Dataset Viewer
Auto-converted to Parquet
hexsha
string
size
int64
ext
string
lang
string
max_stars_repo_path
string
max_stars_repo_name
string
max_stars_repo_head_hexsha
string
max_stars_repo_licenses
list
max_stars_count
int64
max_stars_repo_stars_event_min_datetime
string
max_stars_repo_stars_event_max_datetime
string
max_issues_repo_path
string
max_issues_repo_name
string
max_issues_repo_head_hexsha
string
max_issues_repo_licenses
list
max_issues_count
int64
max_issues_repo_issues_event_min_datetime
string
max_issues_repo_issues_event_max_datetime
string
max_forks_repo_path
string
max_forks_repo_name
string
max_forks_repo_head_hexsha
string
max_forks_repo_licenses
list
max_forks_count
int64
max_forks_repo_forks_event_min_datetime
string
max_forks_repo_forks_event_max_datetime
string
content
string
avg_line_length
float64
max_line_length
int64
alphanum_fraction
float64
qsc_code_num_words_quality_signal
int64
qsc_code_num_chars_quality_signal
float64
qsc_code_mean_word_length_quality_signal
float64
qsc_code_frac_words_unique_quality_signal
float64
qsc_code_frac_chars_top_2grams_quality_signal
float64
qsc_code_frac_chars_top_3grams_quality_signal
float64
qsc_code_frac_chars_top_4grams_quality_signal
float64
qsc_code_frac_chars_dupe_5grams_quality_signal
float64
qsc_code_frac_chars_dupe_6grams_quality_signal
float64
qsc_code_frac_chars_dupe_7grams_quality_signal
float64
qsc_code_frac_chars_dupe_8grams_quality_signal
float64
qsc_code_frac_chars_dupe_9grams_quality_signal
float64
qsc_code_frac_chars_dupe_10grams_quality_signal
float64
qsc_code_frac_chars_replacement_symbols_quality_signal
float64
qsc_code_frac_chars_digital_quality_signal
float64
qsc_code_frac_chars_whitespace_quality_signal
float64
qsc_code_size_file_byte_quality_signal
float64
qsc_code_num_lines_quality_signal
float64
qsc_code_num_chars_line_max_quality_signal
float64
qsc_code_num_chars_line_mean_quality_signal
float64
qsc_code_frac_chars_alphabet_quality_signal
float64
qsc_code_frac_chars_comments_quality_signal
float64
qsc_code_cate_xml_start_quality_signal
float64
qsc_code_frac_lines_dupe_lines_quality_signal
float64
qsc_code_cate_autogen_quality_signal
float64
qsc_code_frac_lines_long_string_quality_signal
float64
qsc_code_frac_chars_string_length_quality_signal
float64
qsc_code_frac_chars_long_word_length_quality_signal
float64
qsc_code_frac_lines_string_concat_quality_signal
float64
qsc_code_cate_encoded_data_quality_signal
float64
qsc_code_frac_chars_hex_words_quality_signal
float64
qsc_code_frac_lines_prompt_comments_quality_signal
float64
qsc_code_frac_lines_assert_quality_signal
float64
qsc_codepython_cate_ast_quality_signal
float64
qsc_codepython_frac_lines_func_ratio_quality_signal
float64
qsc_codepython_cate_var_zero_quality_signal
bool
qsc_codepython_frac_lines_pass_quality_signal
float64
qsc_codepython_frac_lines_import_quality_signal
float64
qsc_codepython_frac_lines_simplefunc_quality_signal
float64
qsc_codepython_score_lines_no_logic_quality_signal
float64
qsc_codepython_frac_lines_print_quality_signal
float64
qsc_code_num_words
int64
qsc_code_num_chars
int64
qsc_code_mean_word_length
int64
qsc_code_frac_words_unique
null
qsc_code_frac_chars_top_2grams
int64
qsc_code_frac_chars_top_3grams
int64
qsc_code_frac_chars_top_4grams
int64
qsc_code_frac_chars_dupe_5grams
int64
qsc_code_frac_chars_dupe_6grams
int64
qsc_code_frac_chars_dupe_7grams
int64
qsc_code_frac_chars_dupe_8grams
int64
qsc_code_frac_chars_dupe_9grams
int64
qsc_code_frac_chars_dupe_10grams
int64
qsc_code_frac_chars_replacement_symbols
int64
qsc_code_frac_chars_digital
int64
qsc_code_frac_chars_whitespace
int64
qsc_code_size_file_byte
int64
qsc_code_num_lines
int64
qsc_code_num_chars_line_max
int64
qsc_code_num_chars_line_mean
int64
qsc_code_frac_chars_alphabet
int64
qsc_code_frac_chars_comments
int64
qsc_code_cate_xml_start
int64
qsc_code_frac_lines_dupe_lines
int64
qsc_code_cate_autogen
int64
qsc_code_frac_lines_long_string
int64
qsc_code_frac_chars_string_length
int64
qsc_code_frac_chars_long_word_length
int64
qsc_code_frac_lines_string_concat
null
qsc_code_cate_encoded_data
int64
qsc_code_frac_chars_hex_words
int64
qsc_code_frac_lines_prompt_comments
int64
qsc_code_frac_lines_assert
int64
qsc_codepython_cate_ast
int64
qsc_codepython_frac_lines_func_ratio
int64
qsc_codepython_cate_var_zero
int64
qsc_codepython_frac_lines_pass
int64
qsc_codepython_frac_lines_import
int64
qsc_codepython_frac_lines_simplefunc
int64
qsc_codepython_score_lines_no_logic
int64
qsc_codepython_frac_lines_print
int64
effective
string
hits
int64
d9a00b2c6f1a0e88ad5b4a7def2a45bd074f417f
3,880
py
Python
pypagai/models/model_lstm.py
gcouti/pypagAI
d08fac95361dcc036d890a88cb86ce090322a612
[ "Apache-2.0" ]
1
2018-07-24T18:53:26.000Z
2018-07-24T18:53:26.000Z
pypagai/models/model_lstm.py
gcouti/pypagAI
d08fac95361dcc036d890a88cb86ce090322a612
[ "Apache-2.0" ]
7
2020-01-28T21:45:14.000Z
2022-03-11T23:20:53.000Z
pypagai/models/model_lstm.py
gcouti/pypagAI
d08fac95361dcc036d890a88cb86ce090322a612
[ "Apache-2.0" ]
null
null
null
from keras import Model, Input from keras.layers import Dense, concatenate, LSTM, Reshape, Permute, Embedding, Dropout, Convolution1D, Flatten from keras.optimizers import Adam from pypagai.models.base import KerasModel class SimpleLSTM(KerasModel): """ Use a simple lstm neural network """ @staticmethod def default_config(): config = KerasModel.default_config() config['hidden'] = 32 return config def __init__(self, cfg): super().__init__(cfg) self._cfg_ = cfg def _create_network_(self): hidden = self._cfg_['hidden'] story = Input((self._story_maxlen, ), name='story') question = Input((self._query_maxlen, ), name='question') conc = concatenate([story, question],) conc = Reshape((1, int(conc.shape[1])))(conc) conc = Permute((2, 1))(conc) response = LSTM(hidden, dropout=0.2, recurrent_dropout=0.2)(conc) response = Dense(self._vocab_size, activation='softmax')(response) self._model = Model(inputs=[story, question], outputs=response) self._model.compile(optimizer=Adam(lr=2e-4), loss='sparse_categorical_crossentropy', metrics=['accuracy']) class EmbedLSTM(KerasModel): """ Use a simple lstm neural network """ @staticmethod def default_config(): config = KerasModel.default_config() config['hidden'] = 32 return config def __init__(self, cfg): super().__init__(cfg) self._cfg_ = cfg def _create_network_(self): hidden = self._cfg_['hidden'] story = Input((self._story_maxlen, ), name='story') question = Input((self._query_maxlen, ), name='question') eb_story = Embedding(self._vocab_size, 64)(story) eb_story = Dropout(0.3)(eb_story) eb_question = Embedding(self._vocab_size, 64)(question) eb_question = Dropout(0.3)(eb_question) conc = concatenate([eb_story, eb_question], axis=1) response = LSTM(hidden, dropout=0.2, recurrent_dropout=0.2)(conc) response = Dense(self._vocab_size, activation='softmax')(response) self._model = Model(inputs=[story, question], outputs=response) self._model.compile(optimizer=Adam(lr=2e-4), loss='sparse_categorical_crossentropy', metrics=['accuracy']) class ConvLSTM(KerasModel): """ Use a simple lstm neural network """ @staticmethod def default_config(): config = KerasModel.default_config() config['hidden'] = 32 return config def __init__(self, model_cfg): super().__init__(model_cfg) self._cfg = model_cfg def _create_network_(self): hidden = self._cfg['hidden'] story = Input((self._story_maxlen, ), name='story') question = Input((self._query_maxlen, ), name='question') eb_story = Embedding(self._vocab_size, 64)(story) eb_story = Convolution1D(64, 3, padding='same')(eb_story) eb_story = Convolution1D(32, 3, padding='same')(eb_story) eb_story = Convolution1D(16, 3, padding='same')(eb_story) # eb_story = Flatten()(eb_story) eb_question = Embedding(self._vocab_size, 64)(question) eb_question = Convolution1D(64, 3, padding='same')(eb_question) eb_question = Convolution1D(32, 3, padding='same')(eb_question) eb_question = Convolution1D(16, 3, padding='same')(eb_question) # eb_question = Flatten()(eb_question) conc = concatenate([eb_story, eb_question], axis=1) response = LSTM(hidden, dropout=0.2, recurrent_dropout=0.2)(conc) response = Dense(self._vocab_size, activation='softmax')(response) self._model = Model(inputs=[story, question], outputs=response) self._model.compile(optimizer=Adam(lr=2e-4), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
33.162393
114
0.650773
460
3,880
5.226087
0.171739
0.040765
0.037854
0.034942
0.851498
0.851498
0.835691
0.811564
0.741681
0.741681
0
0.022069
0.217526
3,880
116
115
33.448276
0.769763
0.043041
0
0.694444
0
0
0.064648
0.025368
0
0
0
0
0
1
0.125
false
0
0.055556
0
0.263889
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
d9fe73cee8f0ad5d98f81eb365b256cba7970cbe
13,093
gyp
Python
third_party/protobuf/protobuf.gyp
meego-tablet-ux/meego-app-browser
0f4ef17bd4b399c9c990a2f6ca939099495c2b9c
[ "BSD-3-Clause" ]
1
2015-10-12T09:14:22.000Z
2015-10-12T09:14:22.000Z
third_party/protobuf/protobuf.gyp
meego-tablet-ux/meego-app-browser
0f4ef17bd4b399c9c990a2f6ca939099495c2b9c
[ "BSD-3-Clause" ]
null
null
null
third_party/protobuf/protobuf.gyp
meego-tablet-ux/meego-app-browser
0f4ef17bd4b399c9c990a2f6ca939099495c2b9c
[ "BSD-3-Clause" ]
1
2020-11-04T07:22:28.000Z
2020-11-04T07:22:28.000Z
# Copyright (c) 2009 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'conditions': [ ['OS!="win"', { 'variables': { 'config_h_dir': '.', # crafted for gcc/linux. }, }, { # else, OS=="win" 'variables': { 'config_h_dir': 'vsprojects', # crafted for msvc. }, 'target_defaults': { 'msvs_disabled_warnings': [ 4018, # signed/unsigned mismatch in comparison 4244, # implicit conversion, possible loss of data 4355, # 'this' used in base member initializer list ], 'defines!': [ 'WIN32_LEAN_AND_MEAN', # Protobuf defines this itself. ], }, }] ], 'targets': [ # The "lite" lib is about 1/7th the size of the heavy lib, # but it doesn't support some of the more exotic features of # protobufs, like reflection. To generate C++ code that can link # against the lite version of the library, add the option line: # # option optimize_for = LITE_RUNTIME; # # to your .proto file. { 'target_name': 'protobuf_lite', 'type': '<(library)', 'toolsets': ['host', 'target'], 'sources': [ 'src/google/protobuf/stubs/common.h', 'src/google/protobuf/stubs/once.h', 'src/google/protobuf/extension_set.h', 'src/google/protobuf/generated_message_util.h', 'src/google/protobuf/message_lite.h', 'src/google/protobuf/repeated_field.h', 'src/google/protobuf/unknown_field_set.cc', 'src/google/protobuf/unknown_field_set.h', 'src/google/protobuf/wire_format_lite.h', 'src/google/protobuf/wire_format_lite_inl.h', 'src/google/protobuf/io/coded_stream.h', 'src/google/protobuf/io/zero_copy_stream.h', 'src/google/protobuf/io/zero_copy_stream_impl_lite.h', 'src/google/protobuf/stubs/common.cc', 'src/google/protobuf/stubs/once.cc', 'src/google/protobuf/stubs/hash.h', 'src/google/protobuf/stubs/map-util.h', 'src/google/protobuf/stubs/stl_util-inl.h', 'src/google/protobuf/extension_set.cc', 'src/google/protobuf/generated_message_util.cc', 'src/google/protobuf/message_lite.cc', 'src/google/protobuf/repeated_field.cc', 'src/google/protobuf/wire_format_lite.cc', 'src/google/protobuf/io/coded_stream.cc', 'src/google/protobuf/io/coded_stream_inl.h', 'src/google/protobuf/io/zero_copy_stream.cc', 'src/google/protobuf/io/zero_copy_stream_impl_lite.cc', '<(config_h_dir)/config.h', ], 'include_dirs': [ '<(config_h_dir)', 'src', ], # This macro must be defined to suppress the use of dynamic_cast<>, # which requires RTTI. 