Dataset Viewer
	hexsha
				 
			stringlengths 40 
			40 
			 | size
				 
			int64 5 
			2.06M 
			 | ext
				 
			stringclasses 10
				values  | lang
				 
			stringclasses 1
				value  | max_stars_repo_path
				 
			stringlengths 3 
			248 
			 | max_stars_repo_name
				 
			stringlengths 5 
			125 
			 | max_stars_repo_head_hexsha
				 
			stringlengths 40 
			78 
			 | max_stars_repo_licenses
				 
			sequencelengths 1 
			10 
			 | max_stars_count
				 
			int64 1 
			191k 
			⌀  | max_stars_repo_stars_event_min_datetime
				 
			stringlengths 24 
			24 
			⌀  | max_stars_repo_stars_event_max_datetime
				 
			stringlengths 24 
			24 
			⌀  | max_issues_repo_path
				 
			stringlengths 3 
			248 
			 | max_issues_repo_name
				 
			stringlengths 5 
			125 
			 | max_issues_repo_head_hexsha
				 
			stringlengths 40 
			78 
			 | max_issues_repo_licenses
				 
			sequencelengths 1 
			10 
			 | max_issues_count
				 
			int64 1 
			67k 
			⌀  | max_issues_repo_issues_event_min_datetime
				 
			stringlengths 24 
			24 
			⌀  | max_issues_repo_issues_event_max_datetime
				 
			stringlengths 24 
			24 
			⌀  | max_forks_repo_path
				 
			stringlengths 3 
			248 
			 | max_forks_repo_name
				 
			stringlengths 5 
			125 
			 | max_forks_repo_head_hexsha
				 
			stringlengths 40 
			78 
			 | max_forks_repo_licenses
				 
			sequencelengths 1 
			10 
			 | max_forks_count
				 
			int64 1 
			105k 
			⌀  | max_forks_repo_forks_event_min_datetime
				 
			stringlengths 24 
			24 
			⌀  | max_forks_repo_forks_event_max_datetime
				 
			stringlengths 24 
			24 
			⌀  | content
				 
			stringlengths 5 
			2.06M 
			 | avg_line_length
				 
			float64 1 
			1.02M 
			 | max_line_length
				 
			int64 3 
			1.03M 
			 | alphanum_fraction
				 
			float64 0 
			1 
			 | count_classes
				 
			int64 0 
			1.6M 
			 | score_classes
				 
			float64 0 
			1 
			 | count_generators
				 
			int64 0 
			651k 
			 | score_generators
				 
			float64 0 
			1 
			 | count_decorators
				 
			int64 0 
			990k 
			 | score_decorators
				 
			float64 0 
			1 
			 | count_async_functions
				 
			int64 0 
			235k 
			 | score_async_functions
				 
			float64 0 
			1 
			 | count_documentation
				 
			int64 0 
			1.04M 
			 | score_documentation
				 
			float64 0 
			1 
			 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
	d99a1e98eccb58cbc0c0cef6e9e6702f33461b0e 
 | 5,886 
							 | 
	py 
 | 
	Python 
 | 
	public_data/serializers.py 
 | 
	MTES-MCT/sparte 
 | 
	3b8ae6d21da81ca761d64ae9dfe2c8f54487211c 
 | 
	[
  "MIT"
]  | null  | null  | null  | 
	public_data/serializers.py 
 | 
	MTES-MCT/sparte 
 | 
	3b8ae6d21da81ca761d64ae9dfe2c8f54487211c 
 | 
	[
  "MIT"
]  | 3 
							 | 
	2022-02-10T11:47:58.000Z 
 | 
	2022-02-23T18:50:24.000Z 
 | 
	public_data/serializers.py 
 | 
	MTES-MCT/sparte 
 | 
	3b8ae6d21da81ca761d64ae9dfe2c8f54487211c 
 | 
	[
  "MIT"
]  | null  | null  | null  | 
	from rest_framework_gis import serializers
from rest_framework import serializers as s
from .models import (
    Artificialisee2015to2018,
    Artificielle2018,
    CommunesSybarval,
    CouvertureSol,
    EnveloppeUrbaine2018,
    Ocsge,
    Renaturee2018to2015,
    Sybarval,
    Voirie2018,
    ZonesBaties2018,
    UsageSol,
)
def get_label(code="", label=""):
    if code is None:
        code = "-"
    if label is None:
        label = "inconnu"
    return f"{code} {label[:30]}"
class Artificialisee2015to2018Serializer(serializers.GeoFeatureModelSerializer):
    usage_2015 = s.SerializerMethodField()
    usage_2018 = s.SerializerMethodField()
    couverture_2015 = s.SerializerMethodField()
    couverture_2018 = s.SerializerMethodField()
    def get_usage_2015(self, obj):
        return get_label(code=obj.us_2015, label=obj.us_2015_label)
    def get_usage_2018(self, obj):
        return get_label(code=obj.us_2018, label=obj.us_2018_label)
    def get_couverture_2015(self, obj):
        return get_label(code=obj.cs_2015, label=obj.cs_2015_label)
    def get_couverture_2018(self, obj):
        return get_label(code=obj.cs_2018, label=obj.cs_2018_label)
    class Meta:
        fields = (
            "id",
            "surface",
            "usage_2015",
            "usage_2018",
            "couverture_2015",
            "couverture_2018",
        )
        geo_field = "mpoly"
        model = Artificialisee2015to2018
