
abc/abc165/abc165e.py
c-yan/atcoder
940e49d576e6a2d734288fadaf368e486480a948
[ "MIT" ]
null
null
null
abc/abc165/abc165e.py
c-yan/atcoder
940e49d576e6a2d734288fadaf368e486480a948
[ "MIT" ]
null
null
null
N, M = map(int, input().split()) for i in range(1, M + 1): if i % 2 == 1: j = (i - 1) // 2 print(1 + j, M + 1 - j) else: j = (i - 2) // 2 print(M + 2 + j, 2 * M + 1 - j)
21.1
39
0.336493
40
211
1.775
0.4
0.112676
0.084507
0
0
0
0
0
0
0
0
0.111111
0.445498
211
9
40
23.444444
0.495727
0
0
0
0
0
0
0
0
0
0
0
0
1
0
false
0
0
0
0
0.25
0
0
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
3
d9b8d42e905cba910e6a30f7d6f38e82d05ab46c
2,110
py
Python
graphdb/transformer.py
muggat0n/graphdb
56dfd5ef8a3321abc6a919faee47494bbe059080
[ "MIT" ]
2
2020-08-28T13:42:38.000Z
2020-09-05T03:13:45.000Z
graphdb/transformer.py
muggat0n/graphdb
56dfd5ef8a3321abc6a919faee47494bbe059080
[ "MIT" ]
null
null
null
graphdb/transformer.py
muggat0n/graphdb
56dfd5ef8a3321abc6a919faee47494bbe059080
[ "MIT" ]
null
null
null
""" A query transformer is a function that accepts a program and returns a program, plus a priority level. Higher priority transformers are placed closer to the front of the list. We’re ensuring is a function, because we’re going to evaluate it later 31 . We’ll assume there won’t be an enormous number of transformer additions, and walk the list linearly to add a new one. We’ll leave a note in case this assumption turns out to be false — a binary search is much more time-optimal for long lists, but adds a little complexity and doesn’t really speed up short lists. """ class Transformer: def __init__(self): self.T = [] def transform(self, program): return program """ Dagoba.T = [] # transformers (more than meets the eye) """ """ Dagoba.addTransformer = function(fun, priority) { if(typeof fun != 'function') return Dagoba.error('Invalid transformer function') for(var i = 0; i < Dagoba.T.length; i++) # OPT: binary search if(priority > Dagoba.T[i].priority) break Dagoba.T.splice(i, 0, {priority: priority, fun: fun}) } """ """ Dagoba.transform = function(program) { return Dagoba.T.reduce(function(acc, transformer) { return transformer.fun(acc) }, program) } """ """ Dagoba.addAlias = function(newname, oldname, defaults) { defaults = defaults || [] # default arguments for the alias Dagoba.addPipetype(newname, function() {}) # because there's no method catchall in js Dagoba.addTransformer(function(program) { return program.map(function(step) { if(step[0] != newname) return step return [oldname, Dagoba.extend(step[1], defaults)] }) }, 100) # these need to run early, so they get a high priority } """ """ Dagoba.extend = function(list, defaults) { return Object.keys(defaults).reduce(function(acc, key) { if(typeof list[key] != 'undefined') return acc acc[key] = defaults[key] return acc }, list) } """
30.57971
120
0.627962
273
2,110
4.842491
0.47619
0.026475
0.016641
0
0
0
0
0
0
0
0
0.005799
0.264455
2,110
68
121
31.029412
0.845361
0.267299
0
0
0
0
0
0
0
0
0
0
0
1
0.4
false
0
0
0.2
0.8
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
1
0
0
3
d9b9563b7aae9c46b0fbd98073d96eeedfaec4aa
91
py
Python
Courses/1 month/2 week/day 6/Formula.py
emir-naiz/first_git_lesson
1fecf712290f6da3ef03deff518870d91638eb69
[ "MIT" ]
null
null
null
Courses/1 month/2 week/day 6/Formula.py
emir-naiz/first_git_lesson
1fecf712290f6da3ef03deff518870d91638eb69
[ "MIT" ]
null
null
null
Courses/1 month/2 week/day 6/Formula.py
emir-naiz/first_git_lesson
1fecf712290f6da3ef03deff518870d91638eb69
[ "MIT" ]
null
null
null
summary = 0 i = 0 while i < 5: summary = summary + i print(summary) i = i + 1
11.375
25
0.516484
15
91
3.133333
0.466667
0.340426
0
0
0
0
0
0
0
0
0
0.070175
0.373626
91
7
26
13
0.754386
0
0
0
0
0
0
0
0
0
0
0
0
1
0
false
0
0
0
0
0.166667
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
3
d9b9af3bd25b0d2f9357446b0ff43e3ab614b141
243
py
Python
tests/image_saver/image_saver_7.py
Vicken-Ghoubiguian/Imtreat
1f8e8406dc48af3b1e8e0c138a09aa1faee0b8a0
[ "MIT" ]
null
null
null
tests/image_saver/image_saver_7.py
Vicken-Ghoubiguian/Imtreat
1f8e8406dc48af3b1e8e0c138a09aa1faee0b8a0
[ "MIT" ]
null
null
null
tests/image_saver/image_saver_7.py
Vicken-Ghoubiguian/Imtreat
1f8e8406dc48af3b1e8e0c138a09aa1faee0b8a0
[ "MIT" ]
null
null
null
import imtreat img = imtreat.imageManagerClass.openImageFunction("../images/soleil.png", 0) img = imtreat.definedModesClass.detailEnhanceFunction(img) imtreat.imageManagerClass.saveImageFunction("/Téléchargements/", "image_1", ".png", img)
30.375
88
0.794239
23
243
8.347826
0.652174
0.15625
0.28125
0
0
0
0
0
0
0
0
0.008811
0.065844
243
7
89
34.714286
0.837004
0
0
0
0
0
0.197531
0
0
0
0
0
0
1
0
false
0
0.25
0
0.25
0
1
0
0
null
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
3
d9c389b63a2c9720abef56190237f31a2306da19
1,972
py
Python
src/biotite/copyable.py
danijoo/biotite
22072e64676e4e917236eac8493eed4c6a22cc33
[ "BSD-3-Clause" ]
208
2018-04-20T15:59:42.000Z
2022-03-22T07:47:12.000Z
src/biotite/copyable.py
danielmuthama/biotite
cb238a8d8d7dc82b3bcea274d7d91d5c876badcd
[ "BSD-3-Clause" ]
121
2017-11-15T14:52:07.000Z
2022-03-30T16:31:41.000Z
src/biotite/copyable.py
danielmuthama/biotite
cb238a8d8d7dc82b3bcea274d7d91d5c876badcd
[ "BSD-3-Clause" ]
49
2018-07-19T09:06:24.000Z
2022-03-23T17:21:34.000Z
# This source code is part of the Biotite package and is distributed # under the 3-Clause BSD License. Please see 'LICENSE.rst' for further # information. __name__ = "biotite" __author__ = "Patrick Kunzmann" __all__ = ["Copyable"] import abc class Copyable(metaclass=abc.ABCMeta): """ Base class for all objects, that should be copyable. The public method `copy()` first creates a fresh instance of the class of the instance, that is copied via the `__copy_create__()` method. All variables, that could not be set via the constructor, are then copied via `__copy_fill__()`, starting with the method in the uppermost base class and ending with the class of the instance to be copied. This approach solves the problem of encapsulated variables in superclasses. """ def copy(self): """ Create a deep copy of this object. Returns ------- copy A copy of this object. """ clone = self.__copy_create__() self.__copy_fill__(clone) return clone def __copy_create__(self): """ Instantiate a new object of this class. Only the constructor should be called in this method. All further attributes, that need to be copied are handled in `__copy_fill__()` Do not call the `super()` method here. This method must be overridden, if the constructor takes parameters. Returns ------- copy A freshly instantiated copy of *self*. """ return type(self)() def __copy_fill__(self, clone): """ Copy all necessary attributes to the new object. Always call the `super()` method as first statement. Parameters ---------- clone The freshly instantiated copy of *self*. """ pass
27.774648
70
0.59432
235
1,972
4.787234
0.421277
0.017778
0.017778
0.023111
0.088889
0
0
0
0
0
0
0.00076
0.333164
1,972
71
71
27.774648
0.854753
0.626775
0
0
0
0
0.077114
0
0
0
0
0
0
1
0.230769
false
0.076923
0.076923
0
0.538462
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
1
0
0
1
0
0
3
d9f1f15178cb9e26d9b4f91695b333a07eaa59d6
74,778
py
Python
sqlova/model/nl2sql/wikisql_models.py
guotong1988/Rule-SQL
e826c0d659c8b35a72b64aa2b50d4d943fdd70f1
[ "Apache-2.0" ]
15
2019-07-25T12:13:31.000Z
2020-10-17T13:42:58.000Z
sqlova/model/nl2sql/wikisql_models.py
guotong1988/Rule-SQL
e826c0d659c8b35a72b64aa2b50d4d943fdd70f1
[ "Apache-2.0" ]
1
2020-01-07T05:49:15.000Z
2020-04-22T01:22:00.000Z
sqlova/model/nl2sql/wikisql_models.py
guotong1988/Rule-SQL
e826c0d659c8b35a72b64aa2b50d4d943fdd70f1
[ "Apache-2.0" ]
3
2019-10-01T09:14:35.000Z
2020-07-18T08:39:48.000Z
# Copyright 2019-present NAVER Corp. # Apache License v2.0 # Wonseok Hwang import os, json from copy import deepcopy from matplotlib.pylab import * import torch import torch.nn as nn import torch.nn.functional as F device = torch.device("cuda" if torch.cuda.is_available() else "cpu") from sqlova.utils.utils import topk_multi_dim from sqlova.utils.utils_wikisql import * class Seq2SQL_v1(nn.Module): def __init__(self, input_size, hidden_size, num_layer, dropout, number_cond_ops, number_agg_ops, old=False): super(Seq2SQL_v1, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layer = num_layer self.dropout = dropout self.max_where_number = 4 self.number_cond_ops = number_cond_ops self.number_agg_ops = number_agg_ops self.select_column_predict = SelectColumnPredict(input_size, hidden_size, num_layer, dropout) self.select_agg_predict = SelectAggPredict(input_size, hidden_size, num_layer, dropout, number_agg_ops, old=old) self.where_number_predict = WhereNumberPredict(input_size, hidden_size, num_layer, dropout) self.wcp = WhereColumnPredict(input_size, hidden_size, num_layer, dropout) self.wop = WhereOpPredict(input_size, hidden_size, num_layer, dropout, number_cond_ops) self.wvp = WhereValuePredict_startend(input_size, hidden_size, num_layer, dropout, number_cond_ops, old=old) # start-end-search-discriminative model # emb_question, [16,26,1536] # len_question, [16] # emb_header, [102,12,1536] # len_header_token, [102] # number_header, [16] def forward(self, emb_question, len_question, emb_header, len_header_token, number_header, g_sc=None, g_sa=None, g_wn=None, g_wc=None, g_wo=None, g_wvi=None, show_p_sc=False, show_p_sa=False, show_p_wn=False, show_p_wc=False, show_p_wo=False, show_p_wv=False): # sc s_sc,s_sc_softmax = self.select_column_predict(emb_question, len_question, emb_header, len_header_token, number_header, show_p_sc=show_p_sc) if g_sc: pr_sc = g_sc else: pr_sc = pred_sc(s_sc) # sa s_sa,s_sa_softmax = self.select_agg_predict(emb_question, len_question, emb_header, len_header_token, number_header, pr_sc, show_p_sa=show_p_sa) if g_sa: # it's not necessary though. pr_sa = g_sa else: pr_sa = pred_sa(s_sa) # wn s_wn,s_wn_softmax = self.where_number_predict(emb_question, len_question, emb_header, len_header_token, number_header, show_p_wn=show_p_wn) if g_wn: pr_wn = g_wn else: pr_wn = pred_wn(s_wn) # wc s_wc,s_wc_softmax = self.wcp(emb_question, len_question, emb_header, len_header_token, number_header, show_p_wc=show_p_wc, penalty=True) if g_wc: pr_wc = g_wc else: pr_wc = pred_wherecolumn(pr_wn, s_wc) # wo s_wo,s_wo_softmax = self.wop(emb_question, len_question, emb_header, len_header_token, number_header, wn=pr_wn, wc=pr_wc, show_p_wo=show_p_wo) if g_wo: pr_wo = g_wo else: pr_wo = pred_wo(pr_wn, s_wo) # wv s_wv,s_wv_softmax = self.wvp(emb_question, len_question, emb_header, len_header_token, number_header, wn=pr_wn, wc=pr_wc, wo=pr_wo, show_p_wv=show_p_wv) return s_sc, s_sa, s_wn, s_wc, s_wo, s_wv, s_sc_softmax, s_sa_softmax, s_wn_softmax, s_wc_softmax, s_wo_softmax, s_wv_softmax def beam_forward(self, emb_question, len_question, emb_header, len_header_token, l_header, engine, tb, nlu_t, nlu_wp_t, wp_to_wh_index, nlu, beam_size=4, show_p_sc=False, show_p_sa=False, show_p_wn=False, show_p_wc=False, show_p_wo=False, show_p_wv=False): """ Execution-guided beam decoding. """ # sc s_sc,_ = self.select_column_predict(emb_question, len_question, emb_header, len_header_token, l_header, show_p_sc=show_p_sc) prob_sc = F.softmax(s_sc, dim=-1) bS, mcL = s_sc.shape # minimum_header_length = min(l_header) # beam_size = minimum_header_length if beam_size > minimum_header_length else beam_size # sa # Construct all possible sc_sa_score prob_sc_sa = torch.zeros([bS, beam_size, self.number_agg_ops]).to(device) prob_sca = torch.zeros_like(prob_sc_sa).to(device) # get the top-k indices. pr_sc_beam = [B, beam_size] pr_sc_beam = pred_sc_beam(s_sc, beam_size) # calculate and predict s_sa. for i_beam in range(beam_size): pr_sc = list( array(pr_sc_beam)[:,i_beam] ) s_sa,_ = self.select_agg_predict(emb_question, len_question, emb_header, len_header_token, l_header, pr_sc, show_p_sa=show_p_sa) prob_sa = F.softmax(s_sa, dim=-1) prob_sc_sa[:, i_beam, :] = prob_sa prob_sc_selected = prob_sc[range(bS), pr_sc] # [B] prob_sca[:,i_beam,:] = (prob_sa.t() * prob_sc_selected).t() # [mcL, B] * [B] -> [mcL, B] (element-wise multiplication) # [mcL, B] -> [B, mcL] # Calculate the dimension of tensor # tot_dim = len(prob_sca.shape) # First flatten to 1-d idxs = topk_multi_dim(torch.tensor(prob_sca), n_topk=beam_size, batch_exist=True) # Now as sc_idx is already sorted, re-map them properly. idxs = remap_sc_idx(idxs, pr_sc_beam) # [sc_beam_idx, sa_idx] -> [sc_idx, sa_idx] idxs_arr = array(idxs) # [B, beam_size, remainig dim] # idxs[b][0] gives first probable [sc_idx, sa_idx] pairs. # idxs[b][1] gives of second. # Calculate prob_sca, a joint probability beam_idx_sca = [0] * bS beam_meet_the_final = [False] * bS while True: pr_sc = idxs_arr[range(bS),beam_idx_sca,0] pr_sa = idxs_arr[range(bS),beam_idx_sca,1] # map index properly check = check_sc_sa_pairs(tb, pr_sc, pr_sa) if sum(check) == bS: break else: for b, check1 in enumerate(check): if not check1: # wrong pair beam_idx_sca[b] += 1 if beam_idx_sca[b] >= beam_size: beam_meet_the_final[b] = True beam_idx_sca[b] -= 1 else: beam_meet_the_final[b] = True if sum(beam_meet_the_final) == bS: break # Now pr_sc, pr_sa are properly predicted. pr_sc_best = list(pr_sc) pr_sa_best = list(pr_sa) # Now, Where-clause beam search. s_wn,_ = self.where_number_predict(emb_question, len_question, emb_header, len_header_token, l_header, show_p_wn=show_p_wn) prob_wn = F.softmax(s_wn, dim=-1).detach().to('cpu').numpy() # Found "executable" most likely 4(=max_num_of_conditions) where-clauses. # wc s_wc,_ = self.wcp(emb_question, len_question, emb_header, len_header_token, l_header, show_p_wc=show_p_wc, penalty=True) prob_wc = F.sigmoid(s_wc).detach().to('cpu').numpy() # pr_wc_sorted_by_prob = pred_wc_sorted_by_prob(s_wc) # get max_wn # of most probable columns & their prob. pr_wn_max = [self.max_where_number] * bS pr_wc_max = pred_wherecolumn(pr_wn_max, s_wc) # if some column do not have executable where-claouse, omit that column prob_wc_max = zeros([bS, self.max_where_number]) for b, pr_wc_max1 in enumerate(pr_wc_max): prob_wc_max[b,:] = prob_wc[b,pr_wc_max1] # get most probable max_wn where-clouses # wo s_wo_max,_ = self.wop(emb_question, len_question, emb_header, len_header_token, l_header, wn=pr_wn_max, wc=pr_wc_max, show_p_wo=show_p_wo) prob_wo_max = F.softmax(s_wo_max, dim=-1).detach().to('cpu').numpy() # [B, max_wn, n_cond_op] pr_wvi_beam_op_list = [] prob_wvi_beam_op_list = [] for i_op in range(self.number_cond_ops - 1): pr_wo_temp = [[i_op] * self.max_where_number] * bS # wv s_wv,_ = self.wvp(emb_question, len_question, emb_header, len_header_token, l_header, wn=pr_wn_max, wc=pr_wc_max, wo=pr_wo_temp, show_p_wv=show_p_wv) prob_wv = F.softmax(s_wv, dim=-2).detach().to('cpu').numpy() # prob_wv pr_wvi_beam, prob_wvi_beam = pred_wvi_se_beam(self.max_where_number, s_wv, beam_size) pr_wvi_beam_op_list.append(pr_wvi_beam) prob_wvi_beam_op_list.append(prob_wvi_beam) # pr_wvi_beam = [B, max_wn, k_logit**2 [st, ed] paris] # pred_wv_beam # Calculate joint probability of where-clause # prob_w = [batch, wc, wo, wv] = [B, max_wn, n_cond_op, n_pairs] n_wv_beam_pairs = prob_wvi_beam.shape[2] prob_w = zeros([bS, self.max_where_number, self.number_cond_ops - 1, n_wv_beam_pairs]) for b in range(bS): for i_wn in range(self.max_where_number): for i_op in range(self.number_cond_ops - 1): # do not use final one for i_wv_beam in range(n_wv_beam_pairs): # i_wc = pr_wc_max[b][i_wn] # already done p_wc = prob_wc_max[b, i_wn] p_wo = prob_wo_max[b, i_wn, i_op] p_wv = prob_wvi_beam_op_list[i_op][b, i_wn, i_wv_beam] prob_w[b, i_wn, i_op, i_wv_beam] = p_wc * p_wo * p_wv # Perform execution guided decoding conds_max = [] prob_conds_max = [] # while len(conds_max) < self.max_wn: idxs = topk_multi_dim(torch.tensor(prob_w), n_topk=beam_size, batch_exist=True) # idxs = [B, i_wc_beam, i_op, i_wv_pairs] # Construct conds1 for b, idxs1 in enumerate(idxs): conds_max1 = [] prob_conds_max1 = [] for i_wn, idxs11 in enumerate(idxs1): i_wc = pr_wc_max[b][idxs11[0]] i_op = idxs11[1] wvi = pr_wvi_beam_op_list[i_op][b][idxs11[0]][idxs11[2]] # get wv_str temp_pr_wv_str, _ = convert_pred_wvi_to_string([[wvi]], [nlu_t[b]], [nlu_wp_t[b]], [wp_to_wh_index[b]], [nlu[b]]) merged_wv11 = merge_wv_t1_eng(temp_pr_wv_str[0][0], nlu[b]) conds11 = [i_wc, i_op, merged_wv11] prob_conds11 = prob_w[b, idxs11[0], idxs11[1], idxs11[2] ] # test execution # print(nlu[b]) # print(tb[b]['id'], tb[b]['types'], pr_sc[b], pr_sa[b], [conds11]) pr_ans = engine.execute(tb[b]['id'], pr_sc[b], pr_sa[b], [conds11]) if bool(pr_ans): # pr_ans is not empty! conds_max1.append(conds11) prob_conds_max1.append(prob_conds11) conds_max.append(conds_max1) prob_conds_max.append(prob_conds_max1) # May need to do more exhuastive search? # i.e. up to.. getting all executable cases. # Calculate total probability to decide the number of where-clauses pr_sql_i = [] prob_wn_w = [] pr_wn_based_on_prob = [] for b, prob_wn1 in enumerate(prob_wn): max_executable_wn1 = len( conds_max[b] ) prob_wn_w1 = [] prob_wn_w1.append(prob_wn1[0]) # wn=0 case. for i_wn in range(max_executable_wn1): prob_wn_w11 = prob_wn1[i_wn+1] * prob_conds_max[b][i_wn] prob_wn_w1.append(prob_wn_w11) pr_wn_based_on_prob.append(argmax(prob_wn_w1)) prob_wn_w.append(prob_wn_w1) pr_sql_i1 = {'agg': pr_sa_best[b], 'sel': pr_sc_best[b], 'conds': conds_max[b][:pr_wn_based_on_prob[b]]} pr_sql_i.append(pr_sql_i1) # s_wv = [B, max_wn, max_nlu_tokens, 2] return prob_sca, prob_w, prob_wn_w, pr_sc_best, pr_sa_best, pr_wn_based_on_prob, pr_sql_i class SelectColumnPredict(nn.Module): def __init__(self, input_size=300, hidden_size=100, num_layer=2, dropout=0.3): super(SelectColumnPredict, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layer = num_layer self.dropout = dropout self.enc_h = nn.LSTM(input_size=input_size, hidden_size=int(hidden_size / 2), num_layers=num_layer, batch_first=True, dropout=dropout, bidirectional=True) self.enc_n = nn.LSTM(input_size=input_size, hidden_size=int(hidden_size / 2), num_layers=num_layer, batch_first=True, dropout=dropout, bidirectional=True) self.W_att = nn.Linear(hidden_size, hidden_size) self.W_c = nn.Linear(hidden_size, hidden_size) self.W_header = nn.Linear(hidden_size, hidden_size) self.sc_out = nn.Sequential(nn.Tanh(), nn.Linear(2 * hidden_size, 1)) self.softmax_dim1 = nn.Softmax(dim=1) self.softmax_dim2 = nn.Softmax(dim=2) self.softmax_dim_1 = nn.Softmax(dim=-1) # emb_question, [16,26,1536] # len_question, [16] # emb_header, [102,12,1536] # len_header_token, [102] # number_header, [16] def forward(self, emb_question, len_question, emb_header, len_header_token, number_header, show_p_sc=False): # Encode encoded_question = encode(self.enc_n, emb_question, len_question, return_hidden=False, hc0=None, last_only=False) # [b, n, dim] encoded_header = encode_header(self.enc_h, emb_header, len_header_token, number_header) # [b, header, dim] bS = len(number_header) mL_n = max(len_question) # [bS, max_len_header, 100] * [bS, 100, mL_n] -> [bS, max_len_header, mL_n] att_h = torch.bmm(encoded_header, self.W_att(encoded_question).transpose(1, 2)) # Penalty on blank parts for b, l_n1 in enumerate(len_question): if l_n1 < mL_n: att_h[b, :, l_n1:] = -10000000000 p_n = self.softmax_dim2(att_h) if show_p_sc: # p = [b, header, n] if p_n.shape[0] != 1: raise Exception("Batch size should be 1.") fig=figure(2001, figsize=(12,3.5)) # subplot(6,2,7) subplot2grid((7,2), (3, 0), rowspan=2) cla() _color='rgbkcm' _symbol='.......' for i_h in range(number_header[0]): color_idx = i_h % len(_color) plot(p_n[0][i_h][:].data.numpy() - i_h, '--'+_symbol[color_idx]+_color[color_idx], ms=7) title('sc: p_n for each h') grid(True) fig.tight_layout() fig.canvas.draw() show() # p_n [ bS, max_len_header, mL_n] -> [ bS, max_len_header, mL_n, 1] # wenc_n [ bS, mL_n, 