'defines': [ 'GOOGLE_PROTOBUF_NO_RTTI', ], 'direct_dependent_settings': { 'include_dirs': [ '<(config_h_dir)', 'src', ], 'defines': [ 'GOOGLE_PROTOBUF_NO_RTTI', ], }, }, # This is the full, heavy protobuf lib that's needed for c++ .proto's # that don't specify the LITE_RUNTIME option. The protocol # compiler itself (protoc) falls into that category. # # DO NOT LINK AGAINST THIS TARGET IN CHROME CODE --agl { 'target_name': 'protobuf_full_do_not_use', 'type': '<(library)', 'toolsets': ['host','target'], 'sources': [ 'src/google/protobuf/descriptor.h', 'src/google/protobuf/descriptor.pb.h', 'src/google/protobuf/descriptor_database.h', 'src/google/protobuf/dynamic_message.h', 'src/google/protobuf/generated_message_reflection.h', 'src/google/protobuf/message.h', 'src/google/protobuf/reflection_ops.h', 'src/google/protobuf/service.h', 'src/google/protobuf/text_format.h', 'src/google/protobuf/unknown_field_set.h', 'src/google/protobuf/wire_format.h', 'src/google/protobuf/io/gzip_stream.h', 'src/google/protobuf/io/printer.h', 'src/google/protobuf/io/tokenizer.h', 'src/google/protobuf/io/zero_copy_stream_impl.h', 'src/google/protobuf/compiler/code_generator.h', 'src/google/protobuf/compiler/command_line_interface.h', 'src/google/protobuf/compiler/importer.h', 'src/google/protobuf/compiler/parser.h', 'src/google/protobuf/stubs/strutil.cc', 'src/google/protobuf/stubs/strutil.h', 'src/google/protobuf/stubs/substitute.cc', 'src/google/protobuf/stubs/substitute.h', 'src/google/protobuf/stubs/structurally_valid.cc', 'src/google/protobuf/descriptor.cc', 'src/google/protobuf/descriptor.pb.cc', 'src/google/protobuf/descriptor_database.cc', 'src/google/protobuf/dynamic_message.cc', 'src/google/protobuf/extension_set_heavy.cc', 'src/google/protobuf/generated_message_reflection.cc', 'src/google/protobuf/message.cc', 'src/google/protobuf/reflection_ops.cc', 'src/google/protobuf/service.cc', 'src/google/protobuf/text_format.cc', 'src/google/protobuf/unknown_field_set.cc', 'src/google/protobuf/wire_format.cc', # This file pulls in zlib, but it's not actually used by protoc, so # instead of compiling zlib for the host, let's just exclude this. # 'src/src/google/protobuf/io/gzip_stream.cc', 'src/google/protobuf/io/printer.cc', 'src/google/protobuf/io/tokenizer.cc', 'src/google/protobuf/io/zero_copy_stream_impl.cc', 'src/google/protobuf/compiler/importer.cc', 'src/google/protobuf/compiler/parser.cc', ], 'dependencies': [ 'protobuf_lite', ], 'export_dependent_settings': [ 'protobuf_lite', ], }, { 'target_name': 'protoc', 'type': 'executable', 'toolsets': ['host'], 'sources': [ 'src/google/protobuf/compiler/code_generator.cc', 'src/google/protobuf/compiler/command_line_interface.cc', 'src/google/protobuf/compiler/plugin.cc', 'src/google/protobuf/compiler/plugin.pb.cc', 'src/google/protobuf/compiler/subprocess.cc', 'src/google/protobuf/compiler/subprocess.h', 'src/google/protobuf/compiler/zip_writer.cc', 'src/google/protobuf/compiler/zip_writer.h', 'src/google/protobuf/compiler/cpp/cpp_enum.cc', 'src/google/protobuf/compiler/cpp/cpp_enum.h', 'src/google/protobuf/compiler/cpp/cpp_enum_field.cc', 'src/google/protobuf/compiler/cpp/cpp_enum_field.h', 'src/google/protobuf/compiler/cpp/cpp_extension.cc', 'src/google/protobuf/compiler/cpp/cpp_extension.h', 'src/google/protobuf/compiler/cpp/cpp_field.cc', 'src/google/protobuf/compiler/cpp/cpp_field.h', 'src/google/protobuf/compiler/cpp/cpp_file.cc', 'src/google/protobuf/compiler/cpp/cpp_file.h', 'src/google/protobuf/compiler/cpp/cpp_generator.cc', 'src/google/protobuf/compiler/cpp/cpp_helpers.cc', 'src/google/protobuf/compiler/cpp/cpp_helpers.h', 'src/google/protobuf/compiler/cpp/cpp_message.cc', 'src/google/protobuf/compiler/cpp/cpp_message.h', 'src/google/protobuf/compiler/cpp/cpp_message_field.cc', 'src/google/protobuf/compiler/cpp/cpp_message_field.h', 'src/google/protobuf/compiler/cpp/cpp_primitive_field.cc', 'src/google/protobuf/compiler/cpp/cpp_primitive_field.h', 'src/google/protobuf/compiler/cpp/cpp_service.cc', 'src/google/protobuf/compiler/cpp/cpp_service.h', 'src/google/protobuf/compiler/cpp/cpp_string_field.cc', 'src/google/protobuf/compiler/cpp/cpp_string_field.h', 'src/google/protobuf/compiler/java/java_enum.cc', 'src/google/protobuf/compiler/java/java_enum.h', 'src/google/protobuf/compiler/java/java_enum_field.cc', 'src/google/protobuf/compiler/java/java_enum_field.h', 'src/google/protobuf/compiler/java/java_extension.cc', 'src/google/protobuf/compiler/java/java_extension.h', 'src/google/protobuf/compiler/java/java_field.cc', 'src/google/protobuf/compiler/java/java_field.h', 'src/google/protobuf/compiler/java/java_file.cc', 'src/google/protobuf/compiler/java/java_file.h', 'src/google/protobuf/compiler/java/java_generator.cc', 'src/google/protobuf/compiler/java/java_helpers.cc', 'src/google/protobuf/compiler/java/java_helpers.h', 'src/google/protobuf/compiler/java/java_message.cc', 'src/google/protobuf/compiler/java/java_message.h', 'src/google/protobuf/compiler/java/java_message_field.cc', 'src/google/protobuf/compiler/java/java_message_field.h', 'src/google/protobuf/compiler/java/java_primitive_field.cc', 'src/google/protobuf/compiler/java/java_primitive_field.h', 'src/google/protobuf/compiler/java/java_service.cc', 'src/google/protobuf/compiler/java/java_service.h', 'src/google/protobuf/compiler/java/java_string_field.cc', 'src/google/protobuf/compiler/java/java_string_field.h', 'src/google/protobuf/compiler/python/python_generator.cc', 'src/google/protobuf/compiler/main.cc', ], 'dependencies': [ 'protobuf_full_do_not_use', ], 'include_dirs': [ '<(config_h_dir)', 'src/src', ], }, { # Generate the python module needed by all protoc-generated Python code. 'target_name': 'py_proto', 'type': 'none', 'copies': [ { 'destination': '<(PRODUCT_DIR)/pyproto/google/', 'files': [ # google/ module gets an empty __init__.py. '__init__.py', ], }, { 'destination': '<(PRODUCT_DIR)/pyproto/google/protobuf', 'files': [ 'python/google/protobuf/__init__.py', 'python/google/protobuf/descriptor.py', 'python/google/protobuf/message.py', 'python/google/protobuf/reflection.py', 'python/google/protobuf/service.py', 'python/google/protobuf/service_reflection.py', 'python/google/protobuf/text_format.py', # TODO(ncarter): protoc's python generator treats descriptor.proto # specially, but it's not possible to trigger the special treatment # unless you run protoc from ./src/src (the treatment is based # on the path to the .proto file matching a constant exactly). # I'm not sure how to convince gyp to execute a rule from a # different directory. Until this is resolved, use a copy of # descriptor_pb2.py that I manually generated. 'descriptor_pb2.py', ], }, { 'destination': '<(PRODUCT_DIR)/pyproto/google/protobuf/internal', 'files': [ 'python/google/protobuf/internal/__init__.py', 'python/google/protobuf/internal/api_implementation.py', 'python/google/protobuf/internal/containers.py', 'python/google/protobuf/internal/cpp_message.py', 'python/google/protobuf/internal/decoder.py', 'python/google/protobuf/internal/encoder.py', 'python/google/protobuf/internal/generator_test.py', 'python/google/protobuf/internal/message_listener.py', 'python/google/protobuf/internal/python_message.py', 'python/google/protobuf/internal/type_checkers.py', 'python/google/protobuf/internal/wire_format.py', ], }, ], # # We can't generate a proper descriptor_pb2.py -- see earlier comment. # 'rules': [ # { # 'rule_name': 'genproto', # 'extension': 'proto', # 'inputs': [ # '<(PRODUCT_DIR)/<(EXECUTABLE_PREFIX)protoc<(EXECUTABLE_SUFFIX)', # ], # 'variables': { # # The protoc compiler requires a proto_path argument with the # # directory containing the .proto file. # 'rule_input_relpath': 'src/google/protobuf', # }, # 'outputs': [ # '<(PRODUCT_DIR)/pyproto/google/protobuf/<(RULE_INPUT_ROOT)_pb2.py', # ], # 'action': [ # '<(PRODUCT_DIR)/<(EXECUTABLE_PREFIX)protoc<(EXECUTABLE_SUFFIX)', # '-I./src', # '-I.', # '--python_out=<(PRODUCT_DIR)/pyproto/google/protobuf', # 'google/protobuf/descriptor.proto', # ], # 'message': 'Generating Python code from <(RULE_INPUT_PATH)', # }, # ], # 'dependencies': [ # 'protoc#host', # ], # 'sources': [ # 'src/google/protobuf/descriptor.proto', # ], }, ], } # Local Variables: # tab-width:2 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=2 shiftwidth=2:
41.302839
81
0.621554
1,560
13,093
5.064103
0.186538
0.269367
0.273291
0.196203
0.700127
0.478734
0.360633
0.256582
0.064937
0.025949
0
0.002701
0.236462
13,093
316
82
41.433544
0.787536
0.21523
0
0.218107
0
0
0.677521
0.62348
0
0
0
0.003165
0
1
0
true
0
0.00823
0
0.00823
0.00823
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
null
0
0
0
0
0
0
1
0
0
0
0
0
0
6
8a04ff873e3cd041bc9cad7f7fc7707f7c185cce
6,652
py
Python
invera/api/tests.py
LeoLeiva/todo-challenge
f6f24f53758eb4e425c91516bcab7af8cad66814
[ "MIT" ]
null
null
null
invera/api/tests.py
LeoLeiva/todo-challenge
f6f24f53758eb4e425c91516bcab7af8cad66814
[ "MIT" ]
null
null
null
invera/api/tests.py
LeoLeiva/todo-challenge
f6f24f53758eb4e425c91516bcab7af8cad66814
[ "MIT" ]
1
2021-01-10T20:19:42.000Z
2021-01-10T20:19:42.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals import inspect from task.models import InveraTask from api.utils import send_test_csv_report from django.contrib.auth.models import User from rest_framework.test import APIClient, APITestCase from rest_framework.reverse import reverse from rest_framework import status TEST_RESULTS = [] RECIPIENTS = ['email@destino.com'] class TaskListTestCase(APITestCase): def setUp(self) -> None: self.user = User.objects.create_user( username='test_user', password='adminpass') self.other_user = User.objects.create_user( username='other_user', password='adminpass') self.task = InveraTask.objects.create( userTask=self.user, title='My Initial Task') self.client = APIClient() @classmethod def tearDownClass(cls): User.objects.filter(username__in=['test_user', 'other_user']).delete() def test_create_task_with_un_authenticate_user(self): """ En este caso de prueba, estamos probando la API Task Create utilizando un usuario no autenticado. """ response = self.client.post( reverse('api-task'), {'title': 'My Task 1'}, format='json') is_passed = response.status_code == status.HTTP_403_FORBIDDEN TEST_RESULTS.append({ "result": "Passed" if is_passed else "Failed", "test_name": inspect.currentframe().f_code.co_name, "test_description": "El usuario no autenticado no puede agregar una tarea a la lista" }) if is_passed: print("Resultado: Aprobado") else: print("Resultado: Fallido") print("Nombre del test: " + inspect.currentframe().f_code.co_name) print("Descripcion: El usuario no autenticado no puede agregar una tarea a la lista") print("-----------") def test_put_task_with_un_authenticate_user(self): """ En este caso de prueba, estamos probando la API Task PUT utilizando un usuario no autenticado. """ response = self.client.put( reverse('api-task'), {'title': 'My Task'}, format='json') is_passed = response.status_code == status.HTTP_403_FORBIDDEN TEST_RESULTS.append({ "result": "Passed" if is_passed else "Failed", "test_name": inspect.currentframe().f_code.co_name, "test_description": "El usuario no autenticado no puede modificar una tarea" }) if is_passed: print("Resultado: Aprobado") else: print("Resultado: Fallido") print("Nombre del test: " + inspect.currentframe().f_code.co_name) print("Descripcion: El usuario no autenticado no puede modificar una tarea") print("-----------") def test_put_task_with_authenticated_user(self): self.client.login(username='test_user', password='adminpass') response = self.client.put(reverse('api-task-detail', args=[str(self.task.idTask)]), {'title': 'My Task 2'}, format='json') is_passed = response.status_code == status.HTTP_200_OK TEST_RESULTS.append({ "result": "Passed" if is_passed else "Failed", "test_name": inspect.currentframe().f_code.co_name, "test_description": "Usuario autenticado puede modificar una tarea suya" }) if is_passed: print("Resultado: Aprobado") else: print("Resultado: Fallido") print("Nombre del test: " + inspect.currentframe().f_code.co_name) print("Descripcion: Usuario autenticado puede modificar una tarea suya") print("-----------") def test_get_other_user_task_detail(self): """ En este caso de prueba, estamos probando la API Task GET y tratando de obtener detalles de la tarea de un usuario que usa credenciales de usuario diferentes. """ self.client.login(username='other_user', password='adminpass') response = self.client.get(reverse('api-task-detail', args=[str(self.task.idTask)])) is_passed = response.status_code == status.HTTP_404_NOT_FOUND # is_passed = response.status_code == status.HTTP_403_FORBIDDEN TEST_RESULTS.append({ "result": "Passed" if is_passed else "Failed", "test_name": inspect.currentframe().f_code.co_name, "test_description": "Solo el propietario puede ver el detalle de la tarea" }) if is_passed: print("Resultado: Aprobado") else: print("Resultado: Fallido") print("Nombre del test: " + inspect.currentframe().f_code.co_name) print("Descripcion: Solo el propietario puede ver el detalle de la tarea") print("-----------") def test_create_task_with_authenticated_user(self): self.client.login(username='test_user', password='adminpass') response = self.client.post(reverse('api-task'), {'title': 'My Task'}, format='json') is_passed = response.status_code == status.HTTP_201_CREATED TEST_RESULTS.append({ "result": "Passed" if is_passed else "Failed", "test_name": inspect.currentframe().f_code.co_name, "test_description": "Usuario autenticado agrega tarea a la lista" }) if is_passed: print("Resultado: Aprobado") else: print("Resultado: Fallido") print("Nombre del test: " + inspect.currentframe().f_code.co_name) print("Descripcion: Usuario autenticado agrega tarea a la lista") print("-----------") def test_get_task_detail(self): self.client.login(username='test_user', password='adminpass') response = self.client.get(reverse('api-task-detail', args=[str(self.task.idTask)])) is_passed = response.status_code == status.HTTP_200_OK TEST_RESULTS.append({ "result": "Passed" if is_passed else "Failed", "test_name": inspect.currentframe().f_code.co_name, "test_description": "Usuario autenticado puede ver detalles de la tarea correctamente" }) if is_passed: print("Resultado: Aprobado") else: print("Resultado: Fallido") print("Nombre del test: " + inspect.currentframe().f_code.co_name) print("Descripcion: Usuario autenticado puede ver detalles de la tarea correctamente") print("-----------") class CSVReportTest(APITestCase): def test_send_csv(self): send_test_csv_report( test_results=TEST_RESULTS, recipients=RECIPIENTS )