class Artificielle2018Serializer(serializers.GeoFeatureModelSerializer):
    couverture = s.SerializerMethodField()
    def get_couverture(self, obj):
        return get_label(code=obj.couverture, label=obj.couverture_label)
    class Meta:
        fields = (
            "id",
            "surface",
            "couverture",
        )
        geo_field = "mpoly"
        model = Artificielle2018
class CommunesSybarvalSerializer(serializers.GeoFeatureModelSerializer):
    """Marker GeoJSON serializer."""
    class Meta:
        """Marker serializer meta class."""
        fields = (
            "nom",
            "code_insee",
            "surface",
        )
        geo_field = "mpoly"
        model = CommunesSybarval
class EnveloppeUrbaine2018Serializer(serializers.GeoFeatureModelSerializer):
    couverture = s.SerializerMethodField()
    def get_couverture(self, obj):
        return get_label(code=obj.couverture, label=obj.couverture_label)
    class Meta:
        fields = (
            "id",
            "couverture",
            "surface",
        )
        geo_field = "mpoly"
        model = EnveloppeUrbaine2018
class OcsgeSerializer(serializers.GeoFeatureModelSerializer):
    couverture = s.SerializerMethodField()
    usage = s.SerializerMethodField()
    def get_couverture(self, obj):
        return get_label(code=obj.couverture, label=obj.couverture_label)
    def get_usage(self, obj):
        return get_label(code=obj.usage, label=obj.usage_label)
    class Meta:
        fields = (
            "id",
            "couverture",
            "usage",
            "millesime",
            "map_color",
            "year",
        )
        geo_field = "mpoly"
        model = Ocsge
class Renaturee2018to2015Serializer(serializers.GeoFeatureModelSerializer):
    usage_2015 = s.SerializerMethodField()
    usage_2018 = s.SerializerMethodField()
    couverture_2015 = s.SerializerMethodField()
    couverture_2018 = s.SerializerMethodField()
    def get_usage_2015(self, obj):
        return get_label(code=obj.us_2015, label=obj.us_2015_label)
    def get_usage_2018(self, obj):
        return get_label(code=obj.us_2018, label=obj.us_2018_label)
    def get_couverture_2015(self, obj):
        return get_label(code=obj.cs_2015, label=obj.cs_2015_label)
    def get_couverture_2018(self, obj):
        return get_label(code=obj.cs_2018, label=obj.cs_2018_label)
    class Meta:
        fields = (
            "id",
            "surface",
            "usage_2015",
            "usage_2018",
            "couverture_2015",
            "couverture_2018",
        )
        geo_field = "mpoly"
        model = Renaturee2018to2015
class SybarvalSerializer(serializers.GeoFeatureModelSerializer):
    class Meta:
        fields = (
            "id",
            "surface",
        )
        geo_field = "mpoly"
        model = Sybarval
class Voirie2018Serializer(serializers.GeoFeatureModelSerializer):
    couverture = s.SerializerMethodField()
    usage = s.SerializerMethodField()
    def get_couverture(self, obj):
        return get_label(code=obj.couverture, label=obj.couverture_label)
    def get_usage(self, obj):
        return get_label(code=obj.usage, label=obj.usage_label)
    class Meta:
        fields = (
            "id",
            "surface",
            "couverture",
            "usage",
        )
        geo_field = "mpoly"
        model = Voirie2018
class ZonesBaties2018Serializer(serializers.GeoFeatureModelSerializer):
    couverture = s.SerializerMethodField()
    usage = s.SerializerMethodField()
    def get_couverture(self, obj):
        return get_label(code=obj.couverture, label=obj.couverture_label)
    def get_usage(self, obj):
        return get_label(code=obj.usage, label=obj.usage_label)
    class Meta:
        fields = (
            "id",
            "couverture",
            "usage",
            "surface",
        )
        geo_field = "mpoly"
        model = ZonesBaties2018
class CouvertureSolSerializer(serializers.ModelSerializer):
    class Meta:
        fields = (
            "id",
            "parent",
            "code",
            "label",
            "is_artificial",
        )
        model = CouvertureSol
class UsageSolSerializer(serializers.ModelSerializer):
    class Meta:
        fields = (
            "id",
            "parent",
            "code",
            "label",
        )
        model = UsageSol
 