100] -> [ bS, 1, mL_n, 100] # -> [bS, max_len_header, mL_n, 100] -> [bS, max_len_header, 100] c_n = torch.mul(p_n.unsqueeze(3), encoded_question.unsqueeze(1)).sum(dim=2) vec = torch.cat([self.W_c(c_n), self.W_header(encoded_header)], dim=2) score_select_column = self.sc_out(vec).squeeze(2) # [bS, max_len_header, 1] -> [bS, max_len_header] score_select_column_softmax = self.softmax_dim_1(score_select_column) # Penalty max_len_header = max(number_header) for b, l_header1 in enumerate(number_header): if l_header1 < max_len_header: score_select_column[b, l_header1:] = -10000000000 for b, l_header1 in enumerate(number_header): if l_header1 < max_len_header: score_select_column_softmax[b, l_header1:] = 0 return score_select_column,score_select_column_softmax class SelectAggPredict(nn.Module): def __init__(self, input_size=300, hidden_size=100, num_layer=2, dropout=0.3, n_agg_ops=-1, old=False): super(SelectAggPredict, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layer = num_layer self.dropout = dropout self.enc_h = nn.LSTM(input_size=input_size, hidden_size=int(hidden_size / 2), num_layers=num_layer, batch_first=True, dropout=dropout, bidirectional=True) self.enc_n = nn.LSTM(input_size=input_size, hidden_size=int(hidden_size / 2), num_layers=num_layer, batch_first=True, dropout=dropout, bidirectional=True) self.W_att = nn.Linear(hidden_size, hidden_size) self.sa_out = nn.Sequential(nn.Linear(hidden_size, hidden_size), nn.Tanh(), nn.Linear(hidden_size, n_agg_ops)) # Fixed number of aggregation operator. self.softmax_dim1 = nn.Softmax(dim=1) self.softmax_dim2 = nn.Softmax(dim=2) self.softmax_dim_1 = nn.Softmax(dim=-1) if old: # for backwoard compatibility self.W_c = nn.Linear(hidden_size, hidden_size) self.W_header = nn.Linear(hidden_size, hidden_size) def forward(self, emb_question, len_question, emb_header, len_header_token, l_header, pr_sc, show_p_sa=False): # Encode encoded_question = encode(self.enc_n, emb_question, len_question, return_hidden=False, hc0=None, last_only=False) # [b, n, dim] encoded_header = encode_header(self.enc_h, emb_header, len_header_token, l_header) # [b, header, dim] bS = len(l_header) mL_n = max(len_question) wenc_header_ob = encoded_header[list(range(bS)), pr_sc] # list, so one sample for each batch. # [bS, question_len, 100] * [bS, 100, 1] -> [bS, question_len] att = torch.bmm(self.W_att(encoded_question), wenc_header_ob.unsqueeze(2)).squeeze(2) # Penalty on blank parts for b, l_n1 in enumerate(len_question): if l_n1 < mL_n: att[b, l_n1:] = -10000000000 # [bS, question_len] p = self.softmax_dim1(att) if show_p_sa: if p.shape[0] != 1: raise Exception("Batch size should be 1.") fig=figure(2001); subplot(7,2,3) cla() plot(p[0].data.numpy(), '--rs', ms=7) title('sa: nlu_weight') grid(True) fig.tight_layout() fig.canvas.draw() show() # [bS, question_len, 100] * ( [bS, question_len, 1] -> [bS, question_len, 100]) # -> [bS, question_len, 100] -> [bS, 100] c_n = torch.mul(encoded_question, p.unsqueeze(2).expand_as(encoded_question)).sum(dim=1) s_sa = self.sa_out(c_n) s_sa_softmax = self.softmax_dim_1(s_sa) return s_sa,s_sa_softmax class WhereNumberPredict(nn.Module): def __init__(self, input_size=300, hidden_size=100, num_layer=2, dropout=0.3, ): super(WhereNumberPredict, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layer = num_layer self.dropout = dropout self.mL_w = 4 # max where condition number self.enc_h = nn.LSTM(input_size=input_size, hidden_size=int(hidden_size / 2), num_layers=num_layer, batch_first=True, dropout=dropout, bidirectional=True) self.enc_n = nn.LSTM(input_size=input_size, hidden_size=int(hidden_size / 2), num_layers=num_layer, batch_first=True, dropout=dropout, bidirectional=True) self.W_att_h = nn.Linear(hidden_size, 1) self.W_hidden = nn.Linear(hidden_size, num_layer * hidden_size) self.W_cell = nn.Linear(hidden_size, num_layer * hidden_size) self.W_att_n = nn.Linear(hidden_size, 1) self.wn_out = nn.Sequential(nn.Linear(hidden_size, hidden_size), nn.Tanh(), nn.Linear(hidden_size, self.mL_w + 1)) # max number (4 + 1) self.softmax_dim1 = nn.Softmax(dim=1) self.softmax_dim2 = nn.Softmax(dim=2) self.softmax_dim_1 = nn.Softmax(dim=-1) def forward(self, emb_question, len_question, emb_header, len_header_token, l_header, show_p_wn=False): # Encode encoded_header = encode_header(self.enc_h, emb_header, len_header_token, l_header) # [b, max_len_header, dim] bS = len(l_header) max_len_question = max(len_question) max_len_header = max(l_header) # mL_h = max(len_header_token) # (self-attention?) column Embedding? # [B, max_len_header, 100] -> [B, max_len_header, 1] -> [B, max_len_header] att_h = self.W_att_h(encoded_header).squeeze(2) # Penalty for b, l_header1 in enumerate(l_header): if l_header1 < max_len_header: att_h[b, l_header1:] = -10000000000 p_h = self.softmax_dim1(att_h) if show_p_wn: if p_h.shape[0] != 1: raise Exception("Batch size should be 1.") fig=figure(2001); subplot(7,2,5) cla() plot(p_h[0].data.numpy(), '--rs', ms=7) title('wn: header_weight') grid(True) fig.canvas.draw() show() # input('Type Eenter to continue.') # [B, max_len_header, 100] * [ B, max_len_header, 1] -> [B, max_len_header, 100] -> [B, 100] c_header = torch.mul(encoded_header, p_h.unsqueeze(2)).sum(1) # [B, 100] --> [B, 2*100] Enlarge because there are two layers. hidden = self.W_hidden(c_header) # [B, 4, 200/2] hidden = hidden.view(bS, self.num_layer * 2, int( self.hidden_size / 2)) # [4, B, 100/2] # number_of_layer_layer * (bi-direction) # lstm input convention. hidden = hidden.transpose(0, 1).contiguous() cell = self.W_cell(c_header) # [B, 4, 100/2] cell = cell.view(bS, self.num_layer * 2, int(self.hidden_size / 2)) # [4, B, 100/2] cell = cell.transpose(0, 1).contiguous() wenc_n = encode(self.enc_n, emb_question, len_question, return_hidden=False, hc0=(hidden, cell), last_only=False) # [b, n, dim] att_n = self.W_att_n(wenc_n).squeeze(2) # [B, max_len, 100] -> [B, max_len, 1] -> [B, max_len] # Penalty for b, l_n1 in enumerate(len_question): if l_n1 < max_len_question: att_n[b, l_n1:] = -10000000000 p_n = self.softmax_dim1(att_n) if show_p_wn: if p_n.shape[0] != 1: raise Exception("Batch size should be 1.") fig=figure(2001); subplot(7,2,6) cla() plot(p_n[0].data.numpy(), '--rs', ms=7) title('wn: nlu_weight') grid(True) fig.canvas.draw() show() # input('Type Enter to continue.') # [B, mL_n, 100] *([B, mL_n] -> [B, mL_n, 1] -> [B, mL_n, 100] ) -> [B, 100] c_n = torch.mul(wenc_n, p_n.unsqueeze(2).expand_as(wenc_n)).sum(dim=1) s_wn = self.wn_out(c_n) s_wn_softmax = self.softmax_dim_1(s_wn) return s_wn,s_wn_softmax # where column predict class WhereColumnPredict(nn.Module): def __init__(self, input_size=300, hidden_size=100, num_layer=2, dropout=0.3): super(WhereColumnPredict, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layer = num_layer self.dropout = dropout self.enc_h = nn.LSTM(input_size=input_size, hidden_size=int(hidden_size / 2), num_layers=num_layer, batch_first=True, dropout=dropout, bidirectional=True) self.enc_n = nn.LSTM(input_size=input_size, hidden_size=int(hidden_size / 2), num_layers=num_layer, batch_first=True, dropout=dropout, bidirectional=True) self.W_att = nn.Linear(hidden_size, hidden_size) self.W_c = nn.Linear(hidden_size, hidden_size) self.W_header = nn.Linear(hidden_size, hidden_size) self.W_out = nn.Sequential( nn.Tanh(), nn.Linear(2 * hidden_size, 1) ) self.softmax_dim1 = nn.Softmax(dim=1) self.softmax_dim2 = nn.Softmax(dim=2) self.softmax_dim_1 = nn.Softmax(dim=-1) def forward(self, emb_question, len_question, emb_header, len_header_token, l_header, show_p_wc, penalty=True): # Encode encoded_question = encode(self.enc_n, emb_question, len_question, return_hidden=False, hc0=None, last_only=False) # [b, n, dim] encoded_header = encode_header(self.enc_h, emb_header, len_header_token, l_header) # [b, header, dim] # attention # wenc = [bS, mL, hidden_size] # att = [bS, max_len_header, mL_n] # att[b, i_h, j_n] = p(j_n| i_h) att = torch.bmm(encoded_header, self.W_att(encoded_question).transpose(1, 2)) # penalty to blank part. mL_n = max(len_question) for b_n, l_n1 in enumerate(len_question): if l_n1 < mL_n: att[b_n, :, l_n1:] = -10000000000 # make p(j_n | i_h) p = self.softmax_dim2(att) if show_p_wc: # p = [b, header, n] if p.shape[0] != 1: raise Exception("Batch size should be 1.") fig=figure(2001); # subplot(6,2,7) subplot2grid((7,2), (3, 1), rowspan=2) cla() _color='rgbkcm' _symbol='.......' for i_h in range(l_header[0]): color_idx = i_h % len(_color) plot(p[0][i_h][:].data.numpy() - i_h, '--'+_symbol[color_idx]+_color[color_idx], ms=7) title('wc: p_n for each h') grid(True) fig.tight_layout() fig.canvas.draw() show() # max nlu context vectors # [bS, max_len_header, mL_n]*[bS, max_len_header, mL_n] encoded_question = encoded_question.unsqueeze(1) # [ b, n, dim] -> [b, 1, n, dim] p = p.unsqueeze(3) # [b, header, n] -> [b, header, n, 1] c_n = torch.mul(encoded_question, p).sum(2) # -> [b, header, dim], c_n for each header. y = torch.cat([self.W_c(c_n), self.W_header(encoded_header)], dim=2) # [b, header, 2*dim] score = self.W_out(y).squeeze(2) # [b, header] score[torch.isnan(score)] = 0 score_softmax = self.softmax_dim_1(score) if penalty: for b, l_header1 in enumerate(l_header): score[b, l_header1:] = -1e+10 for b, l_header1 in enumerate(l_header): score_softmax[b, l_header1:] = 0 return score,score_softmax # where op predict class WhereOpPredict(nn.Module): def __init__(self, input_size=300, hidden_size=100, num_layer=2, dropout=0.3, n_cond_ops=3): super(WhereOpPredict, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layer = num_layer self.dropout = dropout self.mL_w = 4 # max where condition number self.enc_h = nn.LSTM(input_size=input_size, hidden_size=int(hidden_size / 2), num_layers=num_layer, batch_first=True, dropout=dropout, bidirectional=True) self.enc_n = nn.LSTM(input_size=input_size, hidden_size=int(hidden_size / 