37.370787
165
0.634245
783
6,652
5.203065
0.177522
0.03731
0.029455
0.070692
0.794551
0.77246
0.751841
0.728031
0.707904
0.672067
0
0.004797
0.247895
6,652
177
166
37.581921
0.809514
0.065394
0
0.556452
0
0
0.272831
0
0
0
0
0
0
1
0.072581
false
0.193548
0.064516
0
0.153226
0.241935
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
1
0
0
0
0
0
6
8a45f1c6e8e51b93e9ab54060af5d33d536b2abf
75
py
Python
logger/__init__.py
remmyzen/nqs-tensorflow2
2af5d5ebb108eac4d2daa5082bdef11c8107bd1b
[ "MIT" ]
4
2021-07-29T17:52:54.000Z
2022-02-15T06:32:15.000Z
logger/__init__.py
remmyzen/nqs-tensorflow2
2af5d5ebb108eac4d2daa5082bdef11c8107bd1b
[ "MIT" ]
null
null
null
logger/__init__.py
remmyzen/nqs-tensorflow2
2af5d5ebb108eac4d2daa5082bdef11c8107bd1b
[ "MIT" ]
null
null
null
from .logger import Logger from .logger_supervised import LoggerSupervised
25
47
0.866667
9
75
7.111111
0.555556
0.3125
0
0
0
0
0
0
0
0
0
0
0.106667
75
2
48
37.5
0.955224
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
8a50b1905c10bef14015d0bd1e4794d8d3018140
38,121
py
Python
circuitry/circuitry.py
nthparty/circuitry
e8bc8bde93cf5056368a14a21086f18f1bcd934f
[ "MIT" ]
3
2020-06-23T19:11:53.000Z
2021-01-06T16:42:56.000Z
circuitry/circuitry.py
nthparty/circuitry
e8bc8bde93cf5056368a14a21086f18f1bcd934f
[ "MIT" ]
4
2020-07-28T03:14:59.000Z
2020-07-28T17:44:25.000Z
circuitry/circuitry.py
nthparty/circuitry
e8bc8bde93cf5056368a14a21086f18f1bcd934f
[ "MIT" ]
1
2020-06-23T19:07:59.000Z
2020-06-23T19:07:59.000Z
"""Embedded DSL for assembling logic circuits. Embedded domain-specific combinator library for assembling abstract definitions of logic circuits and synthesizing circuits from those definitions. """ from __future__ import annotations from typing import Sequence import doctest from parts import parts from circuit import op, gate, circuit, signature class bit(): """ Class for representing an abstract bit. Such a bit can be interpreted concretely as a value, but it is also used to keep track of relationships between operators and to represent the wires within a circuit built up out of those operators. >>> bit.hook_operation(lambda o, v, *args: None) >>> bit.circuit(circuit()) >>> b = output(input(1).and_(input(1))) >>> b.value == bit.circuit().evaluate([1,1])[0] True >>> def make_hook(bit_): ... def hook(o, v, *args): ... return bit_.constructor(*args)(v, bit_.gate(o, [a.gate for a in args])) ... return hook >>> bit.hook_operation(make_hook(bit)) >>> bit.circuit(circuit()) >>> b = output(input(0).and_(input(0))) >>> b.value == bit.circuit().evaluate([0,0])[0] True """ _circuit = None _hook_operation = None @staticmethod def circuit(circuit_=None): if circuit_ is not None: bit._circuit = circuit_ return None else: bit._circuit.prune_and_topological_sort_stable() return bit._circuit @staticmethod def hook_operation(hook=None): bit._hook_operation = hook @staticmethod def operation(o, *args): # Ensure second argument is a `bit`. args = list(args) if len(args) == 2: args[1] = constant(args[1]) if isinstance(args[1], int) else args[1] # Compute the value of the result of the operation on the arguments. v = o(*[a.value for a in args]) # Return output from hook if it exists and if # it returns an output. if bit._hook_operation is not None: r = bit._hook_operation(o, v, *args) if r is not None: return r return bit.constructor(*args)(v, bit.gate(o, [a.gate for a in args])) @staticmethod def constructor(b1, b2=None): # The inference code below is not currently in use. """ if isinstance(b1, input_one) and isinstance(b2, input_one): return input_one elif isinstance(b1, input_two) and isinstance(b2, input_two): return input_two elif isinstance(b1, (input_one, input_two)) and b2 is None: return type(b1) else: return bit """ return bit @staticmethod def gate(operation, igs): return bit._circuit.gate(operation, igs) def __init__(self, value, gate_=None): self.value = value self.gate = bit._circuit.gate() if gate_ is None else gate_ def __int__(self): return self.value def not_(self): """ >>> results = [] >>> for x in [0, 1]: ... bit.circuit(circuit()) ... b = output(input(x).not_()) ... results.append(int(b) == bit.circuit().evaluate([x])[0]) >>> all(results) True """ return bit.operation(op.not_, self) def __invert__(self): """ >>> results = [] >>> for x in [0, 1]: ... bit.circuit(circuit()) ... b = output(~input(x)) ... results.append(int(b) == bit.circuit().evaluate([x])[0]) >>> all(results) True """ return bit.operation(op.not_, self) def __rsub__(self, other): """ >>> results = [] >>> for x in [0, 1]: ... bit.circuit(circuit()) ... b = output(1 - input(x)) ... results.append(int(b) == bit.circuit().evaluate([x])[0]) >>> all(results) True >>> bit.circuit(circuit()) >>> 2 - input(0) Traceback (most recent call last): ... ValueError: can only subtract a bit from the integer 1 """ if other == 1: return bit.operation(op.not_, self) raise ValueError('can only subtract a bit from the integer 1') def and_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).and_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.and_, self, other) def __and__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) & input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.and_, self, other) def __rand__(self, other): """ >>> bit.circuit(circuit()) >>> b = 0 & constant(1) >>> b.value 0 """ return self & (constant(other) if isinstance(other, int) else other) def nimp(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nimp(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nimp_, self, other) def nimp_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nimp_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nimp_, self, other) def __gt__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) > input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return self.nimp(other) def nif(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nif(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nif_, self, other) def nif_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nif_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nif_, self, other) def __lt__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) < input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return self.nif(other) def xor(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).xor(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.xor_, self, other) def xor_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).xor_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.xor_, self, other) def __xor__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) ^ input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.xor_, self, other) def __rxor__(self, other): """ >>> bit.circuit(circuit()) >>> b = 1 ^ constant(0) >>> b.value 1 """ return self ^ (constant(other) if isinstance(other, int) else other) def or_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).or_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.or_, self, other) def __or__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) | input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.or_, self, other) def __ror__(self, other): """ >>> bit.circuit(circuit()) >>> b = 1 | constant(0) >>> b.value 1 """ return self | (constant(other) if isinstance(other, int) else other) def nor(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nor(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nor_, self, other) def nor_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nor_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nor_, self, other) def __mod__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) % input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nor_, self, other) def xnor(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).xnor(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.xnor_, self, other) def xnor_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).xnor_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.xnor_, self, other) def __eq__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) == input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.xnor_, self, other) def if_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).if_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.if_, self, other) def __ge__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) >= input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.if_, self, other) def imp(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).imp(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.imp_, self, other) def imp_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).imp_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.imp_, self, other) def __le__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) <= input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.imp_, self, other) def nand(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nand(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nand_, self, other) def nand_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nand_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nand_, self, other) def __matmul__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) @ input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nand_, self, other) class constant(bit): """Bit that is designated as a constant input.""" class input(bit): """Bit that is designated as a variable input.""" def __init__(self: bit, value: int): self.value = value self.gate = bit._circuit.gate(op.id_, is_input=True) class input_one(input): """Bit that is designated as a variable input from one source.""" class input_two(input): """Bit that is designated as a variable input from a second source.""" class output(bit): """ Bit that is designated an output. >>> bit.circuit(circuit()) >>> b0 = output(input(1).not_()) >>> b1 = output(b0.not_()) >>> b2 = output(b0) >>> [b0.value, b1.value, b2.value] [0, 1, 0] """ def __init__(self: bit, b: bit): # Check if bit is ready as final output or whether there are others dependent on it. if len(b.gate.outputs) > 0: b = ~(~b) # Preserve the bit by copying it to a new wire. self.value = b.value self.gate = bit._circuit.gate(op.id_, [b.gate], is_output=True) class bits_type(int): # pylint: disable=R0903 """ Class for representing an input or output type of a function decorated for automated synthesis. """ class bits(list): """ Class for representing a vector of abstract bits. """ @staticmethod def from_byte(byte_: int, constructor=bit) -> bits: return bits([ constructor(bit_) for bit_ in reversed([(byte_>>i)%2 for i in range(8)]) ]) @staticmethod def from_bytes(bytes_, constructor=bit) -> bits: """ >>> bit.circuit(circuit()) >>> [b.value for b in bits.from_bytes(bytes([255]))] [1, 1, 1, 1, 1, 1, 1, 1] >>> bit.circuit(circuit()) >>> [b.value for b in bits.from_bytes(bytes([11, 0]))] [0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] """ return bits([ bit_ for byte_ in bytes_ for bit_ in bits.from_byte(byte_, constructor) ]) @staticmethod def zeros(n: int) -> bits: """ >>> bit.circuit(circuit()) >>> xs = bits.zeros(3) >>> ys = outputs(xs.not_()) >>> [y.value for y in ys] [1, 1, 1] """ return bits([constant(0)]*n) def __new__(cls, argument = None) -> bits: """ Return bits object given the supplied argument. """ return bits_type(argument)\ if isinstance(argument, int) else\ list.