 | 25.37069 
							 | 80 
							 | 0.613829 
							 | 5,363 
							 | 0.911145 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 579 
							 | 0.098369 
							 | 
					
	d99a20277c32bb1e28312f42ab6d732f38323169 
 | 241 
							 | 
	py 
 | 
	Python 
 | 
	quick_search/admin.py 
 | 
	naman1901/django-quick-search 
 | 
	7b93554ed9fa4721e52372f9fd1a395d94cc04a7 
 | 
	[
  "MIT"
]  | null  | null  | null  | 
	quick_search/admin.py 
 | 
	naman1901/django-quick-search 
 | 
	7b93554ed9fa4721e52372f9fd1a395d94cc04a7 
 | 
	[
  "MIT"
]  | 2 
							 | 
	2020-02-11T23:28:22.000Z 
 | 
	2020-06-05T19:27:40.000Z 
 | 
	quick_search/admin.py 
 | 
	HereWithoutPermission/django-quick-search 
 | 
	7b93554ed9fa4721e52372f9fd1a395d94cc04a7 
 | 
	[
  "MIT"
]  | null  | null  | null  | 
	from django.contrib import admin
from .models import SearchResult
# Register your models here.
class SearchResultAdmin(admin.ModelAdmin):
    fields = ["query", "heading", "url", "text"]
admin.site.register(SearchResult, SearchResultAdmin) 
 | 30.125 
							 | 52 
							 | 0.771784 
							 | 91 
							 | 0.377593 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 55 
							 | 0.228216 
							 | 
					