2), num_layers=num_layer, batch_first=True, dropout=dropout, bidirectional=True) self.W_att = nn.Linear(hidden_size, hidden_size) self.W_c = nn.Linear(hidden_size, hidden_size) self.W_header = nn.Linear(hidden_size, hidden_size) self.wo_out = nn.Sequential( nn.Linear(2*hidden_size, hidden_size), nn.Tanh(), nn.Linear(hidden_size, n_cond_ops) ) self.softmax_dim1 = nn.Softmax(dim=1) self.softmax_dim2 = nn.Softmax(dim=2) self.softmax_dim_1 = nn.Softmax(dim=-1) def forward(self, emb_question, len_question, emb_header, len_header_token, l_header, wn, wc, wenc_n=None, show_p_wo=False): # Encode if not wenc_n: wenc_n = encode(self.enc_n, emb_question, len_question, return_hidden=False, hc0=None, last_only=False) # [b, n, dim] encoded_header = encode_header(self.enc_h, emb_header, len_header_token, l_header) # [b, header, dim] bS = len(l_header) # wn wenc_header_ob = [] # observed header for b in range(bS): # [[...], [...]] # Pad list to maximum number of selections real = [encoded_header[b, col] for col in wc[b]] pad = (self.mL_w - wn[b]) * [encoded_header[b, 0]] # this padding could be wrong. Test with zero padding later. wenc_header_ob1 = torch.stack(real + pad) # It is not used in the loss function. wenc_header_ob.append(wenc_header_ob1) # list to [B, 4, dim] tensor. wenc_header_ob = torch.stack(wenc_header_ob) # list to tensor. wenc_header_ob = wenc_header_ob.to(device) # [B, 1, mL_n, dim] * [B, 4, dim, 1] # -> [B, 4, mL_n, 1] -> [B, 4, mL_n] # multiplication bewteen NLq-tokens and selected column att = torch.matmul(self.W_att(wenc_n).unsqueeze(1), wenc_header_ob.unsqueeze(3) ).squeeze(3) # Penalty for blank part. mL_n = max(len_question) for b, l_n1 in enumerate(len_question): if l_n1 < mL_n: att[b, :, l_n1:] = -10000000000 p = self.softmax_dim2(att) # p( n| selected_col ) if show_p_wo: # p = [b, header, n] if p.shape[0] != 1: raise Exception("Batch size should be 1.") fig=figure(2001) # subplot(6,2,7) subplot2grid((7,2), (5, 0), rowspan=2) cla() _color='rgbkcm' _symbol='.......' for i_wn in range(self.mL_w): color_idx = i_wn % len(_color) plot(p[0][i_wn][:].data.numpy() - i_wn, '--'+_symbol[color_idx]+_color[color_idx], ms=7) title('wo: p_n for selected h') grid(True) fig.tight_layout() fig.canvas.draw() show() # [B, 1, mL_n, dim] * [B, 4, mL_n, 1] # --> [B, 4, mL_n, dim] # --> [B, 4, dim] c_n = torch.mul(wenc_n.unsqueeze(1), p.unsqueeze(3)).sum(dim=2) # [bS, 5-1, dim] -> [bS, 5-1, 3] vec = torch.cat([self.W_c(c_n), self.W_header(wenc_header_ob)], dim=2) s_wo = self.wo_out(vec) s_wo_softmax = self.softmax_dim_1(s_wo) return s_wo,s_wo_softmax class WhereValuePredict_startend(nn.Module): """ Discriminative model Get start and end. Here, classifier for [ [투수], [팀1], [팀2], [연도], ...] Input: Encoded nlu & selected column. Algorithm: Encoded nlu & selected column. -> classifier -> mask scores -> ... """ def __init__(self, input_size=300, hidden_size=100, num_layer=2, dropout=0.3, n_cond_ops=4, old=False): super(WhereValuePredict_startend, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layer = num_layer self.dropout = dropout self.n_cond_ops = n_cond_ops self.mL_w = 4 # max where condition number self.enc_h = nn.LSTM(input_size=input_size, hidden_size=int(hidden_size / 2), num_layers=num_layer, batch_first=True, dropout=dropout, bidirectional=True) self.enc_n = nn.LSTM(input_size=input_size, hidden_size=int(hidden_size / 2), num_layers=num_layer, batch_first=True, dropout=dropout, bidirectional=True) self.W_att = nn.Linear(hidden_size, hidden_size) self.W_c = nn.Linear(hidden_size, hidden_size) self.W_header = nn.Linear(hidden_size, hidden_size) self.W_op = nn.Linear(n_cond_ops, hidden_size) # self.W_n = nn.Linear(hidden_size, hidden_size) if old: self.wv_out = nn.Sequential( nn.Linear(4 * hidden_size, 2) ) else: self.wv_out = nn.Sequential( nn.Linear(4 * hidden_size, hidden_size), nn.Tanh(), nn.Linear(hidden_size, 2) ) # self.wv_out = nn.Sequential( # nn.Linear(3 * hidden_size, hidden_size), # nn.Tanh(), # nn.Linear(hidden_size, self.gdkL) # ) self.softmax_dim1 = nn.Softmax(dim=1) self.softmax_dim2 = nn.Softmax(dim=2) self.softmax_dim_1 = nn.Softmax(dim=-1) def forward(self, emb_question, len_question, emb_header, len_header_token, l_header, wn, wc, wo, wenc_n=None, show_p_wv=False): # Encode if not wenc_n: wenc_n, hout, cout = encode(self.enc_n, emb_question, len_question, return_hidden=True, hc0=None, last_only=False) # [b, n, dim] encoded_header = encode_header(self.enc_h, emb_header, len_header_token, l_header) # [b, header, dim] bS = len(l_header) wenc_header_ob = [] # observed header for b in range(bS): # [[...], [...]] # Pad list to maximum number of selections real = [encoded_header[b, col] for col in wc[b]] pad = (self.mL_w - wn[b]) * [encoded_header[b, 0]] # this padding could be wrong. Test with zero padding later. wenc_header_ob1 = torch.stack(real + pad) # It is not used in the loss function. wenc_header_ob.append(wenc_header_ob1) # list to [B, 4, dim] tensor. wenc_header_ob = torch.stack(wenc_header_ob) # list to tensor. wenc_header_ob = wenc_header_ob.to(device) # Column attention # [B, 1, mL_n, dim] * [B, 4, dim, 1] # -> [B, 4, mL_n, 1] -> [B, 4, mL_n] # multiplication bewteen NLq-tokens and selected column att = torch.matmul(self.W_att(wenc_n).unsqueeze(1), wenc_header_ob.unsqueeze(3) ).squeeze(3) # Penalty for blank part. mL_n = max(len_question) for b, l_n1 in enumerate(len_question): if l_n1 < mL_n: att[b, :, l_n1:] = -10000000000 p = self.softmax_dim2(att) # p( n| selected_col ) if show_p_wv: # p = [b, header, n] if p.shape[0] != 1: raise Exception("Batch size should be 1.") fig=figure(2001) # subplot(6,2,7) subplot2grid((7,2), (5, 1), rowspan=2) cla() _color='rgbkcm' _symbol='.......' for i_wn in range(self.mL_w): color_idx = i_wn % len(_color) plot(p[0][i_wn][:].data.numpy() - i_wn, '--'+_symbol[color_idx]+_color[color_idx], ms=7) title('wv: p_n for selected h') grid(True) fig.tight_layout() fig.canvas.draw() show() # [B, 1, mL_n, dim] * [B, 4, mL_n, 1] # --> [B, 4, mL_n, dim] # --> [B, 4, dim] c_n = torch.mul(wenc_n.unsqueeze(1), p.unsqueeze(3)).sum(dim=2) # Select observed headers only. # Also generate one_hot vector encoding info of the operator # [B, 4, dim] wenc_op = [] for b in range(bS): # [[...], [...]] # Pad list to maximum number of selections wenc_op1 = torch.zeros(self.mL_w, self.n_cond_ops) wo1 = wo[b] idx_scatter = [] l_wo1 = len(wo1) for i_wo11 in range(self.mL_w): if i_wo11 < l_wo1: wo11 = wo1[i_wo11] idx_scatter.append([int(wo11)]) else: idx_scatter.append([0]) # not used anyway wenc_op1 = wenc_op1.scatter(1, torch.tensor(idx_scatter), 1) wenc_op.append(wenc_op1) # list to [B, 4, dim] tensor. wenc_op = torch.stack(wenc_op) # list to tensor. wenc_op = wenc_op.to(device) # Now after concat, calculate logits for each token # [bS, 5-1, 3*hidden_size] = [bS, 4, 300] vec = torch.cat([self.W_c(c_n), self.W_header(wenc_header_ob), self.W_op(wenc_op)], dim=2) # Make extended vector based on encoded nl token containing column and operator information. # wenc_n = [bS, mL, 100] # vec2 = [bS, 4, mL, 400] vec1e = vec.unsqueeze(2).expand(-1,-1, mL_n, -1) # [bS, 4, 1, 300] -> [bS, 4, mL, 300] wenc_ne = wenc_n.unsqueeze(1).expand(-1, 4, -1, -1) # [bS, 1, mL, 100] -> [bS, 4, mL, 100] vec2 = torch.cat( [vec1e, wenc_ne], dim=3) # now make logits s_wv = self.wv_out(vec2) # [bS, 4, mL, 400] -> [bS, 4, mL, 2] s_wv_softmax = self.softmax_dim_1(s_wv) # penalty for spurious tokens for b, l_n1 in enumerate(len_question): if l_n1 < mL_n: s_wv[b, :, l_n1:, :] = -10000000000 for b, l_n1 in enumerate(len_question): if l_n1 < mL_n: s_wv_softmax[b, :, l_n1:, :] = 0 return s_wv,s_wv_softmax def Loss_selectwhere_startend_v2(score_select_column, s_sa, s_wn, s_wc, s_wo, s_wv, ground_truth_select_column, g_sa, g_wn, g_wc, g_wo, g_wvi): """ :param s_wv: score [ B, n_conds, T, score] :param g_wn: [ B ] :param g_wvi: [B, conds, pnt], e.g. [[[0, 6, 7, 8, 15], [0, 1, 2, 3, 4, 15]], [[0, 1, 2, 3, 16], [0, 7, 8, 9, 16]]] :return: """ loss = 0 # loss += Loss_sc(score_select_column, ground_truth_select_column) # loss += Loss_sa(s_sa, g_sa) # loss += Loss_wn(s_wn, g_wn) # loss += Loss_wc(s_wc, g_wc) # loss += Loss_wo(s_wo, g_wn, g_wo) # loss += Loss_wv_se(s_wv, g_wn, g_wvi) return loss def Loss_sw_se(score_select_column, s_sa, s_wn, s_wc, s_wo, s_wv, ground_truth_select_column, g_sa, g_wn, g_wc, g_wo, g_wvi): """ :param s_wv: score [ B, n_conds, T, score] :param g_wn: [ B ] :param g_wvi: [B, conds, pnt], e.g. [[[0, 6, 7, 8, 15], [0, 1, 2, 3, 4, 15]], [[0, 1, 2, 3, 16], [0, 7, 8, 9, 16]]] :return: """ loss = 0 loss += Loss_sc(score_select_column, ground_truth_select_column) loss += Loss_sa(s_sa, g_sa) loss += Loss_wn(s_wn, g_wn) loss += Loss_wc(s_wc, g_wc) loss += Loss_wo(s_wo, g_wn, g_wo) loss += Loss_wv_se(s_wv, g_wn, g_wvi) return loss def Loss_sc(s_sc, g_sc): loss = F.cross_entropy(s_sc, torch.tensor(g_sc).to(device)) return loss def Loss_sa(s_sa, g_sa): loss = F.cross_entropy(s_sa, torch.tensor(g_sa).to(device)) return loss def Loss_wn(s_wn, g_wn): loss = F.cross_entropy(s_wn, torch.tensor(g_wn).to(device)) return loss def Loss_wc(s_wc, g_wc): # Construct index matrix bS, max_h_len = s_wc.shape im = torch.zeros([bS, max_h_len]).to(device) for b, g_wc1 in enumerate(g_wc): for g_wc11 in g_wc1: im[b, g_wc11] = 1.0 # Construct prob. p = F.sigmoid(s_wc) loss = F.binary_cross_entropy(p, im) return loss def Loss_wo(s_wo, g_wn, g_wo): # Construct index matrix loss = 0 for b, g_wn1 in enumerate(g_wn): if g_wn1 == 0: continue g_wo1 = g_wo[b] s_wo1 = s_wo[b] loss += F.cross_entropy(s_wo1[:g_wn1], torch.tensor(g_wo1).to(device)) return loss def Loss_wv_se(s_wv, g_wn, g_wvi): """ s_wv: [bS, 4, mL, 2], 4 stands for maximum # of condition, 2 tands for start & end logits. g_wvi: [ [1, 3, 2], [4,3] ] (when B=2, wn(b=1) = 3, wn(b=2) = 2). """ loss = 0 # g_wvi = torch.tensor(g_wvi).to(device) for b, g_wvi1 in enumerate(g_wvi): # for i_wn, g_wvi11 in enumerate(g_wvi1): g_wn1 = len(g_wvi1) # 有改动 # g_wn1 = g_wn[b] # 有改动 if g_wn1 == 0: continue g_wvi1 = torch.tensor(g_wvi1)[:g_wn1].to(device) # 有改动 g_st1 = g_wvi1[:,0] g_ed1 = g_wvi1[:,1] # loss from the start position loss += F.cross_entropy(s_wv[b,:g_wn1,:,0], g_st1) # print("st_login: ", s_wv[b,:g_wn1,:,0], g_st1, loss) # loss from the end position loss += F.cross_entropy(s_wv[b,:g_wn1,:,1], g_ed1) # print("ed_login: ", s_wv[b,:g_wn1,:,1], g_ed1, loss) return loss # ========= Decoder-Layer =========== class FT_s2s_1(nn.Module): """ Decoder-Layer """ def __init__(self, input_size, hidden_size, num_layer, dropout, max_seq_length, n_cond_ops, n_agg_ops, old=False): super(FT_s2s_1, self).