Dataset Viewer
Full Screen Viewer
Full Screen
The dataset could not be loaded because the splits use different data file formats, which is not supported. Read more about the splits configuration. Click for more details.
Couldn't infer the same data file format for all splits. Got {NamedSplit('train'): ('text', {}), NamedSplit('validation'): ('text', {}), NamedSplit('test'): ('json', {})}
Error code: FileFormatMismatchBetweenSplitsError
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
pre-training data
You need to manually combine each dataset if you want to use a multilingual dataset.
from datasets import load_dataset
xcsn_pt_python_en = load_dataset("ynklab/XCodeSearchNet", data_dir='pretraining/python/en')
"""
DatasetDict({
train: Dataset({
features: ['function_tokens', 'docstring'],
num_rows: 453623
})
validation: Dataset({
features: ['function_tokens', 'docstring'],
num_rows: 4596
})
test: Dataset({
features: ['function_tokens', 'docstring'],
num_rows: 45283
})
})
"""
print(xcsn_pt_python_en['train'][0])
"""
{
'function_tokens': ['def', 'get_feature_ide_paths', '(', 'container_dir', ',', 'product_name', ')', ':', 'repo_name', '=', 'get_repo_name', '(', 'container_dir', ')', 'class', 'Paths', '(', 'object', ')', ':', 'feature_order_json', '=', 'os', '.', 'path', '.', 'join', '(', 'container_dir', ',', "'_lib/featuremodel/productline/feature_order.json'", ')', 'model_xml_path', '=', 'os', '.', 'path', '.', 'join', '(', 'container_dir', ',', "'_lib/featuremodel/productline/model.xml'", ')', 'config_file_path', '=', 'os', '.', 'path', '.', 'join', '(', 'container_dir', ',', "'_lib/featuremodel/productline/products/'", ',', 'repo_name', ',', 'product_name', ',', "'product.equation.config'", ')', 'equation_file_path', '=', 'os', '.', 'path', '.', 'join', '(', 'container_dir', ',', "'products'", ',', 'product_name', ',', "'product.equation'", ')', 'product_spec_path', '=', 'os', '.', 'path', '.', 'join', '(', 'container_dir', ',', "'_lib/featuremodel/productline/products/'", ',', 'repo_name', ',', "'product_spec.json'", ')', 'return', 'Paths'],
'docstring': 'Takes the container_dir and the product name and returns all relevant paths from the\n feature_order_json to the config_file_path.\n :param container_dir: the full path of the container dir\n :param product_name: the name of the product\n :return: object with divert path attributes'
}
"""
fine-tuning data
from datasets import load_dataset
xcsn_ft_python_en = load_dataset("ynklab/XCodeSearchNet", data_dir='finetuning/python/en')
"""
DatasetDict({
train: Dataset({
features: ['text'],
num_rows: 1648684
})
validation: Dataset({
features: ['text'],
num_rows: 92426
})
})
"""
print(xcsn_ft_python_en['train'][0])
"""
{
'text': '1<CODESPLIT><CODESPLIT><CODESPLIT>Logs the definition of the object that was just auto - decorated inside the ipython notebook .<CODESPLIT>def _logdef ( self , n , o , otype ) : import re try : #The latest input cell will be the one that this got executed #from. TODO: actually, if acorn got imported after the fact, then #the import would have caused all the undecorated functions to be #decorated as soon as acorn imported. I suppose we just won\'t have #any code for that case. if otype == "classes" : cellno = max ( [ int ( k [ 2 : ] ) for k in self . shell . user_ns . keys ( ) if re . match ( "_i\\d+" , k ) ] ) elif otype == "functions" : cellno = int ( o . __code__ . co_filename . strip ( "<>" ) . split ( \'-\' ) [ 2 ] ) except : #This must not have been an ipython notebook declaration, so we #don\'t store the code. cellno = None pass code = "" if cellno is not None : cellstr = "_i{0:d}" . format ( cellno ) if cellstr in self . shell . user_ns : cellcode = self . shell . user_ns [ cellstr ] import ast astm = ast . parse ( cellcode ) ab = astm . body parts = { ab [ i ] . name : ( ab [ i ] . lineno , None if i + 1 >= len ( ab ) else ab [ i + 1 ] . lineno ) for i , d in enumerate ( ab ) } if n in parts : celllines = cellcode . split ( \'\\n\' ) start , end = parts [ n ] if end is not None : code = celllines [ start - 1 : end - 1 ] else : code = celllines [ start - 1 : ] #Now, we actually create the entry. Since the execution for function #definitions is almost instantaneous, we just log the pre and post #events at the same time. from time import time from acorn . logging . database import record entry = { "m" : "def" , "a" : None , "s" : time ( ) , "r" : None , "c" : code , } from acorn import msg record ( "__main__.{}" . format ( n ) , entry , diff = True ) msg . info ( entry , 1 )'
}
"""
- Downloads last month
- 136