	d99b5ab0ec594ac30b1d197b23a5cda7c48151d5 
 | 18,065 
							 | 
	py 
 | 
	Python 
 | 
	rasa/train.py 
 | 
	Amirali-Shirkh/rasa-for-botfront 
 | 
	36aa24ad31241c5d1a180bbe34e1c8c50da40ff7 
 | 
	[
  "Apache-2.0"
]  | null  | null  | null  | 
	rasa/train.py 
 | 
	Amirali-Shirkh/rasa-for-botfront 
 | 
	36aa24ad31241c5d1a180bbe34e1c8c50da40ff7 
 | 
	[
  "Apache-2.0"
]  | null  | null  | null  | 
	rasa/train.py 
 | 
	Amirali-Shirkh/rasa-for-botfront 
 | 
	36aa24ad31241c5d1a180bbe34e1c8c50da40ff7 
 | 
	[
  "Apache-2.0"
]  | null  | null  | null  | 
	import asyncio
import os
import tempfile
from contextlib import ExitStack
from typing import Text, Optional, List, Union, Dict
from rasa.importers.importer import TrainingDataImporter
from rasa import model
from rasa.model import FingerprintComparisonResult
from rasa.core.domain import Domain
from rasa.utils.common import TempDirectoryPath
from rasa.cli.utils import (
    print_success,
    print_warning,
    print_error,
    bcolors,
    print_color,
)
from rasa.constants import DEFAULT_MODELS_PATH, DEFAULT_CORE_SUBDIRECTORY_NAME
def train(
    domain: Text,
    config: Text,
    training_files: Union[Text, List[Text]],
    output: Text = DEFAULT_MODELS_PATH,
    force_training: bool = False,
    fixed_model_name: Optional[Text] = None,
    persist_nlu_training_data: bool = False,
    additional_arguments: Optional[Dict] = None,
    loop: Optional[asyncio.AbstractEventLoop] = None,
) -> Optional[Text]:
    if loop is None:
        try:
            loop = asyncio.get_event_loop()
        except RuntimeError:
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)
    return loop.run_until_complete(
        train_async(
            domain=domain,
            config=config,
            training_files=training_files,
            output_path=output,
            force_training=force_training,
            fixed_model_name=fixed_model_name,
            persist_nlu_training_data=persist_nlu_training_data,
            additional_arguments=additional_arguments,
        )
    )
async def train_async(
    domain: Union[Domain, Text],
    config: Dict[Text, Text],
    training_files: Optional[Union[Text, List[Text]]],
    output_path: Text = DEFAULT_MODELS_PATH,
    force_training: bool = False,
    fixed_model_name: Optional[Text] = None,
    persist_nlu_training_data: bool = False,
    additional_arguments: Optional[Dict] = None,
) -> Optional[Text]:
    """Trains a Rasa model (Core and NLU).
    Args:
        domain: Path to the domain file.
        config: Dict of paths to the config for Core and NLU. Keys are language codes
        training_files: Paths to the training data for Core and NLU.
        output_path: Output path.
        force_training: If `True` retrain model even if data has not changed.
        fixed_model_name: Name of model to be stored.
        persist_nlu_training_data: `True` if the NLU training data should be persisted
                                   with the model.
        additional_arguments: Additional training parameters.
    Returns:
        Path of the trained model archive.
    """
    # file_importer = TrainingDataImporter.load_from_config(
    #    config, domain, training_files
    # )
    with ExitStack() as stack:
        train_path = stack.enter_context(TempDirectoryPath(tempfile.mkdtemp()))
        # bf mod
        from rasa_addons.importers import BotfrontFileImporter
        file_importer = BotfrontFileImporter(config, domain, training_files)
        # domain = await file_importer.get_domain()
        # if domain.is_empty():
        #     return await handle_domain_if_not_exists(
        #         file_importer, output_path, fixed_model_name
        #     )
        # /bf mod
        return await _train_async_internal(
            file_importer,
            train_path,
            output_path,
            force_training,
            fixed_model_name,
            persist_nlu_training_data,
            additional_arguments,
        )
async def handle_domain_if_not_exists(
    file_importer: TrainingDataImporter, output_path, fixed_model_name
):
    nlu_model_only = await _train_nlu_with_validated_data(
        file_importer, output=output_path, fixed_model_name=fixed_model_name
    )
    print_warning(
        "Core training was skipped because no valid domain file was found. Only an nlu-model was created."
        "Please specify a valid domain using '--domain' argument or check if the provided domain file exists."
    )
    return nlu_model_only