__init__() self.input_size = input_size # input_size self.hidden_size = hidden_size # hidden_size self.ls = num_layer self.dropout = dropout self.n_cond_ops = n_cond_ops self.n_agg_ops = n_agg_ops self.n_where_num = 4 self.decoder_s2s = Decoder_s2s(input_size, hidden_size, num_layer, dropout, max_seq_length) def forward(self, wenc_s2s, l_input, cls_vec, pnt_start_tok, g_pnt_idxs=None): score = self.decoder_s2s(wenc_s2s, l_input, cls_vec, pnt_start_tok, g_pnt_idxs) return score def EG_forward(self, wenc_s2s, l_input, cls_vec, pnt_start_tok, pnt_end_tok, i_sql_vocab, i_nlu, i_hds, # for EG tokens, nlu, nlu_t, hds, tt_to_t_idx, # for EG tb, engine, beam_size=4, beam_only=True): """ EG-guided beam-search """ score = self.decoder_s2s.EG_forward(wenc_s2s, l_input, cls_vec, pnt_start_tok, pnt_end_tok, i_sql_vocab, i_nlu, i_hds, # for EG tokens, nlu, nlu_t, hds, tt_to_t_idx, # for EG tb, engine, beam_size, beam_only) return score class Decoder_s2s(nn.Module): def __init__(self, input_size=300, hidden_size=100, num_layer=2, dropout=0.3, max_seq_length=222, n_cond_ops=3): super(Decoder_s2s, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layer = num_layer self.dropout = dropout self.mL = max_seq_length self.Tmax = 200 self.enc_h = nn.LSTM(input_size=input_size, hidden_size=int(hidden_size / 2), num_layers=num_layer, batch_first=True, dropout=dropout, bidirectional=True) self.enc_n = nn.LSTM(input_size=input_size, hidden_size=int(hidden_size / 2), num_layers=num_layer, batch_first=True, dropout=dropout, bidirectional=True) self.decode_pn = nn.LSTM(input_size=max_seq_length, hidden_size=hidden_size, num_layers=num_layer, batch_first=True, dropout=dropout) self.W_s2s = nn.Linear(input_size, hidden_size) self.W_pnt = nn.Linear(hidden_size, hidden_size) self.wv_out = nn.Sequential(nn.Tanh(), nn.Linear(hidden_size, 1)) def forward(self, wenc_s2s, l_input, cls_vec, pnt_start_tok, g_pnt_idxs=None,): # Encode bS, mL_input, input_size = wenc_s2s.shape # Now, pointer network. ipnt = wenc_s2s.new_zeros(bS, 1, mL_input).to(device) # [B, 1, 200] ipnt[:, 0, pnt_start_tok] = 1 # 27 is of start token under current tokenization scheme # initial (current) pointer cpnt = ipnt # reshape wenc_s2s to incorporate T later wenc_s2s = wenc_s2s.unsqueeze(1) # h_0 and c_0 from cls_vec # They are not bidirectional. h_0 = torch.zeros([self.num_layer, bS, self.hidden_size]).to(device) c_0 = torch.zeros([self.num_layer, bS, self.hidden_size]).to(device) for i_layer in range(self.num_layer): h_st = (2*i_layer)*self.hidden_size h_ed = h_st + self.hidden_size c_st = (2*i_layer+1)*self.hidden_size c_ed = c_st + self.hidden_size h_0[i_layer] = cls_vec[:, h_st:h_ed] # [ # of layers, batch, dim] c_0[i_layer] = cls_vec[:, c_st:c_ed] # [ # of layers, batch, dim] if g_pnt_idxs: pnt_n = torch.zeros(bS, self.Tmax, mL_input).to(device) # one hot # assign index for b, g_pnt_idxs1 in enumerate(g_pnt_idxs): for t, g_pnt_idx in enumerate(g_pnt_idxs1): pnt_n[b, t, g_pnt_idx] = 1 # Encode dec_pn, _ = self.decode_pn(pnt_n, (h_0, c_0)) dec_pn = dec_pn.contiguous() # [bS, T, input_size] dec_pn = dec_pn.unsqueeze(2) # Calculate score s_wv = self.wv_out( self.W_s2s(wenc_s2s) + self.W_pnt(dec_pn) ).squeeze(3) # [B, T, mL_input, dim] -> [B, T, mL_input, 1] -> [B, T, mL_input] # s_wv = [B, 4, T, mL_n] = [batch, conds, token idx, score] # penalty for b, l_input1 in enumerate(l_input): if l_input1 < mL_input: s_wv[b, :, l_input1:] = -10000000000 else: t = 0 s_wv_list = [] cpnt_h = (h_0, c_0) while t < self.Tmax: dec_pn, cpnt_h = self.decode_pn(cpnt, cpnt_h) # lstm # [B, 1, 100] -> [B, 1, 1, 100] dec_pn = dec_pn.unsqueeze(2) # [bS, T, input_size] # get score s_wv1 = self.wv_out( self.W_s2s(wenc_s2s) # [B, 1, mL_input, dim] + self.W_pnt(dec_pn) # [B, T=1, 1, dim] Now, T=1 ).squeeze(3) # s_wv = [B, 4, 1, mL_n, 1] = [batch, conds, token idx, score] # -> [B, 4, mL_n] # Masking -- for b, l_input1 in enumerate(l_input): if l_input1 < mL_input: s_wv1[b, :, l_input1:] = -10000000000 # Collect score-- s_wv_list.append(s_wv1) # [B, 1, mL_input] -> [B, mL_n] -> [bS*(5-1)] # (max_val, max_indices) _val, pnt_n = s_wv1.view(bS, -1).max(dim=1) # formatting pnt_n as a one-hot input. cpnt = torch.zeros(bS, mL_input).to(device) # cpnt = cpnt.scatter_(dim=1, index=pnt_n.unsqueeze(1), src=1).to(device) cpnt = cpnt.scatter_(1, pnt_n.unsqueeze(1), 1) cpnt = cpnt.unsqueeze(1) # --> [B * 4, 1, 200] t += 1 s_wv = torch.stack(s_wv_list, 1) # [B, s_wv = s_wv.squeeze(2) # # # Following lines seems to be unnecessary. # # Penalty to blank parts # for b, l_input1 in enumerate(l_input): # if l_input1 < mL_input: # s_wv[b, :, l_input1:] = -10000000000 return s_wv def EG_forward(self, wenc_s2s, l_input, cls_vec, pnt_start_tok, pnt_end_tok, i_sql_vocab, i_nlu, i_hds, # for EG tokens, nlu, nlu_t, hds, tt_to_t_idx, # for EG tb, engine, beam_size, beam_only=True): # Encode bS, mL_input, input_size = wenc_s2s.shape # reshape wenc_s2s to incorperate T later wenc_s2s = wenc_s2s.unsqueeze(1) # h_0 and c_0 from cls_vec # They are not bidirectional. h_0 = torch.zeros([self.num_layer, bS, self.hidden_size]).to(device) c_0 = torch.zeros([self.num_layer, bS, self.hidden_size]).to(device) for i_layer in range(self.num_layer): h_st = (2*i_layer)*self.hidden_size h_ed = h_st + self.hidden_size c_st = (2*i_layer+1)*self.hidden_size c_ed = c_st + self.hidden_size h_0[i_layer] = cls_vec[:, h_st:h_ed] # [ # of layers, batch, dim] c_0[i_layer] = cls_vec[:, c_st:c_ed] # [ # of layers, batch, dim] # initial (current) pointer pnt_list_beam = [] cpnt_beam = [] cpnt_h_beam = [] for i_beam in range(beam_size): pnt_list_beam1 = [] for b in range(bS): pnt_list_beam1.append( [ [pnt_start_tok], 0] ) pnt_list_beam.append(pnt_list_beam1) # initisl cpnt # Now, initialize pointer network. ipnt = wenc_s2s.new_zeros(bS, 1, mL_input).to(device) # [B, 1, 200] # Distort ipnt by i_bam on purpose to avoid initial duplication of beam-search ipnt[:, 0, pnt_start_tok] = 1 # 27 is of start token under current tokenization scheme cpnt_beam.append(ipnt) cpnt_h_beam.append( (h_0, c_0) ) t = 0 while t < self.Tmax: # s_wv1_beam = [] candidates = [ [] for b in range(bS) ] # [bS] # Generate beam for i_beam, cpnt in enumerate(cpnt_beam): cpnt_h = cpnt_h_beam[i_beam] pnt_list_beam1 = pnt_list_beam[i_beam] dec_pn, cpnt_h = self.decode_pn(cpnt, cpnt_h) # lstm cpnt_h_beam[i_beam] = cpnt_h # [B, 1, 100] -> [B, 1, 1, 100] dec_pn = dec_pn.unsqueeze(2) # [bS, T, input_size] # get score s_wv1 = self.wv_out( self.W_s2s(wenc_s2s) # [B, 1, mL_input, dim] + self.W_pnt(dec_pn) # [B, T=1, 1, dim] Now, T=1 ).squeeze(3) # s_wv = [B, 4, 1, mL_n, 1] = [batch, conds, token idx, score] # -> [B, 4, mL_n] # Masking -- for b, l_input1 in enumerate(l_input): if l_input1 < mL_input: s_wv1[b, :, l_input1:] = -10000000000 # Get the candidates only among the input space. prob, idxs = F.softmax(s_wv1.view(bS, -1), dim=1).topk(dim=1, k=max(l_input)) log_prob = torch.log(prob) # [bS, beam_size] for b, log_prob1 in enumerate(log_prob): pnt_list11, score = pnt_list_beam1[b] for i_can, log_prob11 in enumerate(log_prob1): # no update if last token was the end-token previous_pnt = pnt_list11[-1] if previous_pnt== pnt_end_tok: new_seq = pnt_list11 new_score = score else: new_seq = pnt_list11 + [idxs[b][i_can].item()] new_score = score + log_prob11.item() _candidate = [new_seq, new_score] candidates[b].append(_candidate) # Execution-guided beam filtering for b, candidates1 in enumerate(candidates): new_pnt_list_batch1 = sorted(candidates1, key=lambda list1: list1[-1], reverse=True) count = 0 selected_candidates1 = [] for new_pnt_list_batch11 in new_pnt_list_batch1: if new_pnt_list_batch11 not in selected_candidates1: if beam_only: selected_candidates1.append(new_pnt_list_batch11) pnt_list_beam[count][b] = new_pnt_list_batch11 count +=1 else: # Need to be modified here. executable = False testable = False pr_i_vg_list, pr_i_vg_sub_list = gen_i_vg_from_pnt_idxs([new_pnt_list_batch11[0]], [i_sql_vocab[b]], [i_nlu[b]], [i_hds[b]]) pr_sql_q_s2s, pr_sql_i = gen_sql_q_from_i_vg([tokens[b]], [nlu[b]], [nlu_t[b]], [hds[b]], [tt_to_t_idx[b]], pnt_start_tok, pnt_end_tok, [new_pnt_list_batch11[0]], pr_i_vg_list, pr_i_vg_sub_list) # check testability from select-clause try: # check whether basic elements presents in pr_sql_i # If so, it is testable. idx_agg = pr_sql_i[0]["agg"] idx_sel = pr_sql_i[0]["sel"] testable = True except: testable = False pass # check the presence of conds if testable: try: conds = pr_sql_i[0]["conds"] except: conds = [] try: pr_ans1 = engine.execute(tb[b]['id'], idx_sel, idx_agg, conds) executable = bool(pr_ans1) except: executable = False # if testable: if executable: add_candidate = True else: add_candidate = False else: add_candidate = True if add_candidate: selected_candidates1.append(new_pnt_list_batch11) pnt_list_beam[count][b] = new_pnt_list_batch11 count += 1 if count == beam_size: break if count < beam_size: # not executable at all.. # add junk sequence. for i_junk in range(count, beam_size): pnt_list_beam[i_junk][b] = [[pnt_end_tok],-9999999] # generate cpnt # formatting pnt_n as a one-hot input. for i_beam in range(beam_size): cpnt = torch.zeros(bS, mL_input).to(device) # cpnt = cpnt.scatter_(dim=1, index=pnt_n.unsqueeze(1), src=1).to(device) idx_batch = [seq_score[0][-1] for seq_score in pnt_list_beam[i_beam]] pnt_n = torch.tensor(idx_batch).to(device) cpnt = cpnt.scatter_(1, pnt_n.unsqueeze(1), 1) cpnt = cpnt.unsqueeze(1) # --> [B, t=1, mL_input] cpnt_beam[i_beam] = cpnt t += 1 # Generate best pr_pnt_list, p_tot pr_pnt_idxs = [] p_list = [] for b in range(bS): pnt_list_beam_best = pnt_list_beam[0] pr_pnt_idxs.append(pnt_list_beam_best[b][0]) p_list.append( pnt_list_beam_best[b][1]) return pr_pnt_idxs, p_list, pnt_list_beam # ============= Shallow-Layer =============== class FT_Scalar_1(nn.Module): """ Shallow-Layer """ def __init__(self, input_size, hidden_size, num_layer, dropout, n_cond_ops, n_agg_ops, old=False): super(FT_Scalar_1, self).