__new__(cls, argument) def __int__(self: bits) -> int: """ >>> bit.circuit(circuit()) >>> xs = constants([0, 0, 0]) >>> ys = outputs(xs.not_()) >>> int(ys) 7 """ return sum(int(b)*(2**i) for (i, b) in zip(range(len(self)), reversed(self))) def not_(self: bits) -> bits: """ >>> results = [] >>> for x in [0, 1]: ... bit.circuit(circuit()) ... xs = inputs([x, x, x]) ... ys = outputs(xs.not_()) ... ns = [int(y) for y in ys] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x])) >>> all(results) True """ return bits([x.not_() for x in self]) def __invert__(self: bits) -> bits: """ >>> results = [] >>> for x in [0, 1]: ... bit.circuit(circuit()) ... xs = inputs([x, x, x]) ... ys = outputs(~xs) ... ns = [int(y) for y in ys] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x])) >>> all(results) True """ return bits([x.not_() for x in self]) def and_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.and_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.and_(y) for (x, y) in zip(self, other)]) def __and__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs & ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.and_(y) for (x, y) in zip(self, other)]) def nimp(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nimp(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nimp_(y) for (x, y) in zip(self, other)]) def nimp_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nimp_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nimp_(y) for (x, y) in zip(self, other)]) def __gt__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs > ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nimp_(y) for (x, y) in zip(self, other)]) def nif(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nif(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nif_(y) for (x, y) in zip(self, other)]) def nif_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nif_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nif_(y) for (x, y) in zip(self, other)]) def __lt__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs < ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nif_(y) for (x, y) in zip(self, other)]) def xor(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.xor(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.xor_(y) for (x, y) in zip(self, other)]) def xor_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.xor_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.xor_(y) for (x, y) in zip(self, other)]) def __xor__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs ^ ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.xor_(y) for (x, y) in zip(self, other)]) def or_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.or_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.or_(y) for (x, y) in zip(self, other)]) def __or__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs | ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.or_(y) for (x, y) in zip(self, other)]) def nor(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nor(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nor_(y) for (x, y) in zip(self, other)]) def nor_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nor_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nor_(y) for (x, y) in zip(self, other)]) def __mod__(self, other) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs % ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nor_(y) for (x, y) in zip(self, other)]) def xnor(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.xnor(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.xnor_(y) for (x, y) in zip(self, other)]) def xnor_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.xnor_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.xnor_(y) for (x, y) in zip(self, other)]) def __eq__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs == ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.xnor_(y) for (x, y) in zip(self, other)]) def if_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.if_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.if_(y) for (x, y) in zip(self, other)]) def __ge__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs >= ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.if_(y) for (x, y) in zip(self, other)]) def imp(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.imp(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.imp_(y) for (x, y) in zip(self, other)]) def imp_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.imp_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.imp_(y) for (x, y) in zip(self, other)]) def __le__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs <= ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.imp_(y) for (x, y) in zip(self, other)]) def nand(self: bits, other) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nand(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nand_(y) for (x, y) in zip(self, other)]) def nand_(self: bits, other) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nand_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nand_(y) for (x, y) in zip(self, other)]) def __rshift__(self: bits, other) -> bits: """ Overloaded operator: rotation and shift operations. >>> bit.circuit(circuit()) >>> bs = bits(map(bit, [1,1,1,1,0,0,0,0])) >>> bs = bs >> 3 >>> [b.value for b in bs] [0, 0, 0, 1, 1, 1, 1, 0] >>> bit.circuit(circuit()) >>> bs = bits(map(bit, [0,0,0,0,1,1,1,1])) >>> bs = bs >> {3} >>> [b.value for b in bs] [1, 1, 1, 0, 0, 0, 0, 1] """ if isinstance(other, set) and isinstance(list(other)[0], int): # Rotation. quantity = list(other)[0] return bits(self[len(self)-quantity:]) ** bits(self[0:len(self)-quantity]) else: # Shift return bits([constant(0)]*other) ** bits(self[0:len(self)-other]) def __lshift__(self: bits, other) -> bits: """ >>> bit.circuit(circuit()) >>> bs = bits(map(bit, [1,1,1,1,0,0,0,0])) >>> bs = bs << 3 >>> [b.value for b in bs] [1, 0, 0, 0, 0, 0, 0, 0] """ return bits(self[other:]) ** bits([constant(0) for _ in range(other)]) def __truediv__(self: bits, other) -> Sequence[bits]: """ >>> bit.circuit(circuit()) >>> bs = bits(map(bit, [1,1,1,1,0,0,0,0])) >>> bss = list(bs / 2) >>> ([b.value for b in bss[0]], [b.value for b in bss[1]]) ([1, 1, 1, 1], [0, 0, 0, 0]) >>> bit.circuit(circuit()) >>> bs = bits(map(bit, [1,1,1,1,0,0,0,0])) >>> bss = list(bs / {2}) >>> [[b.value for b in bs] for bs in bss] [[1, 1], [1, 1], [0, 0], [0, 0]] >>> bit.circuit(circuit()) >>> bs = bits(map(bit, [1,1,1,1,0,0,0,0])) >>> bss = list(bs / [1, 3, 4]) >>> [[b.value for b in bs] for bs in bss] [[1], [1, 1, 1], [0, 0, 0, 0]] """ if isinstance(other, list) and len(other) > 0 and isinstance(other[0], int): return map(bits, parts(self, length=other)) # Sequence of lengths. elif isinstance(other, set) and len(other) == 1 and isinstance(list(other)[0], int): return self / (len(self)//list(other)[0]) # Parts of length `other`. else: return map(bits, parts(self, other)) # Number of parts is `other`. def __add__(self: bits, other) -> bits: """Concatenation of bit vectors.""" result = list(self) result.extend(list(other)) return bits(result) def __pow__(self: bits, other) -> bits: """Concatenation of bit vectors.""" return self + other def constants(l): return bits(map(constant, l)) def inputs(l): return bits(map(input, l)) def outputs(l): return bits(map(output, l)) def synthesize(f): """ Decorator for automatically synthesizing a circuit from a function that takes only `bit` and/or `bits` objects as its arguments and returns an output of type `bit` or `bits`. >>> @synthesize ... def equal(x: bit, y: bit) -> bit: ... return (x & y) | ((1 - x) & (1 - y)) >>> xys = [bits([x, y]) for x in (0, 1) for y in (0, 1)] >>> [equal.circuit.evaluate(xy) for xy in xys] [[1], [0], [0], [1]] >>> @synthesize ... def conjunction(xy: bits(2)) -> bits(2): ... return (xy[0], xy[0] & xy[1]) >>> xys = [bits([x, y]) for x in (0, 1) for y in (0, 1)] >>> [conjunction.circuit.evaluate(xy) for xy in xys] [[0, 0], [0, 0], [1, 0], [1, 1]] >>> @synthesize ... def equal(x, y): ... return x & y Traceback (most recent call last): ... RuntimeError: automated circuit synthesis failed """ # Functions for determining types/signature from # the type annotation of the decorated function. type_in = lambda a: input(0) if a is bit else inputs([0] * a) type_out = lambda a: output if a is bit else outputs # For forward-compatibility with PEP 563. eval_ = lambda a: eval(a) if isinstance(a, str) else a # pylint: disable=W0123 try: # Construct the circuit and add it to the function as an attribute. bit.circuit(circuit()) args_in = { k: type_in(eval_(a)) for (k, a) in f.__annotations__.items() if k != 'return' } type_out(eval_(f.__annotations__['return']))(f(**args_in)) f.circuit = bit.circuit() except: raise RuntimeError('automated circuit synthesis failed') from None # Return the original function. return f if __name__ == "__main__": doctest.testmod() # pragma: no cover
33.557218
92
0.440728
4,937
38,121
3.332388
0.054081
0.019815
0.020058
0.033613
0.744104
0.721736
0.710005
0.703319
0.686725
0.684658
0
0.028745
0.347499
38,121
1,135
93
33.586784
0.632669
0.554943
0
0.296748
0
0
0.008636
0
0
0
0
0
0
1
0.341463
false
0
0.020325
0.02439
0.747967
0
0
0
0
null
0
0
0
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
0
1
0
0
6
8a54efc9a7ad3665cabc7b4468043314dcb3122b
3,743
py
Python
test/test_downloadfile.py
foliant-docs/foliantcontrib.downloadfile
1af9481f9bc9142d8b1ac1eff93fa0c5577ccaec
[ "MIT" ]
null
null
null
test/test_downloadfile.py
foliant-docs/foliantcontrib.downloadfile
1af9481f9bc9142d8b1ac1eff93fa0c5577ccaec
[ "MIT" ]
null
null
null
test/test_downloadfile.py
foliant-docs/foliantcontrib.downloadfile
1af9481f9bc9142d8b1ac1eff93fa0c5577ccaec
[ "MIT" ]
null
null
null
import shutil from pathlib import Path from unittest import TestCase from unittest.mock import Mock from unittest.mock import patch from foliant.config.downloadfile import download_file from foliant.config.downloadfile import get_file_ext_from_url from foliant.config.downloadfile import get_file_name_from_url class TestDownloadFile(TestCase): def setUp(self): self.project_dir = (Path(__file__).parent / 'project_dir').resolve() self.project_dir.mkdir(exist_ok=True) def tearDown(self): shutil.rmtree(self.project_dir, ignore_errors=True) @patch('foliant.config.downloadfile.urlopen', autospec=True) def test_only_url(self, urlopen): mock_response = Mock() mock_response.read.return_value = b'File content' urlopen.return_value = mock_response url = 'http://example.com/myfile.txt' download_file(root_dir=self.project_dir, url=url) request = urlopen.call_args.args[0] context = urlopen.call_args.kwargs['context'] self.assertEqual(request.headers, {}) self.assertIsNone(context) with open(self.project_dir / 'myfile.txt') as f: self.assertEqual(f.read(), 'File content') @patch('foliant.config.downloadfile.urlopen', autospec=True) def test_save_to(self, urlopen): mock_response = Mock() mock_response.read.return_value = b'File content' urlopen.return_value = mock_response url = 'http://example.com/myfile.txt' save_to = 'subdir1/subdir2/downloaded.txt' download_file(root_dir=self.project_dir, url=url, save_to=save_to) request = urlopen.call_args.args[0] context = urlopen.call_args.kwargs['context'] self.assertEqual(request.headers, {}) self.assertIsNone(context) with open(self.project_dir / save_to) as f: self.assertEqual(f.read(), 'File content') @patch('foliant.config.downloadfile.urlopen', autospec=True) def test_with_auth(self, urlopen): mock_response = Mock() mock_response.read.return_value = b'File content' urlopen.return_value = mock_response url = 'http://example.com/myfile.txt' download_file( root_dir=self.project_dir, url=url, login='john', password='qwerty1234' ) request = urlopen.call_args.args[0] context = urlopen.call_args.kwargs['context'] self.assertIn('Authorization', request.headers) self.assertIsNone(context) with open(self.project_dir / 'myfile.txt') as f: self.assertEqual(f.read(), 'File content') class TestGetFileNameFromURL(TestCase): def test_with_ext(self): url = 'http://example.com/sub/myfile.txt' name = get_file_name_from_url(url) self.assertEqual(name, 'myfile.txt') def test_no_ext(self): url = 'http://example.com/sub/myfile' name = get_file_name_from_url(url) self.assertEqual(name, 'myfile') def test_with_clutter(self): url = 'http://example.com/sub/myfile.txt?param=val&foo=bar' name = get_file_name_from_url(url) self.assertEqual(name, 'myfile.txt') class TestGetFileExtFromURL(TestCase): def test_with_ext(self): url = 'http://example.com/sub/myfile.txt' ext = get_file_ext_from_url(url) self.assertEqual(ext, '.txt') def test_no_ext(self): url = 'http://example.com/sub/myfile' ext = get_file_ext_from_url(url) self.assertEqual(ext, '') def test_with_clutter(self): url = 'http://example.com/sub/myfile.txt?param=val&foo=bar' ext = get_file_ext_from_url(url) self.assertEqual(ext, '.txt')