async def _train_async_internal(
    file_importer: TrainingDataImporter,
    train_path: Text,
    output_path: Text,
    force_training: bool,
    fixed_model_name: Optional[Text],
    persist_nlu_training_data: bool,
    additional_arguments: Optional[Dict],
) -> Optional[Text]:
    """Trains a Rasa model (Core and NLU). Use only from `train_async`.
    Args:
        file_importer: `TrainingDataImporter` which supplies the training data.
        train_path: Directory in which to train the model.
        output_path: Output path.
        force_training: If `True` retrain model even if data has not changed.
        persist_nlu_training_data: `True` if the NLU training data should be persisted
                                   with the model.
        fixed_model_name: Name of model to be stored.
        additional_arguments: Additional training parameters.
    Returns:
        Path of the trained model archive.
    """
    stories, nlu_data = await asyncio.gather(
        file_importer.get_stories(), file_importer.get_nlu_data()
    )
    # if stories.is_empty() and nlu_data.is_empty():
    #     print_error(
    #         "No training data given. Please provide stories and NLU data in "
    #         "order to train a Rasa model using the '--data' argument."
    #     )
    #     return
    # if nlu_data.is_empty():
    #     print_warning("No NLU data present. Just a Rasa Core model will be trained.")
    #     return await _train_core_with_validated_data(
    #         file_importer,
    #         output=output_path,
    #         fixed_model_name=fixed_model_name,
    #         additional_arguments=additional_arguments,
    #     )
    new_fingerprint = await model.model_fingerprint(file_importer)
    old_model = model.get_latest_model(output_path)
    fingerprint_comparison = FingerprintComparisonResult(force_training=force_training)
    if not force_training:
        fingerprint_comparison = model.should_retrain(
            new_fingerprint, old_model, train_path
        )
    # bf mod >
    if fingerprint_comparison.nlu == True: # replace True with list of all langs
        fingerprint_comparison.nlu = list(new_fingerprint.get("nlu-config", {}).keys())
    domain = await file_importer.get_domain()
    core_untrainable = domain.is_empty() or stories.is_empty()
    nlu_untrainable = [l for l, d in nlu_data.items() if d.is_empty()]
    fingerprint_comparison.core = fingerprint_comparison.core and not core_untrainable
    fingerprint_comparison.nlu = [l for l in fingerprint_comparison.nlu if l not in nlu_untrainable]
    if core_untrainable:
        print_color("Skipping Core training since domain or stories are empty.", color=bcolors.OKBLUE)
    for lang in nlu_untrainable:
        print_color("No NLU data found for language <{}>, skipping training...".format(lang), color=bcolors.OKBLUE)
    # </ bf mod
    if fingerprint_comparison.is_training_required():
        await _do_training(
            file_importer,
            output_path=output_path,
            train_path=train_path,
            fingerprint_comparison_result=fingerprint_comparison,
            fixed_model_name=fixed_model_name,
            persist_nlu_training_data=persist_nlu_training_data,
            additional_arguments=additional_arguments,
        )
        return model.package_model(
            fingerprint=new_fingerprint,
            output_directory=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
        )
    print_success(
        "Nothing changed. You can use the old model stored at '{}'."
        "".format(os.path.abspath(old_model))
    )
    return old_model
async def _do_training(
    file_importer: TrainingDataImporter,
    output_path: Text,
    train_path: Text,
    fingerprint_comparison_result: Optional[FingerprintComparisonResult] = None,
    fixed_model_name: Optional[Text] = None,
    persist_nlu_training_data: bool = False,
    additional_arguments: Optional[Dict] = None,
):
    if not fingerprint_comparison_result:
        fingerprint_comparison_result = FingerprintComparisonResult()
    if fingerprint_comparison_result.should_retrain_core():
        await _train_core_with_validated_data(
            file_importer,
            output=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
            additional_arguments=additional_arguments,
        )
    elif fingerprint_comparison_result.should_retrain_nlg():
        print_color(
            "Core stories/configuration did not change. "
            "Only the templates section has been changed. A new model with "