__init__() self.input_size = input_size # input_size self.hidden_size = hidden_size self.num_layer = num_layer self.dropout = dropout self.n_cond_ops = n_cond_ops self.n_agg_ops = n_agg_ops self.n_where_num = 4 def scp(self, wemb_h, l_header): bS, max_header_len, _ = wemb_h.shape # s_sc s_sc = torch.zeros(bS, max_header_len).to(device) s_sc[:, :] = wemb_h[:, :, 0] # s_sc = [B, max_header length, 1] # s_sc[:,:] = F.tanh(wemb_h[:,:,0]) # s_sc = [B, max_header length, 1] # s_sc = s_sc.squeeze(2) # masking # print(f"s_sc {s_sc}") for b, l_header1 in enumerate(l_header): s_sc[b, l_header1:] = -9999999999.0 return s_sc def sap(self, wemb_h, pr_sc, idx_st, idx_ed): bS, max_header_len, _ = wemb_h.shape # select of aggregation operator s_sa = torch.zeros([bS, self.n_agg_ops]).to(device) for b, pr_sc1 in enumerate(pr_sc): s_sa[b,:] = wemb_h[b,pr_sc1,idx_st:idx_ed] return s_sa def wnp(self, cls_vec): bS = cls_vec.shape[0] # [B,hidden_size] -> [B, n_where_num+1] s_wn = torch.zeros(bS, (self.n_where_num + 1)).to(device) s_wn[:, :] = cls_vec[:, 0:(self.n_where_num + 1)] return s_wn def wcp(self, wemb_h, l_header, idx_st, idx_ed): bS, max_header_len, _ = wemb_h.shape s_wc = torch.zeros(bS, max_header_len, 1).to(device) s_wc[:, :, :] = wemb_h[:, :, idx_st:idx_ed] s_wc = s_wc.squeeze(2) # [B, max_header_length] # masking for b, l_header1 in enumerate(l_header): s_wc[b, l_header1:] = -99999999999.0 return s_wc def wop(self, wemb_h, pr_wc, idx_st, idx_ed): bS, max_header_len, _ = wemb_h.shape s_wo = torch.zeros([bS, self.n_where_num, self.n_cond_ops]).to(device) for b, pr_wc1 in enumerate(pr_wc): if len(pr_wc1) > 0: s_wo[b, 0:len(pr_wc1), :] = wemb_h[b, pr_wc1, idx_st:idx_ed] else: pass return s_wo def wvp(self, emb_question, len_question, pr_wc): bS, _, _ = emb_question.shape s_wv = torch.zeros([bS, self.n_where_num, max(len_question), 2]).to(device) for b, pr_wc1 in enumerate(pr_wc): if len(pr_wc1) > 0: # start logit s_wv[b, 0:len(pr_wc1), :, 0] = emb_question[b, :, pr_wc1].transpose(0, 1) # end logit s_wv[b, 0:len(pr_wc1), :, 1] = emb_question[b, :, [pr_wc11 + 100 for pr_wc11 in pr_wc1]].transpose(0, 1) else: pass # masking # penalty for spurious tokens for b, l_n1 in enumerate(len_question): if l_n1 < max(len_question): s_wv[b, :, l_n1:, :] = -1e+11 return s_wv def forward(self, emb_question, len_question, wemb_h, l_header, cls_vec, g_sc=None, g_sa=None, g_wn=None, g_wc=None, g_wo=None, g_wvi=None, show_p_sc=False, show_p_sa=False, show_p_wn=False, show_p_wc=False, show_p_wo=False, show_p_wv=False): # emb_question = [B, max_nlu_token_length, hidden_size] # here, # of target_layer is fixed to 1. # wemb_h = [B, max_header #, hidden_size] s_sc = self.scp(wemb_h, l_header) if g_sc: pr_sc = g_sc else: pr_sc = pred_sc(s_sc) # s_sa idx_st = 1 idx_ed = 1 + self.n_agg_ops s_sa = self.sap(wemb_h, pr_sc, idx_st, idx_ed) if g_sa: pr_sa = g_sa else: pr_sa = pred_sa(s_sa) # where_number s_wn = self.wnp(cls_vec) if g_wn: pr_wn = g_wn else: pr_wn = pred_wn(s_wn) # wc idx_st = idx_ed+1 idx_ed = idx_st+1 s_wc = self.wcp(wemb_h, l_header, idx_st, idx_ed) if g_wc: pr_wc = g_wc else: pr_wc = pred_wherecolumn(pr_wn, s_wc) # wo idx_st = idx_ed+1 idx_ed = idx_st + self.n_cond_ops s_wo = self.wop(wemb_h, pr_wc, idx_st, idx_ed) if g_wo: pr_wo = g_wo else: pr_wo = pred_wo(pr_wn, s_wo) # wv # s_wv = [bS, 4, mL, 2] s_wv = self.wvp(emb_question, len_question, pr_wc) # print(s_wv) # s_wv = F.tanh(s_wv) return s_sc, s_sa, s_wn, s_wc, s_wo, s_wv def forward_EG(self, emb_question, len_question, wemb_h, l_header, cls_vec, engine, tb, nlu_t, nlu_tt, tt_to_t_idx, nlu, beam_size=4): """ Execution-guided beam decoding. Essentially identical with that of NL2SQL Layer. """ # Select-clause prob_sca, pr_sc_best, pr_sa_best, \ p_sc_best, p_sa_best, p_select \ = self.EG_decoding_select(wemb_h, l_header, tb, beam_size=beam_size) # Where-clause prob_w, prob_wn_w, pr_wn_based_on_prob, pr_sql_i, pr_wvi_best, \ p_where, p_wn_best, p_wc_best, p_wo_best, p_wvi_best \ = self.EG_decoding_where(emb_question, len_question, wemb_h, l_header, cls_vec, engine, tb, nlu_t, nlu_tt, tt_to_t_idx, nlu, pr_sc_best, pr_sa_best, beam_size=4) p_tot = cal_prob_tot(p_select, p_where) return pr_sc_best, pr_sa_best, pr_wn_based_on_prob, pr_wvi_best, \ pr_sql_i, p_tot, p_select, p_where, p_sc_best, p_sa_best, \ p_wn_best, p_wc_best, p_wo_best, p_wvi_best def EG_decoding_select(self, wemb_h, l_header, tb, beam_size=4, show_p_sc=False, show_p_sa=False): # sc s_sc = self.scp(wemb_h, l_header) prob_sc = F.softmax(s_sc, dim=-1) bS, mcL = s_sc.shape # minimum_header_length = min(l_header) # beam_size = minimum_header_length if beam_size > minimum_header_length else beam_size # sa # Construct all possible sc_sa_score prob_sc_sa = torch.zeros([bS, beam_size, self.n_agg_ops]).to(device) score_sc_sa = torch.zeros([bS, beam_size, self.n_agg_ops]).to(device) prob_sca = torch.zeros_like(prob_sc_sa).to(device) # get the top-k indices. pr_sc_beam = [B, beam_size] pr_sc_beam = pred_sc_beam(s_sc, beam_size) # calculate and predict s_sa. idx_st = 1 idx_ed = 1 + self.n_agg_ops for i_beam in range(beam_size): pr_sc = list(array(pr_sc_beam)[:, i_beam]) s_sa = self.sap(wemb_h, pr_sc, idx_st, idx_ed) prob_sa = F.softmax(s_sa, dim=-1) prob_sc_sa[:, i_beam, :] = prob_sa score_sc_sa[:, i_beam, :] = s_sa prob_sc_selected = prob_sc[range(bS), pr_sc] # [B] prob_sca[:, i_beam, :] = (prob_sa.t() * prob_sc_selected).t() # [mcL, B] * [B] -> [mcL, B] (element-wise multiplication) # [mcL, B] -> [B, mcL] # Calculate the dimension of tensor # tot_dim = len(prob_sca.shape) idxs = topk_multi_dim(torch.tensor(prob_sca), n_topk=beam_size, batch_exist=True) # Now as sc_idx is already sorted, re-map them properly. idxs = remap_sc_idx(idxs, pr_sc_beam) # [sc_beam_idx, sa_idx] -> [sc_idx, sa_idx] idxs_arr = array(idxs) # [B, beam_size, remainig dim] # idxs[b][0] gives first probable [sc_idx, sa_idx] pairs. # idxs[b][1] gives of second. # Calculate prob_sca, a joint probability beam_idx_sca = [0] * bS beam_meet_the_final = [False] * bS while True: pr_sc = idxs_arr[range(bS), beam_idx_sca, 0] pr_sa = idxs_arr[range(bS), beam_idx_sca, 1] # map index properly check = check_sc_sa_pairs(tb, pr_sc, pr_sa) if sum(check) == bS: break else: for b, check1 in enumerate(check): if not check1: # wrong pair beam_idx_sca[b] += 1 if beam_idx_sca[b] >= beam_size: beam_meet_the_final[b] = True beam_idx_sca[b] -= 1 else: beam_meet_the_final[b] = True if sum(beam_meet_the_final) == bS: break # Now pr_sc, pr_sa are properly predicted. pr_sc_best = list(pr_sc) pr_sa_best = list(pr_sa) # output for later analysis. p_sc_best = cal_prob_sc(s_sc, pr_sc_best) p_sa_best = cal_prob_sa(score_sc_sa[range(bS), beam_idx_sca, :].squeeze(1), pr_sa_best) p_select = cal_prob_select(p_sc_best, p_sa_best) # p_select = prob_sca[range(bS),beam_idx_sca,pr_sa_best].detach().to('cpu').numpy() return prob_sca, pr_sc_best, pr_sa_best, p_sc_best, p_sa_best, p_select def EG_decoding_where(self, emb_question, len_question, wemb_h, l_header, cls_vec, engine, tb, nlu_t, nlu_wp_t, tt_to_t_idx, nlu, pr_sc_best, pr_sa_best, beam_size=4, show_p_wn=False, show_p_wc=False, show_p_wo=False, show_p_wv=False): bS, max_header_len, _ = wemb_h.shape # Now, Where-clause beam search. idx_st = 1 idx_ed = 1 + self.n_agg_ops s_wn = self.wnp(cls_vec) prob_wn = F.softmax(s_wn, dim=-1).detach().to('cpu').numpy() # Found "executable" most likely 4(=max_num_of_conditions) where-clauses. # wc idx_st = idx_ed + 1 idx_ed = idx_st + 1 s_wc = self.wcp(wemb_h, l_header, idx_st, idx_ed) prob_wc = torch.sigmoid(s_wc).detach().to('cpu').numpy() # pr_wc_sorted_by_prob = pred_wc_sorted_by_prob(s_wc) # get max_wn # of most probable columns & their prob. pr_wn_max = [self.n_where_num] * bS pr_wc_max = pred_wherecolumn(pr_wn_max, s_wc) # if some column do not have executable where-claouse, omit that column prob_wc_max = zeros([bS, self.n_where_num]) for b, pr_wc_max1 in enumerate(pr_wc_max): prob_wc_max[b, :] = prob_wc[b, pr_wc_max1] # get most probable n_where_num where-clouses # wo idx_st = idx_ed + 1 idx_ed = idx_st + self.n_cond_ops s_wo_max = self.wop(wemb_h, pr_wc_max, idx_st, idx_ed) prob_wo_max = F.softmax(s_wo_max, dim=-1).detach().to('cpu').numpy() # [B, n_where_num, n_cond_op] pr_wvi_beam_op_list = [] prob_wvi_beam_op_list = [] prob_wvi_beam_st_op_list = [] prob_wvi_beam_ed_op_list = [] # To re-use code, repeat the calculation unnecessarily. for i_op in range(self.n_cond_ops - 1): pr_wo_temp = [[i_op] * self.n_where_num] * bS # wv s_wv = self.wvp(emb_question, len_question, pr_wc_max) prob_wv = F.softmax(s_wv, dim=-2).detach().to('cpu').numpy() # prob_wv pr_wvi_beam, prob_wvi_beam, prob_wvi_beam_st, prob_wvi_beam_ed = pred_wvi_se_beam(self.n_where_num, s_wv, beam_size) pr_wvi_beam_op_list.append(pr_wvi_beam) prob_wvi_beam_op_list.append(prob_wvi_beam) prob_wvi_beam_st_op_list.append(prob_wvi_beam_st) prob_wvi_beam_ed_op_list.append(prob_wvi_beam_ed) # pr_wvi_beam = [B, n_where_num, k_logit**2 [st, ed] paris] # pred_wv_beam # Calculate joint probability of where-clause # prob_w = [batch, wc, wo, wv] = [B, n_where_num, n_cond_op, n_pairs] n_wv_beam_pairs = prob_wvi_beam.shape[2] prob_w = zeros([bS, self.n_where_num, self.n_cond_ops - 1, n_wv_beam_pairs]) prob_wc_dupl = zeros([bS, self.n_where_num, self.n_cond_ops - 1, n_wv_beam_pairs]) prob_wo_dupl = zeros([bS, self.n_where_num, self.n_cond_ops - 1, n_wv_beam_pairs]) prob_wvi_st_dupl = zeros([bS, self.n_where_num, self.n_cond_ops - 1, n_wv_beam_pairs]) prob_wvi_ed_dupl = zeros([bS, self.n_where_num, self.n_cond_ops - 1, n_wv_beam_pairs]) for b in range(bS): for i_wn in range(self.n_where_num): for i_op in range(self.n_cond_ops - 1): # do not use final one p_wc = prob_wc_max[b, i_wn] for i_wv_beam in range(n_wv_beam_pairs): # i_wc = pr_wc_max[b][i_wn] # already done p_wo = prob_wo_max[b, i_wn, i_op] p_wv = prob_wvi_beam_op_list[i_op][b, i_wn, i_wv_beam] prob_w[b, i_wn, i_op, i_wv_beam] = p_wc * p_wo * p_wv prob_wc_dupl[b, i_wn, i_op, i_wv_beam] = p_wc prob_wo_dupl[b, i_wn, i_op, i_wv_beam] = p_wo p_wv_st = prob_wvi_beam_st_op_list[i_op][b, i_wn, i_wv_beam] p_wv_ed = prob_wvi_beam_ed_op_list[i_op][b, i_wn, i_wv_beam] prob_wvi_st_dupl[b, i_wn, i_op, i_wv_beam] = p_wv_st prob_wvi_ed_dupl[b, i_wn, i_op, i_wv_beam] = p_wv_ed # Perform execution guided decoding conds_max = [] prob_conds_max = [] # while len(conds_max) < self.n_where_num: idxs = topk_multi_dim(torch.tensor(prob_w), n_topk=beam_size, batch_exist=True) # idxs = [B, i_wc_beam, i_op, i_wv_pairs] # Construct conds1. Collect only executable one. It is descending order of the probability. pr_wvi_max = [] p_wc_max = [] p_wo_max = [] p_wvi_max = [] for b, idxs1 in enumerate(idxs): conds_max1 = [] prob_conds_max1 = [] pr_wvi1_max = [] p_wc1_max = [] p_wo1_max = [] p_wvi1_max = [] for i_wn, idxs11 in enumerate(idxs1): i_wc = pr_wc_max[b][idxs11[0]] i_op = idxs11[1] wvi = pr_wvi_beam_op_list[i_op][b][idxs11[0]][idxs11[2]] # idx11[0] # get wv_str temp_pr_wv_str, _ = convert_pred_wvi_to_string([[wvi]], [nlu_t[b]], [nlu_wp_t[b]], [tt_to_t_idx[b]], [nlu[b]]) merged_wv11 = merge_wv_t1_eng(temp_pr_wv_str[0][0], nlu[b]) conds11 = [i_wc, i_op, merged_wv11] prob_conds11 = prob_w[b, idxs11[0], idxs11[1], idxs11[2]] p_wc11_max = prob_wc_dupl[b, idxs11[0], idxs11[1], idxs11[2]] p_wo11_max = prob_wo_dupl[b, idxs11[0], idxs11[1], idxs11[2]] p_wvi11_max = [ prob_wvi_st_dupl[b, idxs11[0], idxs11[1], idxs11[2]], prob_wvi_ed_dupl[b, idxs11[0], idxs11[1], idxs11[2]] ] # test execution # print(nlu[b]) # print(tb[b]['id'], tb[b]['types'], pr_sc[b], pr_sa[b], [conds11]) pr_ans = engine.execute(tb[b]['id'], pr_sc_best[b], pr_sa_best[b], [conds11]) if bool(pr_ans): # pr_ans is not empty! conds_max1.append(conds11) prob_conds_max1.append(prob_conds11) pr_wvi1_max.append(wvi) p_wc1_max.append(p_wc11_max) p_wo1_max.append(p_wo11_max) p_wvi1_max.append(p_wvi11_max) conds_max.append(conds_max1) prob_conds_max.append(prob_conds_max1) pr_wvi_max.append(pr_wvi1_max) p_wc_max.append(p_wc1_max) p_wo_max.append(p_wo1_max) p_wvi_max.append(p_wvi1_max) # May need to do more exhuastive search? # i.e. up to.. getting all executable cases. # Calculate total probability to decide the number of where-clauses pr_sql_i = [] prob_wn_w = [] # total where-clause probability pr_wn_based_on_prob = [] pr_wvi_best = [] p_wc = [] p_wo = [] p_wvi = [] for b, prob_wn1 in enumerate(prob_wn): max_executable_wn1 = len(conds_max[b]) prob_wn_w1 = [] prob_wn_w1.append(prob_wn1[0]) # wn=0 case. for i_wn in range(max_executable_wn1): prob_wn_w11 = prob_wn1[i_wn + 1] * prob_conds_max[b][i_wn] prob_wn_w1.append(prob_wn_w11) pr_wn_based_on_prob.append(argmax(prob_wn_w1)) prob_wn_w.append(prob_wn_w1) pr_sql_i1 = {'agg': pr_sa_best[b], 'sel': pr_sc_best[b], 'conds': conds_max[b][:pr_wn_based_on_prob[b]]} pr_wvi_best1 = pr_wvi_max[b][:pr_wn_based_on_prob[b]] pr_sql_i.append(pr_sql_i1) pr_wvi_best.append(pr_wvi_best1) p_wc.append( p_wc_max[b][:pr_wn_based_on_prob[b]] ) p_wo.append( p_wo_max[b][:pr_wn_based_on_prob[b]] ) p_wvi.append( p_wvi_max[b][:pr_wn_based_on_prob[b]] ) # s_wv = [B, n_where_num, max_nlu_tokens, 2] p_wn = cal_prob_wn(s_wn, pr_wn_based_on_prob) p_where = cal_prob_where(p_wn, p_wc, p_wo, p_wvi) return prob_w, prob_wn_w, pr_wn_based_on_prob, pr_sql_i, pr_wvi_best, \ p_where, p_wn, p_wc, p_wo, p_wvi def Loss_s2s(score, g_pnt_idxs): """ score = [B, T, max_seq_length] """ # WHERE string part loss = 0 for b, g_pnt_idxs1 in enumerate(g_pnt_idxs): ed = len(g_pnt_idxs1) - 1 score_part = score[b, :ed] loss += F.cross_entropy(score_part, torch.tensor(g_pnt_idxs1[1:]).to(device)) # +1 shift. return loss
39.419083
161
0.555163
10,973
74,778
3.441903
0.05313
0.039187
0.02187
0.018005
0.766522
0.732075
0.704671
0.683595
0.661115
0.641284
0
0.030277
0.333948
74,778
1,896
162
39.439873
0.728025
0.168378
0
0.597066
0
0
0.006951
0
0
0
0
0
0
1
0.035375
false
0.002588
0.006903
0
0.077653
0
0
0
0
null
0
0
0
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
3
d9f32d2b9e677d6893c7269bf23bcedaa4e7f68a
363
py
Python
chia/components/sample_transformers/__init__.py
cabrust/chia
3eaf815b261dc8a85d64fd698e0079515ec0dde9
[ "BSD-3-Clause" ]
null
null
null
chia/components/sample_transformers/__init__.py
cabrust/chia
3eaf815b261dc8a85d64fd698e0079515ec0dde9
[ "BSD-3-Clause" ]
2
2021-10-06T13:19:09.000Z
2021-10-20T17:32:36.000Z
chia/components/sample_transformers/__init__.py
cabrust/chia
3eaf815b261dc8a85d64fd698e0079515ec0dde9
[ "BSD-3-Clause" ]
null
null
null
from chia import components from chia.components.sample_transformers import identity from chia.components.sample_transformers.sample_transformer import SampleTransformer class SampleTransformerFactory(components.Factory): name_to_class_mapping = {"identity": identity.IdentitySampleTransformer} __all__ = ["SampleTransformer", "SampleTransformerFactory"]
33
84
0.85124
34
363
8.794118
0.5
0.080268
0.120401
0.160535
0.240803
0
0
0
0
0
0
0
0.082645
363
10
85
36.3
0.897898
0
0
0
0
0
0.134986
0.066116
0
0
0
0
0
1
0
false
0
0.5
0
0.833333
0
0
0
0
null
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
3
d9f3cb72d610ec30e4ecf05d60ba2025dc849112
416
py
Python
3/3.6/add_guest.py
singi2016cn/python-scaffold
274e508d1919da67e599aa73be139800c043bce4
[ "MIT" ]
null
null
null
3/3.6/add_guest.py
singi2016cn/python-scaffold
274e508d1919da67e599aa73be139800c043bce4
[ "MIT" ]
null
null
null
3/3.6/add_guest.py
singi2016cn/python-scaffold
274e508d1919da67e599aa73be139800c043bce4
[ "MIT" ]
null
null
null
# 添加嘉宾 names = [] names.append('singi') names.append('lily') names.append('sam') print('I find a big dining-table,I can invite more friends.') names.insert(0, 'xiaoling') names.insert(2, 'fangsi') names.append('zhangqing') greets = ',would you like to have dinner with me ?' print(names[0]+greets) print(names[1]+greets) print(names[2]+greets) print(names[3]+greets) print(names[4]+greets) print(names[5]+greets)
20.8
61
0.711538
67
416
4.41791
0.537313
0.202703
0.27027
0
0
0
0
0
0
0
0
0.02139
0.100962
416
20
62
20.8
0.770053
0.009615
0
0
0
0
0.309002
0
0
0
0
0
0
1
0
false
0
0
0
0
0.466667
0
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
1
0
3
8a03248b6fead646cb68e7a6a935435de664969c
14,492
py
Python
anaconda-mode/0.1.13/jedi-0.15.1-py3.7.egg/jedi/evaluate/base_context.py
space-scl/emacs.d
6285c38714023b72a023fe24cbcb5e4fcdcdb949
[ "Apache-2.0" ]
4
2019-07-26T11:32:22.000Z
2019-09-11T05:34:59.000Z
anaconda-mode/0.1.13/jedi-0.15.1-py3.7.egg/jedi/evaluate/base_context.py
space-scl/emacs.d
6285c38714023b72a023fe24cbcb5e4fcdcdb949
[ "Apache-2.0" ]
10
2020-05-11T20:29:28.000Z
2022-01-13T01:41:27.000Z
anaconda-mode/0.1.13/jedi-0.15.1-py3.7.egg/jedi/evaluate/base_context.py
space-scl/emacs.d
6285c38714023b72a023fe24cbcb5e4fcdcdb949
[ "Apache-2.0" ]
2
2019-08-28T14:57:54.000Z
2019-11-26T16:18:30.000Z
""" Contexts are the "values" that Python would return. However Contexts are at the same time also the "contexts" that a user is currently sitting in. A ContextSet is typically used to specify the return of a function or any other static analysis operation. In jedi there are always multiple returns and not just one. """ from functools import reduce from operator import add from parso.python.tree import ExprStmt, SyncCompFor from jedi import debug from jedi._compatibility import zip_longest, unicode from jedi.parser_utils import clean_scope_docstring from jedi.common import BaseContextSet, BaseContext from jedi.evaluate.helpers import SimpleGetItemNotFound from jedi.evaluate.utils import safe_property from jedi.evaluate.cache import evaluator_as_method_param_cache from jedi.cache import memoize_method _sentinel = object() class HelperContextMixin(object): def get_root_context(self): context = self while True: if context.parent_context is None: return context context = context.parent_context @classmethod @evaluator_as_method_param_cache() def create_cached(cls, *args, **kwargs): return cls(*args, **kwargs) def execute(self, arguments): return self.evaluator.execute(self, arguments=arguments) def execute_evaluated(self, *value_list): from jedi.evaluate.arguments import ValuesArguments arguments = ValuesArguments([ContextSet([value]) for value in value_list]) return self.evaluator.execute(self, arguments) def execute_annotation(self): return self.execute_evaluated() def gather_annotation_classes(self): return ContextSet([self]) def merge_types_of_iterate(self, contextualized_node=None, is_async=False): return ContextSet.from_sets( lazy_context.infer() for lazy_context in self.iterate(contextualized_node, is_async) ) def py__getattribute__(self, name_or_str, name_context=None, position=None, search_global=False, is_goto=False, analysis_errors=True): """ :param position: Position of the last statement -> tuple of line, column """ if name_context is None: name_context = self from jedi.evaluate import finder f = finder.NameFinder(self.evaluator, self, name_context, name_or_str, position, analysis_errors=analysis_errors) filters = f.get_filters(search_global) if is_goto: return f.filter_name(filters) return f.find(filters, attribute_lookup=not search_global) def py__await__(self): await_context_set = self.py__getattribute__(u"__await__") if not await_context_set: debug.warning('Tried to run __await__ on context %s', self) return await_context_set.execute_evaluated() def eval_node(self, node): return self.evaluator.eval_element(self, node) def create_context(self, node, node_is_context=False, node_is_object=False): return self.evaluator.create_context(self, node, node_is_context, node_is_object) def iterate(self, contextualized_node=None, is_async=False): debug.dbg('iterate %s', self) if is_async: from jedi.evaluate.lazy_context import LazyKnownContexts # TODO if no __aiter__ contexts are there, error should be: # TypeError: 'async for' requires an object with __aiter__ method, got int return iter([ LazyKnownContexts( self.py__getattribute__('__aiter__').execute_evaluated() .py__getattribute__('__anext__').execute_evaluated() .py__getattribute__('__await__').execute_evaluated() .py__stop_iteration_returns() ) # noqa ]) return self.py__iter__(contextualized_node) def is_sub_class_of(self, class_context): for cls in self.py__mro__(): if cls.is_same_class(class_context): return True return False def is_same_class(self, class2): # Class matching should prefer comparisons that are not this function. if type(class2).is_same_class != HelperContextMixin.is_same_class: return class2.is_same_class(self) return self == class2 class Context(HelperContextMixin, BaseContext): """ Should be defined, otherwise the API returns empty types. """ predefined_names = {} """ To be defined by subclasses. """ tree_node = None @property def api_type(self): # By default just lower name of the class. Can and should be # overwritten. return self.__class__.__name__.lower() def py__getitem__(self, index_context_set, contextualized_node): from jedi.evaluate import analysis # TODO this context is probably not right. analysis.add( contextualized_node.context, 'type-error-not-subscriptable', contextualized_node.node, message="TypeError: '%s' object is not subscriptable" % self ) return NO_CONTEXTS def py__iter__(self, contextualized_node=None): if contextualized_node is not None: from jedi.evaluate import analysis analysis.add( contextualized_node.context, 'type-error-not-iterable', contextualized_node.node, message="TypeError: '%s' object is not iterable" % self) return iter([]) def get_signatures(self): return [] def is_class(self): return False def is_instance(self): return False def is_function(self): return False def is_module(self): return False def is_namespace(self): return False def is_compiled(self): return False def is_bound_method(self): return False def py__bool__(self): """ Since Wrapper is a super class for classes, functions and modules, the return value will always be true. """ return True def py__doc__(self): try: self.tree_node.get_doc_node except AttributeError: return '' else: return clean_scope_docstring(self.tree_node) return None def get_safe_value(self, default=_sentinel): if default is _sentinel: raise ValueError("There exists no safe value for context %s" % self) return default def py__call__(self, arguments): debug.warning("no execution possible %s", self) return NO_CONTEXTS def py__stop_iteration_returns(self): debug.warning("Not possible to return the stop iterations of %s", self) return NO_CONTEXTS def get_qualified_names(self): # Returns Optional[Tuple[str, ...]] return None def is_stub(self): # The root context knows if it's a stub or not. return self.parent_context.is_stub() def iterate_contexts(contexts, contextualized_node=None, is_async=False): """ Calls `iterate`, on all contexts but ignores the ordering and just returns all contexts that the iterate functions yield. """ return ContextSet.from_sets( lazy_context.infer() for lazy_context in contexts.iterate(contextualized_node, is_async=is_async) ) class _ContextWrapperBase(HelperContextMixin): predefined_names = {} @safe_property def name(self): from jedi.evaluate.names import ContextName wrapped_name = self._wrapped_context.name if wrapped_name.tree_name is not None: return ContextName(self, wrapped_name.tree_name) else: from jedi.evaluate.compiled import CompiledContextName return CompiledContextName(self, wrapped_name.string_name) @classmethod @evaluator_as_method_param_cache() def create_cached(cls, evaluator, *args, **kwargs): return cls(*args, **kwargs) def __getattr__(self, name): assert name != '_wrapped_context', 'Problem with _get_wrapped_context' return getattr(self._wrapped_context, name) class LazyContextWrapper(_ContextWrapperBase): @safe_property @memoize_method def _wrapped_context(self): with debug.increase_indent_cm('Resolve lazy context wrapper'): return self._get_wrapped_context() def __repr__(self): return '<%s>' % (self.__class__.__name__) def _get_wrapped_context(self): raise NotImplementedError class ContextWrapper(_ContextWrapperBase): def __init__(self, wrapped_context): self._wrapped_context = wrapped_context def __repr__(self): return '%s(%s)' % (self.__class__.__name__, self._wrapped_context) class TreeContext(Context): def __init__(self, evaluator, parent_context, tree_node): super(TreeContext, self).__init__(evaluator, parent_context) self.predefined_names = {} self.tree_node = tree_node def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.tree_node) class ContextualizedNode(object): def __init__(self, context, node): self.context = context self.node = node def get_root_context(self): return self.context.get_root_context() def infer(self): return self.context.eval_node(self.node) def __repr__(self): return '<%s: %s in %s>' % (self.__class__.__name__, self.node, self.context) class ContextualizedName(ContextualizedNode): # TODO merge with TreeNameDefinition?! @property def name(self): return self.node def assignment_indexes(self): """ Returns an array of tuple(int, node) of the indexes that are used in tuple assignments. For example if the name is ``y`` in the following code:: x, (y, z) = 2, '' would result in ``[(1, xyz_node), (0, yz_node)]``. When searching for b in the case ``a, *b, c = [...]`` it will return:: [(slice(1, -1), abc_node)] """ indexes = [] is_star_expr = False node = self.node.parent compare = self.node while node is not None: if node.type in ('testlist', 'testlist_comp', 'testlist_star_expr', 'exprlist'): for i, child in enumerate(node.children): if child == compare: index = int(i / 2) if is_star_expr: from_end = int((len(node.children) - i) / 2) index = slice(index, -from_end) indexes.insert(0, (index, node)) break else: raise LookupError("Couldn't find the assignment.") is_star_expr = False elif node.type == 'star_expr': is_star_expr = True elif isinstance(node, (ExprStmt, SyncCompFor)): break compare = node node = node.parent return indexes def _getitem(context, index_contexts, contextualized_node): from jedi.evaluate.context.iterable import Slice # The actual getitem call. simple_getitem = getattr(context, 'py__simple_getitem__', None) result = NO_CONTEXTS unused_contexts = set() for index_context in index_contexts: if simple_getitem is not None: index = index_context if isinstance(index_context, Slice): index = index.obj try: method = index.get_safe_value except AttributeError: pass else: index = method(default=None) if type(index) in (float, int, str, unicode, slice, bytes): try: result |= simple_getitem(index) continue except SimpleGetItemNotFound: pass unused_contexts.add(index_context) # The index was somehow not good enough or simply a wrong type. # Therefore we now iterate through all the contexts and just take # all results. if unused_contexts or not index_contexts: result |= context.py__getitem__( ContextSet(unused_contexts), contextualized_node ) debug.dbg('py__getitem__ result: %s', result) return result class ContextSet(BaseContextSet): def py__class__(self): return ContextSet(c.py__class__() for c in self._set) def iterate(self, contextualized_node=None, is_async=False): from jedi.evaluate.lazy_context import get_merged_lazy_context type_iters = [c.iterate(contextualized_node, is_async=is_async) for c in self._set] for lazy_contexts in zip_longest(*type_iters): yield get_merged_lazy_context( [l for l in lazy_contexts if l is not None] ) def execute(self, arguments): return ContextSet.from_sets(c.evaluator.execute(c, arguments) for c in self._set) def execute_evaluated(self, *args, **kwargs): return ContextSet.from_sets(c.execute_evaluated(*args, **kwargs) for c in self._set) def py__getattribute__(self, *args, **kwargs): if kwargs.get('is_goto'): return reduce(add, [c.py__getattribute__(*args, **kwargs) for c in self._set], []) return ContextSet.from_sets(c.py__getattribute__(*args, **kwargs) for c in self._set) def get_item(self, *args, **kwargs): return ContextSet.from_sets(_getitem(c, *args, **kwargs) for c in self._set) def try_merge(self, function_name): context_set = self.__class__([]) for c in self._set: try: method = getattr(c, function_name) except AttributeError: pass else: context_set |= method() return context_set def gather_annotation_classes(self): return ContextSet.from_sets([c.gather_annotation_classes() for c in self._set]) def get_signatures(self): return [sig for c in self._set for sig in c.get_signatures()] NO_CONTEXTS = ContextSet([]) def iterator_to_context_set(func): def wrapper(*args, **kwargs): return ContextSet(func(*args, **kwargs)) return wrapper
33.162471
94
0.637524
1,718
14,492
5.089639
0.185681
0.030878
0.021958
0.011436
0.237077
0.180009
0.141468
0.087374
0.064959
0.042543
0
0.001151
0.280638
14,492
436
95
33.238532
0.837602
0.110199
0
0.248322
0
0
0.045142
0.004025
0
0
0
0.006881
0.003356
1
0.204698
false
0.010067
0.067114
0.110738
0.526846
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
1
0
0
3
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
27