32.833333
76
0.663906
480
3,743
4.972917
0.177083
0.041475
0.052786
0.064097
0.804357
0.780897
0.780897
0.745706
0.745706
0.722246
0
0.003081
0.21961
3,743
113
77
33.123894
0.814105
0
0
0.623529
0
0
0.169116
0.036067
0
0
0
0
0.176471
1
0.129412
false
0.011765
0.094118
0
0.258824
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
8a7777964dadf66bcb5c8207f5f26c1301e49cee
3,977
py
Python
libsaas/services/twilio/applications.py
MidtownFellowship/libsaas
541bb731b996b08ede1d91a235cb82895765c38a
[ "MIT" ]
155
2015-01-27T15:17:59.000Z
2022-02-20T00:14:08.000Z
libsaas/services/twilio/applications.py
MidtownFellowship/libsaas
541bb731b996b08ede1d91a235cb82895765c38a
[ "MIT" ]
14
2015-01-12T08:22:37.000Z
2021-06-16T19:49:31.000Z
libsaas/services/twilio/applications.py
MidtownFellowship/libsaas
541bb731b996b08ede1d91a235cb82895765c38a
[ "MIT" ]
43
2015-01-28T22:41:45.000Z
2021-09-21T04:44:26.000Z
from libsaas import http, parsers from libsaas.services import base from libsaas.services.twilio import resource class ApplicationsBase(resource.TwilioResource): path = 'Applications' class Application(ApplicationsBase): def create(self, *args, **kwargs): raise base.MethodNotSupported() class Applications(ApplicationsBase): @base.apimethod def get(self, FriendlyName=None, Page=None, PageSize=None, AfterSid=None): """ Fetch the Applications belonging to an account. :var FriendlyName: Only return the Account resources with friendly names that exactly match this name. :vartype FriendlyName: str :var Page: The current page number. Zero-indexed, so the first page is 0. :vartype Page: int :var PageSize: How many resources to return in each list page. The default is 50, and the maximum is 1000. :vartype PageSize: int :var AfterSid: The last Sid returned in the previous page, used to avoid listing duplicated resources if new ones are created while paging. :vartype AfterSid: str """ params = resource.get_params(None, locals()) request = http.Request('GET', self.get_url(), params) return request, parsers.parse_json def update(self, *args, **kwargs): raise base.MethodNotSupported() def delete(self, *args, **kwargs): raise base.MethodNotSupported() class ConnectAppsBase(resource.TwilioResource): path = 'ConnectApps' def create(self, *args, **kwargs): raise base.MethodNotSupported() def delete(self, *args, **kwargs): raise base.MethodNotSupported() class ConnectApp(ConnectAppsBase): pass class ConnectApps(ConnectAppsBase): @base.apimethod def get(self, Page=None, PageSize=None, AfterSid=None): """ Fetch the Connect Apps belonging to an account. :var Page: The current page number. Zero-indexed, so the first page is 0. :vartype Page: int :var PageSize: How many resources to return in each list page. The default is 50, and the maximum is 1000. :vartype PageSize: int :var AfterSid: The last Sid returned in the previous page, used to avoid listing duplicated resources if new ones are created while paging. :vartype AfterSid: str """ params = resource.get_params(None, locals()) request = http.Request('GET', self.get_url(), params) return request, parsers.parse_json def update(self, *args, **kwargs): raise base.MethodNotSupported() class AuthorizedConnectAppsBase(resource.TwilioResource): path = 'AuthorizedConnectApps' def create(self, *args, **kwargs): raise base.MethodNotSupported() def update(self, *args, **kwargs): raise base.MethodNotSupported() def delete(self, *args, **kwargs): raise base.MethodNotSupported() class AuthorizedConnectApp(AuthorizedConnectAppsBase): pass class AuthorizedConnectApps(AuthorizedConnectAppsBase): @base.apimethod def get(self, Page=None, PageSize=None, AfterSid=None): """ Fetch the Authorized Connect Apps belonging to an account. :var Page: The current page number. Zero-indexed, so the first page is 0. :vartype Page: int :var PageSize: How many resources to return in each list page. The default is 50, and the maximum is 1000. :vartype PageSize: int :var AfterSid: The last Sid returned in the previous page, used to avoid listing duplicated resources if new ones are created while paging. :vartype AfterSid: str """ params = resource.get_params(None, locals()) request = http.Request('GET', self.get_url(), params) return request, parsers.parse_json
28.007042
78
0.652753
458
3,977
5.648472
0.220524
0.027831
0.048705
0.0661
0.752223
0.734441
0.734441
0.730576
0.695787
0.67298
0
0.007187
0.265275
3,977
141
79
28.205674
0.878166
0.378175
0
0.68
0
0
0.024778
0.009818
0
0
0
0
0
1
0.24
false
0.04
0.06
0
0.6
0
0
0
0
null
0
0
0
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
0
1
0
0
6
8a8c957af09c1662e1613d8819301ef9871bcd5c
5,914
py
Python
tensorflow/python/ops/standard_ops.py
ashutom/tensorflow-upstream
c16069c19de9e286dd664abb78d0ea421e9f32d4
[ "Apache-2.0" ]
8
2021-08-03T03:57:10.000Z
2021-12-13T01:19:02.000Z
tensorflow/python/ops/standard_ops.py
CaptainGizzy21/tensorflow
3457a2b122e50b4d44ceaaed5a663d635e5c22df
[ "Apache-2.0" ]
17
2021-08-12T19:38:42.000Z
2022-01-27T14:39:35.000Z
tensorflow/python/ops/standard_ops.py
CaptainGizzy21/tensorflow
3457a2b122e50b4d44ceaaed5a663d635e5c22df
[ "Apache-2.0" ]
4
2022-01-13T11:23:44.000Z
2022-03-02T11:11:42.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=unused-import """Import names of Tensor Flow standard Ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import platform as _platform import sys as _sys from tensorflow.python import autograph from tensorflow.python.training.experimental import loss_scaling_gradient_tape # pylint: disable=g-bad-import-order # Imports the following modules so that @RegisterGradient get executed. from tensorflow.python.ops import array_grad from tensorflow.python.ops import cudnn_rnn_grad from tensorflow.python.ops import data_flow_grad from tensorflow.python.ops import manip_grad from tensorflow.python.ops import math_grad from tensorflow.python.ops import random_grad from tensorflow.python.ops import rnn_grad from tensorflow.python.ops import sparse_grad from tensorflow.python.ops import state_grad from tensorflow.python.ops import tensor_array_grad # go/tf-wildcard-import # pylint: disable=wildcard-import from tensorflow.python.ops.array_ops import * # pylint: disable=redefined-builtin from tensorflow.python.ops.check_ops import * from tensorflow.python.ops.clip_ops import * from tensorflow.python.ops.special_math_ops import * # TODO(vrv): Switch to import * once we're okay with exposing the module. from tensorflow.python.ops.confusion_matrix import confusion_matrix from tensorflow.python.ops.control_flow_ops import Assert from tensorflow.python.ops.control_flow_ops import case from tensorflow.python.ops.control_flow_ops import cond from tensorflow.python.ops.control_flow_ops import group from tensorflow.python.ops.control_flow_ops import no_op from tensorflow.python.ops.control_flow_ops import tuple # pylint: disable=redefined-builtin # pylint: enable=redefined-builtin from tensorflow.python.eager import wrap_function from tensorflow.python.ops.control_flow_ops import while_loop from tensorflow.python.ops.batch_ops import * from tensorflow.python.ops.critical_section_ops import * from tensorflow.python.ops.data_flow_ops import * from tensorflow.python.ops.functional_ops import * from tensorflow.python.ops.gradients import * from tensorflow.python.ops.histogram_ops import * from tensorflow.python.ops.init_ops import * from tensorflow.python.ops.io_ops import * from tensorflow.python.ops.linalg_ops import * from tensorflow.python.ops.logging_ops import Print from tensorflow.python.ops.logging_ops import get_summary_op from tensorflow.python.ops.logging_ops import timestamp from tensorflow.python.ops.lookup_ops import initialize_all_tables from tensorflow.python.ops.lookup_ops import tables_initializer from tensorflow.python.ops.manip_ops import * from tensorflow.python.ops.math_ops import * # pylint: disable=redefined-builtin from tensorflow.python.ops.numerics import * from tensorflow.python.ops.parsing_ops import * from tensorflow.python.ops.partitioned_variables import * from tensorflow.python.ops.proto_ops import * from tensorflow.python.ops.ragged import ragged_dispatch as _ragged_dispatch from tensorflow.python.ops.ragged import ragged_operators as _ragged_operators from tensorflow.python.ops.random_ops import * from tensorflow.python.ops.script_ops import py_func from tensorflow.python.ops.session_ops import * from tensorflow.python.ops.sort_ops import * from tensorflow.python.ops.sparse_ops import * from tensorflow.python.ops.state_ops import assign from tensorflow.python.ops.state_ops import assign_add from tensorflow.python.ops.state_ops import assign_sub from tensorflow.python.ops.state_ops import count_up_to from tensorflow.python.ops.state_ops import scatter_add from tensorflow.python.ops.state_ops import scatter_div from tensorflow.python.ops.state_ops import scatter_mul from tensorflow.python.ops.state_ops import scatter_sub from tensorflow.python.ops.state_ops import scatter_min from tensorflow.python.ops.state_ops import scatter_max from tensorflow.python.ops.state_ops import scatter_update from tensorflow.python.ops.state_ops import scatter_nd_add from tensorflow.python.ops.state_ops import scatter_nd_sub # TODO(simister): Re-enable once binary size increase due to scatter_nd # ops is under control. # from tensorflow.python.ops.state_ops import scatter_nd_mul # from tensorflow.python.ops.state_ops import scatter_nd_div from tensorflow.python.ops.state_ops import scatter_nd_update from tensorflow.python.ops.stateless_random_ops import * from tensorflow.python.ops.string_ops import * from tensorflow.python.ops.template import * from tensorflow.python.ops.tensor_array_ops import * from tensorflow.python.ops.variable_scope import * # pylint: disable=redefined-builtin from tensorflow.python.ops.variables import * from tensorflow.python.ops.parallel_for.control_flow_ops import vectorized_map # pylint: disable=g-import-not-at-top if _platform.system() == "Windows": from tensorflow.python.compiler.tensorrt import trt_convert_windows as trt else: from tensorflow.python.compiler.tensorrt import trt_convert as trt # pylint: enable=g-import-not-at-top # pylint: enable=wildcard-import # pylint: enable=g-bad-import-order # These modules were imported to set up RaggedTensor operators and dispatchers: del _ragged_dispatch, _ragged_operators
46.936508
93
0.825668
875
5,914
5.410286
0.244571
0.227714
0.325306
0.34981
0.5921
0.53929
0.367343
0.277989
0.118293
0.025771
0
0.001496
0.095536
5,914
125
94
47.312
0.88353
0.263274
0
0
0
0
0.001621
0
0
0
0
0.008
0.012048
1
0
true
0
0.963855
0
0.963855
0.012048
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
0a06508cf532e568943c2d6f9f6d327c4504fc73
56
py
Python
starry/_core/ops/lib/include/oblate/tests/test_derivs.py
rodluger/starry
da7fee48c5ef94278f0047be0579e2f13492cdd5
[ "MIT" ]
116
2018-02-23T19:47:15.000Z
2022-02-21T04:43:46.000Z
starry/_core/ops/lib/include/oblate/tests/test_derivs.py
rodluger/starry
da7fee48c5ef94278f0047be0579e2f13492cdd5
[ "MIT" ]
224
2018-02-26T00:41:51.000Z
2022-03-29T10:38:16.000Z
starry/_core/ops/lib/include/oblate/tests/test_derivs.py
rodluger/starry
da7fee48c5ef94278f0047be0579e2f13492cdd5
[ "MIT" ]
25
2018-02-26T18:14:36.000Z
2021-11-30T01:00:56.000Z
import oblate import numpy as np import pytest # TODO!