            "the updated templates will be created.",
            color=bcolors.OKBLUE,
        )
        await model.update_model_with_new_domain(file_importer, train_path)
    else:
        print_color(
            "Core stories/configuration did not change. No need to retrain Core model.",
            color=bcolors.OKBLUE,
        )
    if fingerprint_comparison_result.should_retrain_nlu():
        await _train_nlu_with_validated_data(
            file_importer,
            output=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
            retrain_nlu=fingerprint_comparison_result.nlu,
            persist_nlu_training_data=persist_nlu_training_data,
        )
    else:
        print_color(
            "NLU data/configuration did not change. No need to retrain NLU model.",
            color=bcolors.OKBLUE,
        )
def train_core(
    domain: Union[Domain, Text],
    config: Text,
    stories: Text,
    output: Text,
    train_path: Optional[Text] = None,
    fixed_model_name: Optional[Text] = None,
    additional_arguments: Optional[Dict] = None,
) -> Optional[Text]:
    loop = asyncio.get_event_loop()
    return loop.run_until_complete(
        train_core_async(
            domain=domain,
            config=config,
            stories=stories,
            output=output,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
            additional_arguments=additional_arguments,
        )
    )
async def train_core_async(
    domain: Union[Domain, Text],
    config: Text,
    stories: Text,
    output: Text,
    train_path: Optional[Text] = None,
    fixed_model_name: Optional[Text] = None,
    additional_arguments: Optional[Dict] = None,
) -> Optional[Text]:
    """Trains a Core model.
    Args:
        domain: Path to the domain file.
        config: Path to the config file for Core.
        stories: Path to the Core training data.
        output: Output path.
        train_path: If `None` the model will be trained in a temporary
            directory, otherwise in the provided directory.
        fixed_model_name: Name of model to be stored.
        uncompress: If `True` the model will not be compressed.
        additional_arguments: Additional training parameters.
    Returns:
        If `train_path` is given it returns the path to the model archive,
        otherwise the path to the directory with the trained model files.
    """
    file_importer = TrainingDataImporter.load_core_importer_from_config(
        config, domain, [stories]
    )
    domain = await file_importer.get_domain()
    if domain.is_empty():
        print_error(
            "Core training was skipped because no valid domain file was found. "
            "Please specify a valid domain using '--domain' argument or check if the provided domain file exists."
        )
        return None
    if not await file_importer.get_stories():
        print_error(
            "No stories given. Please provide stories in order to "
            "train a Rasa Core model using the '--stories' argument."
        )
        return
    return await _train_core_with_validated_data(
        file_importer,
        output=output,
        train_path=train_path,
        fixed_model_name=fixed_model_name,
        additional_arguments=additional_arguments,
    )
async def _train_core_with_validated_data(
    file_importer: TrainingDataImporter,
    output: Text,
    train_path: Optional[Text] = None,
    fixed_model_name: Optional[Text] = None,
    additional_arguments: Optional[Dict] = None,
) -> Optional[Text]:
    """Train Core with validated training and config data."""
    import rasa.core.train
    with ExitStack() as stack:
        if train_path:
            # If the train path was provided, do nothing on exit.
            _train_path = train_path
        else:
            # Otherwise, create a temp train path and clean it up on exit.
            _train_path = stack.enter_context(TempDirectoryPath(tempfile.mkdtemp()))
        # normal (not compare) training
        print_color("Training Core model...", color=bcolors.OKBLUE)
        domain, config = await asyncio.gather(
            file_importer.get_domain(), file_importer.get_config()
        )
        await rasa.core.train(
            domain_file=domain,
            training_resource=file_importer,
            output_path=os.path.join(_train_path, DEFAULT_CORE_SUBDIRECTORY_NAME),
            policy_config=config,
            additional_arguments=additional_arguments,
        )