9.333333
18
0.767857
9
56
4.777778
0.777778
0
0
0
0
0
0
0
0
0
0
0
0.196429
56
5
19
11.2
0.955556
0.089286
0
0
0
0
0
0
0
0
0
0.2
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
1
0
0
0
1
0
1
0
1
0
0
6
0a33cb634cfe076d601a3145a01487981499f068
22,712
py
Python
Scripts/calc_Utilities.py
zmlabe/ThicknessSensitivity
6defdd897a61d7d1a02f34a9f4ec92b2b17b3075
[ "MIT" ]
1
2017-10-22T02:22:14.000Z
2017-10-22T02:22:14.000Z
Scripts/calc_Utilities.py
zmlabe/ThicknessSensitivity
6defdd897a61d7d1a02f34a9f4ec92b2b17b3075
[ "MIT" ]
null
null
null
Scripts/calc_Utilities.py
zmlabe/ThicknessSensitivity
6defdd897a61d7d1a02f34a9f4ec92b2b17b3075
[ "MIT" ]
4
2018-04-05T17:55:36.000Z
2022-03-31T07:05:01.000Z
""" Functions are useful untilities for SITperturb experiments Notes ----- Author : Zachary Labe Date : 13 August 2017 Usage ----- [1] calcDecJan(varx,vary,lat,lon,level,levsq) [2] calcDecJanFeb(varx,vary,lat,lon,level,levsq) [3] calc_indttest(varx,vary) [4] calc_weightedAve(var,lats) [5] calc_spatialCorr(varx,vary,lats,lons,weight) [6] calc_RMSE(varx,vary,lats,lons,weight) [7] calc_spatialCorrHeight(varx,vary,lats,lons,weight) [8] calc_spatialCorrHeightLev(varx,vary,lats,lons,weight,levelq) """ def calcDecJan(varx,vary,lat,lon,level,levsq): """ Function calculates average for December-January Parameters ---------- varx : 4d array or 5d array [year,month,lat,lon] or [year,month,lev,lat,lon] vary : 4d array or 5d array [year,month,lat,lon] or [year,month,lev,lat,lon] lat : 1d numpy array latitudes lon : 1d numpy array longitudes level : string Height of variable (surface or profile) levsq : integer number of levels Returns ------- varx_dj : 3d array or 4d array [year,lat,lon] or [year,lev,lat,lon] vary_dj : 3d array [year,lat,lon] or [year,lev,lat,lon] Usage ----- varx_dj,vary_dj = calcDecJan(varx,vary,lat,lon,level,levsq) """ print('\n>>> Using calcDecJan function!') ### Import modules import numpy as np ### Reshape for 3d variables if level == 'surface': varxravel = np.reshape(varx.copy(), (int(varx.shape[0]*12), int(lat.shape[0]),int(lon.shape[0]))) varyravel = np.reshape(vary.copy(), (int(vary.shape[0]*12), int(lat.shape[0]),int(lon.shape[0]))) varx_dj = np.empty((varx.shape[0]-1,lat.shape[0],lon.shape[0])) vary_dj = np.empty((vary.shape[0]-1,lat.shape[0],lon.shape[0]) ) for i in range(0,varxravel.shape[0]-12,12): counter = 0 if i >= 12: counter = i//12 djappendh = np.append(varxravel[11+i,:,:],varxravel[12+i,:,:]) djappendf = np.append(varyravel[11+i,:,:],varyravel[12+i,:,:]) varx_dj[counter,:,:] = np.nanmean(np.reshape(djappendh, (2,int(lat.shape[0]),int(lon.shape[0]))), axis=0) vary_dj[counter,:,:] = np.nanmean(np.reshape(djappendf, (2,int(lat.shape[0]),int(lon.shape[0]))), axis=0) ### Reshape for 4d variables elif level == 'profile': varxravel = np.reshape(varx.copy(), (int(varx.shape[0]*12.),levsq, int(lat.shape[0]),int(lon.shape[0]))) varyravel = np.reshape(vary.copy(), (int(vary.shape[0]*12.),levsq, int(lat.shape[0]),int(lon.shape[0]))) varx_dj = np.empty((int(varx.shape[0]-1),levsq, int(lat.shape[0]),int(lon.shape[0]))) vary_dj = np.empty((int(vary.shape[0]-1),levsq, int(lat.shape[0]),int(lon.shape[0])) ) for i in range(0,varxravel.shape[0]-12,12): counter = 0 if i >= 12: counter = i//12 djappendh = np.append(varxravel[11+i,:,:,:], varxravel[12+i,:,:,:]) djappendf = np.append(varyravel[11+i,:,:,:], varyravel[12+i,:,:,:]) varx_dj[counter,:,:] = np.nanmean(np.reshape(djappendh, (2,levsq,int(lat.shape[0]), int(lon.shape[0]))),axis=0) vary_dj[counter,:,:] = np.nanmean(np.reshape(djappendf, (2,levsq,int(lat.shape[0]), int(lon.shape[0]))),axis=0) else: print(ValueError('Selected wrong height - (surface or profile!)!')) print('Completed: Organized data by months (ON,DJ,FM)!') print('*Completed: Finished calcDecJan function!') return varx_dj,vary_dj ############################################################################### ############################################################################### ############################################################################### def calcDecJanFeb(varx,vary,lat,lon,level,levsq): """ Function calculates average for December-January-February Parameters ---------- varx : 4d array or 5d array [year,month,lat,lon] or [year,month,lev,lat,lon] vary : 4d array or 5d array [year,month,lat,lon] or [year,month,lev,lat,lon] lat : 1d numpy array latitudes lon : 1d numpy array longitudes level : string Height of variable (surface or profile) levsq : integer number of levels Returns ------- varx_djf : 3d array or 4d array [year,lat,lon] or [year,lev,lat,lon] vary_djf : 3d array [year,lat,lon] or [year,lev,lat,lon] Usage ----- varx_djf,vary_djf = calcDecJanFeb(varx,vary,lat,lon,level,levsq) """ print('\n>>> Using calcDecJan function!') ### Import modules import numpy as np ### Reshape for 3d variables if level == 'surface': varxravel = np.reshape(varx.copy(), (int(varx.shape[0]*12), int(lat.shape[0]),int(lon.shape[0]))) varyravel = np.reshape(vary.copy(), (int(vary.shape[0]*12), int(lat.shape[0]),int(lon.shape[0]))) varx_djf = np.empty((varx.shape[0]-1,lat.shape[0],lon.shape[0])) vary_djf = np.empty((vary.shape[0]-1,lat.shape[0],lon.shape[0]) ) for i in range(0,varxravel.shape[0]-12,12): counter = 0 if i >= 12: counter = i//12 djfappendh1 = np.append(varxravel[11+i,:,:],varxravel[12+i,:,:]) djfappendf1 = np.append(varyravel[11+i,:,:],varyravel[12+i,:,:]) djfappendh = np.append(djfappendh1,varxravel[13+i,:,:]) djfappendf = np.append(djfappendf1,varyravel[13+i,:,:]) varx_djf[counter,:,:] = np.nanmean(np.reshape(djfappendh, (3,int(lat.shape[0]),int(lon.shape[0]))), axis=0) vary_djf[counter,:,:] = np.nanmean(np.reshape(djfappendf, (3,int(lat.shape[0]),int(lon.shape[0]))), axis=0) ### Reshape for 4d variables elif level == 'profile': varxravel = np.reshape(varx.copy(), (int(varx.shape[0]*12.),levsq, int(lat.shape[0]),int(lon.shape[0]))) varyravel = np.reshape(vary.copy(), (int(vary.shape[0]*12.),levsq, int(lat.shape[0]),int(lon.shape[0]))) varx_djf = np.empty((int(varx.shape[0]-1),levsq, int(lat.shape[0]),int(lon.shape[0]))) vary_djf = np.empty((int(vary.shape[0]-1),levsq, int(lat.shape[0]),int(lon.shape[0])) ) for i in range(0,varxravel.shape[0]-12,12): counter = 0 if i >= 12: counter = i//12 djfappendh1 = np.append(varxravel[11+i,:,:,:], varxravel[12+i,:,:,:]) djfappendf1 = np.append(varyravel[11+i,:,:,:], varyravel[12+i,:,:,:]) djfappendh = np.append(djfappendh1, varxravel[13+i,:,:,:]) djfappendf = np.append(djfappendf1, varyravel[13+i,:,:,:]) varx_djf[counter,:,:] = np.nanmean(np.reshape(djfappendh, (3,levsq,int(lat.shape[0]), int(lon.shape[0]))),axis=0) vary_djf[counter,:,:] = np.nanmean(np.reshape(djfappendf, (3,levsq,int(lat.shape[0]), int(lon.shape[0]))),axis=0) else: print(ValueError('Selected wrong height - (surface or profile!)!')) print('Completed: Organized data by months (DJF)!') print('*Completed: Finished calcDecJanFeb function!') return varx_djf,vary_djf ############################################################################### ############################################################################### ############################################################################### def calc_indttest(varx,vary): """ Function calculates statistical difference for 2 independent sample t-test Parameters ---------- varx : 3d array vary : 3d array Returns ------- stat = calculated t-statistic pvalue = two-tailed p-value Usage ----- stat,pvalue = calc_ttest(varx,vary) """ print('\n>>> Using calc_ttest function!') ### Import modules import numpy as np import scipy.stats as sts ### 2-independent sample t-test stat,pvalue = sts.ttest_ind(varx,vary,nan_policy='omit') ### Significant at 95% confidence level pvalue[np.where(pvalue >= 0.05)] = np.nan pvalue[np.where(pvalue < 0.05)] = 1. print('*Completed: Finished calc_ttest function!') return stat,pvalue ############################################################################### ############################################################################### ############################################################################### def calc_weightedAve(var,lats): """ Area weights sit array 5d [ens,year,month,lat,lon] into [ens,year,month] Parameters ---------- var : 5d,4d,3d array of a gridded variable lats : 2d array of latitudes Returns ------- meanvar : weighted average for 3d,2d,1d array Usage ----- meanvar = calc_weightedAve(var,lats) """ print('\n>>> Using calc_weightedAve function!') ### Import modules import numpy as np ### Calculate weighted average for various dimensional arrays if var.ndim == 5: meanvar = np.empty((var.shape[0],var.shape[1],var.shape[2])) for ens in range(var.shape[0]): for i in range(var.shape[1]): for j in range(var.shape[2]): varq = var[ens,i,j,:,:] mask = np.isfinite(varq) & np.isfinite(lats) varmask = varq[mask] areamask = np.cos(np.deg2rad(lats[mask])) meanvar[ens,i,j] = np.nansum(varmask*areamask) \ /np.sum(areamask) elif var.ndim == 4: meanvar = np.empty((var.shape[0],var.shape[1])) for i in range(var.shape[0]): for j in range(var.shape[1]): varq = var[i,j,:,:] mask = np.isfinite(varq) & np.isfinite(lats) varmask = varq[mask] areamask = np.cos(np.deg2rad(lats[mask])) meanvar[i,j] = np.nansum(varmask*areamask)/np.sum(areamask) elif var.ndim == 3: meanvar = np.empty((var.shape[0])) for i in range(var.shape[0]): varq = var[i,:,:] mask = np.isfinite(varq) & np.isfinite(lats) varmask = varq[mask] areamask = np.cos(np.deg2rad(lats[mask])) meanvar[i] = np.nansum(varmask*areamask)/np.sum(areamask) elif var.ndim == 2: meanvar = np.empty((var.shape[0])) varq = var[:,:] mask = np.isfinite(varq) & np.isfinite(lats) varmask = varq[mask] areamask = np.cos(np.deg2rad(lats[mask])) meanvar = np.nansum(varmask*areamask)/np.sum(areamask) else: print(ValueError('Variable has the wrong dimensions!')) print('Completed: Weighted variable average!') print('*Completed: Finished calc_weightedAve function!') return meanvar ############################################################################### ############################################################################### ############################################################################### def calc_spatialCorr(varx,vary,lats,lons,weight): """ Calculates spatial correlation from pearson correlation coefficient Parameters ---------- varx : 2d array vary : 2d array lats : 1d array lons : 1d array of latitude weight : string (yes or no) Returns ------- corrcoef : 1d array of correlation coefficient (pearson r) Usage ----- corrcoef = calc_spatialCorr(varx,vary,lats,lons) """ print('\n>>> Using calc_spatialCorr function!') ### Import modules import numpy as np if weight == 'yes': # Computed weighted correlation coefficient ### mask mask = 'yes' if mask == 'yes': latq = np.where(lats > 40)[0] lats = lats[latq] varx = varx[latq,:] vary = vary[latq,:] print('MASKING LATITUDES!') ### Create 2d meshgrid for weights lon2,lat2 = np.meshgrid(lons,lats) ### Create 2d array of weights based on latitude gw = np.cos(np.deg2rad(lat2)) def m(x, w): """Weighted Mean""" wave = np.sum(x * w) / np.sum(w) print('Completed: Computed weighted average!') return wave def cov(x, y, w): """Weighted Covariance""" wcov = np.sum(w * (x - m(x, w)) * (y - m(y, w))) / np.sum(w) print('Completed: Computed weighted covariance!') return wcov def corr(x, y, w): """Weighted Correlation""" wcor = cov(x, y, w) / np.sqrt(cov(x, x, w) * cov(y, y, w)) print('Completed: Computed weighted correlation!') return wcor corrcoef = corr(varx,vary,gw) elif weight == 'no': ### Correlation coefficient from numpy function (not weighted) corrcoef= np.corrcoef(varx.ravel(),vary.ravel())[0][1] print('Completed: Computed NON-weighted correlation!') else: ValueError('Wrong weighted arguement in function!') print('*Completed: Finished calc_SpatialCorr function!') return corrcoef ############################################################################### ############################################################################### ############################################################################### def calc_RMSE(varx,vary,lats,lons,weight): """ Calculates root mean square weighted average Parameters ---------- varx : 2d array vary : 2d array lons : 1d array of latitude weight : string (yes or no) Returns ------- rmse : 1d array Usage ----- rmse = calc_RMSE(varx,vary,lats,lons) """ print('\n>>> Using calc_RMSE function!') ### Import modules import numpy as np from sklearn.metrics import mean_squared_error if weight == 'yes': # Computed weighted correlation coefficient ### mask mask = 'yes' if mask == 'yes': latq = np.where(lats > 40)[0] lats = lats[latq] varx = varx[latq,:] vary = vary[latq,:] print('MASKING LATITUDES!') ### Create 2d meshgrid for weights lon2,lat2 = np.meshgrid(lons,lats) ### Create 2d array of weights based on latitude gw = np.cos(np.deg2rad(lat2)) ### Calculate rmse sq_err = (varx - vary)**2 rmse = np.sqrt((np.sum(sq_err*gw))/np.sum(gw)) elif weight == 'no': ### Root mean square error from sklearn (not weighted) rmse = np.sqrt(mean_squared_error(varx.ravel(),vary.ravel())) print('Completed: Computed NON-weighted correlation!') else: ValueError('Wrong weighted arguement in function!') print('*Completed: Finished calc_RMSE function!') return rmse ############################################################################### ############################################################################### ############################################################################### def calc_spatialCorrHeight(varx,vary,levs,lons,weight): """ Calculates spatial correlation from pearson correlation coefficient for grids over vertical height (17 pressure coordinate levels) Parameters ---------- varx : 2d array vary : 2d array levs : 1d array of levels lons : 1d array of latitude weight : string (yes or no) Returns ------- corrcoef : 1d array of correlation coefficient (pearson r) Usage ----- corrcoef = calc_spatialCorrHeight(varx,vary,lats,lons) """ print('\n>>> Using calc_spatialCorrHeight function!') ### Import modules import numpy as np if weight == 'yes': # Computed weighted correlation coefficient ### Create 2d meshgrid for weights lon2,lev2 = np.meshgrid(lons,levs) ### Create 2d array of weights based on latitude gwq = np.array([0.25,0.25,0.25,0.25,0.25,0.25,0.4,0.5,0.5,0.5, 0.5,0.5,0.5,0.7,0.7,0.7,1.]) gw,gw2 = np.meshgrid(lons,gwq) def m(x, w): """Weighted Mean""" wave = np.sum(x * w) / np.sum(w) print('Completed: Computed weighted average (17 P Levels)!') return wave def cov(x, y, w): """Weighted Covariance""" wcov = np.sum(w * (x - m(x, w)) * (y - m(y, w))) / np.sum(w) print('Completed: Computed weighted covariance (17 P Levels)!') return wcov def corr(x, y, w): """Weighted Correlation""" wcor = cov(x, y, w) / np.sqrt(cov(x, x, w) * cov(y, y, w)) print('Completed: Computed weighted correlation (17 P Levels)!') return wcor corrcoef = corr(varx,vary,gw) elif weight == 'no': ### Correlation coefficient from numpy function (not weighted) corrcoef= np.corrcoef(varx.ravel(),vary.ravel())[0][1] print('Completed: Computed NON-weighted correlation!') else: ValueError('Wrong weighted argument in function!') print('*Completed: Finished calc_SpatialCorrHeight function!') return corrcoef ############################################################################### ############################################################################### ############################################################################### def calc_spatialCorrHeightLev(varx,vary,levs,lons,weight,levelq): """ Calculates spatial correlation from pearson correlation coefficient for grids over vertical height (17 pressure coordinate levels). Change the weighting for different level correlations Parameters ---------- varx : 2d array vary : 2d array levs : 1d array of levels lons : 1d array of latitude weight : string (yes or no) levelq : string (all, tropo, strato) Returns ------- corrcoef : 1d array of correlation coefficient (pearson r) Usage ----- corrcoef = calc_spatialCorrHeight(varx,vary,lats,lons,levels) """ print('\n>>> Using calc_spatialCorrHeightLev function!') ### Import modules import numpy as np if weight == 'yes': # Computed weighted correlation coefficient ### Create 2d meshgrid for weights lon2,lev2 = np.meshgrid(lons,levs) if levelq == 'all': ### Create 2d array of weights based on latitude gwq = np.array([0.25,0.25,0.25,0.25,0.25,0.25,0.4,0.5,0.5,0.5, 0.5,0.5,0.5,0.7,0.7,0.7,1.]) gw,gw2 = np.meshgrid(lons,gwq) elif levelq == 'tropo': gwq = np.array([1.0,1.0,1.0,1.0,0.5,0.5,0.5,0.2,0.2,0.,0.,0., 0.,0.,0.,0.,0.]) gw,gw2 = np.meshgrid(lons,gwq) elif levelq == 'strato': gwq = np.array([0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.5,1.,1.,1.,1. ,1.,1.]) gw,gw2 = np.meshgrid(lons,gwq) def m(x, w): """Weighted Mean""" wave = np.sum(x * w) / np.sum(w) print('Completed: Computed weighted average (17 P Levels)!') return wave def cov(x, y, w): """Weighted Covariance""" wcov = np.sum(w * (x - m(x, w)) * (y - m(y, w))) / np.sum(w) print('Completed: Computed weighted covariance (17 P Levels)!') return wcov def corr(x, y, w): """Weighted Correlation""" wcor = cov(x, y, w) / np.sqrt(cov(x, x, w) * cov(y, y, w)) print('Completed: Computed weighted correlation (17 P Levels)!') return wcor corrcoef = corr(varx,vary,gw) elif weight == 'no': ### Correlation coefficient from numpy function (not weighted) corrcoef= np.corrcoef(varx.ravel(),vary.ravel())[0][1] print('Completed: Computed NON-weighted correlation!') else: ValueError('Wrong weighted argument in function!') print('*Completed: Finished calc_SpatialCorrHeightLev function!') return corrcoef
36.514469
95
0.468739
2,463
22,712
4.295575
0.097848
0.042533
0.020416
0.022684
0.831947
0.81465
0.795747
0.750189
0.738185
0.719187
0
0.030765
0.330222
22,712
622
96
36.514469
0.664738
0.224287
0
0.686411
0
0
0.11901
0.006239
0
0
0
0
0
1
0.059233
false
0
0.034843
0
0.15331
0.12892
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0a3472688b742e51fb849821bffb5408a0c299f0
5,306
py
Python
cs15211/ReverseBits.py
JulyKikuAkita/PythonPrac
0ba027d9b8bc7c80bc89ce2da3543ce7a49a403c
[ "Apache-2.0" ]
1
2021-07-05T01:53:30.000Z
2021-07-05T01:53:30.000Z
cs15211/ReverseBits.py
JulyKikuAkita/PythonPrac
0ba027d9b8bc7c80bc89ce2da3543ce7a49a403c
[ "Apache-2.0" ]
null
null
null
cs15211/ReverseBits.py
JulyKikuAkita/PythonPrac
0ba027d9b8bc7c80bc89ce2da3543ce7a49a403c
[ "Apache-2.0" ]
1
2018-01-08T07:14:08.000Z
2018-01-08T07:14:08.000Z
__source__ = 'https://leetcode.com/problems/reverse-bits/description/' # https://github.com/kamyu104/LeetCode/blob/master/Python/reverse-bits.py # Time : O(n) # Space: O(1) # Bit Manipulation # # Description: Leetcode # 190. Reverse Bits # # Reverse bits of a given 32 bits unsigned integer. # # For example, given input 43261596 (represented in binary as 00000010100101000001111010011100), # return 964176192 (represented in binary as 00111001011110000010100101000000). # # Follow up: # If this function is called many times, how would you optimize it? # # Companies # Apple Airbnb # Related Topics # Bit Manipulation # Similar Questions # Number of 1 Bits # import unittest class Solution: # @param n, an integer # @return an integer def reverseBits(self, n): result = 0 for i in xrange(32): result <<= 1 result |= n & 1 n >>= 1 return result class TestMethods(unittest.TestCase): def test_Local(self): self.assertEqual(1, 1) print Solution().reverseBits(1) if __name__ == '__main__': unittest.main() Java = ''' # Thought: # 1ms 100% class Solution { // you need treat n as an unsigned value public int reverseBits(int n) { int ret = 0; for (int i = 0; i < 32; i++) { if ((n & 1) != 0) { ret |= 1; //same as // res += n & 1 } n >>>= 1; // padding 0 on the left side if (i < 31) { // CATCH: for last digit, don't shift! ret <<= 1; } } return ret; } } We first intitialize result to 0. We then iterate from 0 to 31 (an integer has 32 bits). In each iteration: We first shift result to the left by 1 bit. Then, if the last digit of input n is 1, we add 1 to result. To find the last digit of n, we just do: (n & 1) Example, if n=5 (101), n&1 = 101 & 001 = 001 = 1; however, if n = 2 (10), n&1 = 10 & 01 = 0). Finally, we update n by shifting it to the right by 1 (n >>= 1) At the end of the iteration, we return result. Example, if input n = 13 (represented in binary as 0000_0000_0000_0000_0000_0000_0000_1101, the "_" is for readability), calling reverseBits(13) should return: 1011_0000_0000_0000_0000_0000_0000_0000 Here is how our algorithm would work for input n = 13: Initially, result = 0 = 0000_0000_0000_0000_0000_0000_0000_0000, n = 13 = 0000_0000_0000_0000_0000_0000_0000_1101 Starting for loop: i = 0: result = result << 1 = 0000_0000_0000_0000_0000_0000_0000_0000. n&1 = 0000_0000_0000_0000_0000_0000_0000_1101 & 0000_0000_0000_0000_0000_0000_0000_0001 = 0000_0000_0000_0000_0000_0000_0000_0001 = 1 therefore result = result + 1 = 0000_0000_0000_0000_0000_0000_0000_0000 + 0000_0000_0000_0000_0000_0000_0000_0001 = 0000_0000_0000_0000_0000_0000_0000_0001 = 1 We right shift n by 1 (n >>= 1) to get: n = 0000_0000_0000_0000_0000_0000_0000_0110. We then go to the next iteration. i = 1: result = result << 1 = 0000_0000_0000_0000_0000_0000_0000_0010; n&1 = 0000_0000_0000_0000_0000_0000_0000_0110 & 0000_0000_0000_0000_0000_0000_0000_0001 = 0000_0000_0000_0000_0000_0000_0000_0000 = 0; therefore we don't increment result. We right shift n by 1 (n >>= 1) to get: n = 0000_0000_0000_0000_0000_0000_0000_0011. We then go to the next iteration. i = 2: result = result << 1 = 0000_0000_0000_0000_0000_0000_0000_0100. n&1 = 0000_0000_0000_0000_0000_0000_0000_0011 & 0000_0000_0000_0000_0000_0000_0000_0001 = 0000_0000_0000_0000_0000_0000_0000_0001 = 1 therefore result = result + 1 = 0000_0000_0000_0000_0000_0000_0000_0100 + 0000_0000_0000_0000_0000_0000_0000_0001 = result = 0000_0000_0000_0000_0000_0000_0000_0101 We right shift n by 1 to get: n = 0000_0000_0000_0000_0000_0000_0000_0001. We then go to the next iteration. i = 3: result = result << 1 = 0000_0000_0000_0000_0000_0000_0000_1010. n&1 = 0000_0000_0000_0000_0000_0000_0000_0001 & 0000_0000_0000_0000_0000_0000_0000_0001 = 0000_0000_0000_0000_0000_0000_0000_0001 = 1 therefore result = result + 1 = = 0000_0000_0000_0000_0000_0000_0000_1011 We right shift n by 1 to get: n = 0000_0000_0000_0000_0000_0000_0000_0000 = 0. Now, from here to the end of the iteration, n is 0, so (n&1) will always be 0 and n >>=1 will not change n. The only change will be for result <<=1, i.e. shifting result to the left by 1 digit. Since there we have i=4 to i = 31 iterations left, this will result in padding 28 0's to the right of result. i.e at the end, we get result = 1011_0000_0000_0000_0000_0000_0000_0000 This is exactly what we expected to get # 1ms 100% class Solution { // you need treat n as an unsigned value public int reverseBits(int n) { if (n == 0) return 0; int result = 0; for (int i = 0; i < 32; i++) { result <<= 1; if ((n & 1) == 1) result++; n >>= 1; } return result; } } # 1ms 100% class Solution { // you need treat n as an unsigned value public int reverseBits(int n) { n = ((n & 0x55555555) << 1) | ((n & 0xAAAAAAAA) >>> 1); n = ((n & 0x33333333) << 2) | ((n & 0xCCCCCCCC) >>> 2); n = ((n & 0x0F0F0F0F) << 4) | ((n & 0xF0F0F0F0) >>> 4); n = ((n & 0x00FF00FF) << 8) | ((n & 0xFF00FF00) >>> 8); return (n >>> 16) | (n << 16); } } '''
31.963855
96
0.67942
885
5,306
3.80452
0.216949
0.470448
0.595189
0.646273
0.485595
0.473715
0.463023
0.454707
0.36828
0.328185
0
0.314932
0.225028
5,306
165
97
32.157576
0.503891
0.109876
0
0.264
0
0.024
0.905472
0.267618
0
0
0.017032
0
0.008
0
null
null
0
0.008
null
null
0.008
0
0
0
null
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
null
0
0
0
0
1
0
0
0
0
0
0
0
0
6
0a444a2a9b00c93ede978edd61b59c20a6608e93
5,351
py
Python
testing/scripts/test_ksonnet_single_namespace.py
dtrawins/seldon-core
3d8b3791b343118953757a1e787e5919cc64e697
[ "Apache-2.0" ]
null
null
null
testing/scripts/test_ksonnet_single_namespace.py
dtrawins/seldon-core
3d8b3791b343118953757a1e787e5919cc64e697
[ "Apache-2.0" ]
null
null
null
testing/scripts/test_ksonnet_single_namespace.py
dtrawins/seldon-core
3d8b3791b343118953757a1e787e5919cc64e697
[ "Apache-2.0" ]
null
null
null
import pytest import time import subprocess from subprocess import run,Popen from seldon_utils import * from k8s_utils import * def wait_for_shutdown(deploymentName): ret = run("kubectl get deploy/"+deploymentName, shell=True) while ret.returncode == 0: time.sleep(1) ret = run("kubectl get deploy/"+deploymentName, shell=True) def wait_for_rollout(deploymentName): ret = run("kubectl rollout status deploy/"+deploymentName, shell=True) while ret.returncode > 0: time.sleep(1) ret = run("kubectl rollout status deploy/"+deploymentName, shell=True) def initial_rest_request(): r = rest_request_api_gateway("oauth-key","oauth-secret",None,API_GATEWAY_REST) if not r.status_code == 200: time.sleep(1) r = rest_request_api_gateway("oauth-key","oauth-secret",None,API_GATEWAY_REST) if not r.status_code == 200: time.sleep(5) r = rest_request_api_gateway("oauth-key","oauth-secret",None,API_GATEWAY_REST) return r @pytest.mark.usefixtures("seldon_java_images") @pytest.mark.usefixtures("single_namespace_seldon_ksonnet") class TestSingleNamespace(object): # Test singe model helm script with 4 API methods def test_single_model(self): run('cd my-model && ks delete default && ks component rm mymodel', shell=True) run('kubectl delete sdep --all', shell=True) run('cd my-model && ks generate seldon-serve-simple-v1alpha2 mymodel --image seldonio/mock_classifier:1.0 --oauthKey=oauth-key --oauthSecret=oauth-secret && ks apply default -c mymodel', shell=True, check=True) wait_for_rollout("mymodel-mymodel-025d03d") r = initial_rest_request() r = rest_request_api_gateway("oauth-key","oauth-secret",None,API_GATEWAY_REST) res = r.json() print(res) assert r.status_code == 200 assert len(r.json()["data"]["tensor"]["values"]) == 1 r = rest_request_ambassador("mymodel",None,API_AMBASSADOR) res = r.json() print(res) assert r.status_code == 200 assert len(r.json()["data"]["tensor"]["values"]) == 1 r = grpc_request_ambassador2("mymodel",None,API_AMBASSADOR) print(r) r = grpc_request_api_gateway2("oauth-key","oauth-secret",None,rest_endpoint=API_GATEWAY_REST,grpc_endpoint=API_GATEWAY_GRPC) print(r) run('cd my-model && ks delete default -c mymodel && ks component rm mymodel', shell=True) # Test AB Test model helm script with 4 API methods def test_abtest_model(self): run('cd my-model && ks delete default && ks component rm mymodel', shell=True) run('kubectl delete sdep --all', shell=True) run('cd my-model && ks generate seldon-abtest-v1alpha2 myabtest --imageA seldonio/mock_classifier:1.0 --imageB seldonio/mock_classifier:1.0 --oauthKey=oauth-key --oauthSecret=oauth-secret && ks apply default -c myabtest', shell=True) wait_for_rollout("myabtest-myabtest-41de5b8") wait_for_rollout("myabtest-myabtest-df66c5c") r = initial_rest_request() r = rest_request_api_gateway("oauth-key","oauth-secret",None,API_GATEWAY_REST) res = r.json() print(res) assert r.status_code == 200 assert len(r.json()["data"]["tensor"]["values"]) == 1 r = rest_request_ambassador("myabtest",None,API_AMBASSADOR) res = r.json() print(res) assert r.status_code == 200 assert len(r.json()["data"]["tensor"]["values"]) == 1 r = grpc_request_ambassador2("myabtest",None,API_AMBASSADOR) print(r) r = grpc_request_api_gateway2("oauth-key","oauth-secret",None,rest_endpoint=API_GATEWAY_REST,grpc_endpoint=API_GATEWAY_GRPC) print(r) run('cd my-model && ks delete default -c myabtest && ks component rm myabtest', shell=True) # Test MAB Test model helm script with 4 API methods def test_mab_model(self): run('cd my-model && ks delete default && ks component rm mymab', shell=True) run('kubectl delete sdep --all', shell=True) run('cd my-model && ks generate seldon-mab-v1alpha2 mymab --imageA seldonio/mock_classifier:1.0 --imageB seldonio/mock_classifier:1.0 --oauthKey=oauth-key --oauthSecret=oauth-secret && ks apply default -c mymab', shell=True) wait_for_rollout("mymab-mymab-41de5b8") wait_for_rollout("mymab-mymab-b8038b2") wait_for_rollout("mymab-mymab-df66c5c") r = initial_rest_request() r = rest_request_api_gateway("oauth-key","oauth-secret",None,API_GATEWAY_REST) res = r.json() print(res) assert r.status_code == 200 assert len(r.json()["data"]["tensor"]["values"]) == 1 r = rest_request_ambassador("mymab",None,API_AMBASSADOR) res = r.json() print(res) assert r.status_code == 200 assert len(r.json()["data"]["tensor"]["values"]) == 1 r = grpc_request_ambassador2("mymab",None,API_AMBASSADOR) print(r) r = grpc_request_api_gateway2("oauth-key","oauth-secret",None,rest_endpoint=API_GATEWAY_REST,grpc_endpoint=API_GATEWAY_GRPC) print(r) run('cd my-model && ks delete default && ks component rm mymab', shell=True)
50.481132
245
0.657073
720
5,351
4.709722
0.152778
0.053082
0.031849
0.050428
0.830434
0.784429
0.775877
0.775877
0.761722
0.730758
0
0.020525
0.216969
5,351
105
246
50.961905
0.788783
0.027658
0
0.617021
0
0.031915
0.320446
0.071552
0
0
0
0
0.12766
1
0.06383
false
0
0.06383
0
0.148936
0.12766
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
6a94a7cd3e89c26bee4c47c7741e5a37358da6ff
46
py
Python
Fundamentals/Reversed Strings.py
gnvidal/Codewars
117a83bd949a1503f31f1f915641e96e7bf7a04c
[ "MIT" ]
49
2018-04-30T06:42:45.000Z
2021-07-22T16:39:02.000Z
Fundamentals/Reversed Strings.py
gnvidal/Codewars
117a83bd949a1503f31f1f915641e96e7bf7a04c
[ "MIT" ]
1
2020-08-31T02:36:53.000Z
2020-08-31T10:14:00.000Z
Fundamentals/Reversed Strings.py
gnvidal/Codewars
117a83bd949a1503f31f1f915641e96e7bf7a04c
[ "MIT" ]
36
2016-11-07T19:59:58.000Z
2022-03-31T11:18:27.000Z
def solution(string): return string[::-1]
15.333333
23
0.652174
6
46
5
0.833333
0
0
0
0
0
0
0
0
0
0
0.026316
0.173913
46
2
24
23
0.763158
0
0
0
0
0
0
0
0
0
0
0
0
1
0.5
false
0
0
0.5
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
1
0
0
6
0a8d1e23712a4b58170f56ad1d0354b9b57142a5
45
py
Python
AudioLib/__init__.py
yNeshy/voice-change
2535351bcd8a9f2d58fcbff81a2051c4f6ac6ab4
[ "MIT" ]
11
2021-02-04T11:35:37.000Z
2022-03-26T10:32:00.000Z
AudioLib/__init__.py
yNeshy/voice-change
2535351bcd8a9f2d58fcbff81a2051c4f6ac6ab4
[ "MIT" ]
4
2021-03-22T09:36:54.000Z
2021-03-26T09:10:51.000Z
AudioLib/__init__.py
yNeshy/voice-change
2535351bcd8a9f2d58fcbff81a2051c4f6ac6ab4
[ "MIT" ]
6
2021-02-24T09:03:35.000Z
2021-11-16T02:00:53.000Z
from AudioLib.AudioEffect import AudioEffect
22.5
44
0.888889
5
45
8
0.8
0
0
0
0
0
0
0
0
0
0
0
0.088889
45
1
45
45
0.97561
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
0aab7620f824873c7b572e13e03aa334f91e254d
143
py
Python
axju/generic/__init__.py
axju/axju
de0b3d9c63b7cca4ed16fb50e865c159b4377953
[ "MIT" ]
null
null
null
axju/generic/__init__.py
axju/axju
de0b3d9c63b7cca4ed16fb50e865c159b4377953
[ "MIT" ]
null
null
null
axju/generic/__init__.py
axju/axju
de0b3d9c63b7cca4ed16fb50e865c159b4377953
[ "MIT" ]
null
null
null
from axju.generic.basic import BasicWorker from axju.generic.execution import ExecutionWorker from axju.generic.template import TemplateWorker
35.75
50
0.874126
18
143
6.944444
0.555556
0.192
0.36
0
0
0
0
0
0
0
0
0
0.083916
143
3
51
47.666667
0.954198
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
18