        print_color("Core model training completed.", color=bcolors.OKBLUE)
        if train_path is None:
            # Only Core was trained.
            new_fingerprint = await model.model_fingerprint(file_importer)
            return model.package_model(
                fingerprint=new_fingerprint,
                output_directory=output,
                train_path=_train_path,
                fixed_model_name=fixed_model_name,
                model_prefix="core-",
            )
        return _train_path
def train_nlu(
    config: Text,
    nlu_data: Text,
    output: Text,
    train_path: Optional[Text] = None,
    fixed_model_name: Optional[Text] = None,
    persist_nlu_training_data: bool = False,
) -> Optional[Text]:
    """Trains an NLU model.
    Args:
        config: Path to the config file for NLU.
        nlu_data: Path to the NLU training data.
        output: Output path.
        train_path: If `None` the model will be trained in a temporary
            directory, otherwise in the provided directory.
        fixed_model_name: Name of the model to be stored.
        persist_nlu_training_data: `True` if the NLU training data should be persisted
                                   with the model.
    Returns:
        If `train_path` is given it returns the path to the model archive,
        otherwise the path to the directory with the trained model files.
    """
    loop = asyncio.get_event_loop()
    return loop.run_until_complete(
        _train_nlu_async(
            config,
            nlu_data,
            output,
            train_path,
            fixed_model_name,
            persist_nlu_training_data,
        )
    )
async def _train_nlu_async(
    config: Text,
    nlu_data: Text,
    output: Text,
    train_path: Optional[Text] = None,
    fixed_model_name: Optional[Text] = None,
    persist_nlu_training_data: bool = False,
):
    if not nlu_data:
        print_error(
            "No NLU data given. Please provide NLU data in order to train "
            "a Rasa NLU model using the '--nlu' argument."
        )
        return
    # training NLU only hence the training files still have to be selected
    file_importer = TrainingDataImporter.load_nlu_importer_from_config(
        config, training_data_paths=[nlu_data]
    )
    training_datas = await file_importer.get_nlu_data()
    if training_datas.is_empty():
        print_error(
            f"Path '{nlu_data}' doesn't contain valid NLU data in it. "
            "Please verify the data format. "
            "The NLU model training will be skipped now."
        )
        return
    return await _train_nlu_with_validated_data(
        file_importer,
        output=output,
        train_path=train_path,
        fixed_model_name=fixed_model_name,
        persist_nlu_training_data=persist_nlu_training_data,
    )
async def _train_nlu_with_validated_data(
    file_importer: TrainingDataImporter,
    output: Text,
    train_path: Optional[Text] = None,
    fixed_model_name: Optional[Text] = None,
    persist_nlu_training_data: bool = False,
    retrain_nlu: Union[bool, List[Text]] = True
) -> Optional[Text]:
    """Train NLU with validated training and config data."""
    import rasa.nlu.train
    with ExitStack() as stack:
        models = {}
        from rasa.nlu import config as cfg_loader
        if train_path:
            # If the train path was provided, do nothing on exit.
            _train_path = train_path
        else:
            # Otherwise, create a temp train path and clean it up on exit.
            _train_path = stack.enter_context(TempDirectoryPath(tempfile.mkdtemp()))
        # bf mod
        config = await file_importer.get_nlu_config(retrain_nlu)
        for lang in config:
            if config[lang]:
                print_color("Start training {} NLU model ...".format(lang), color=bcolors.OKBLUE)
                _, models[lang], _ = await rasa.nlu.train(
                    config[lang],
                    file_importer,
                    _train_path,
                    fixed_model_name="nlu-{}".format(lang),
                    persist_nlu_training_data=persist_nlu_training_data,
                )
            else:
                print_color("NLU data for language <{}> didn't change, skipping training...".format(lang), color=bcolors.OKBLUE)
        # /bf mod
        print_color("NLU model training completed.", color=bcolors.OKBLUE)
        if train_path is None:
            # Only NLU was trained
            new_fingerprint = await model.model_fingerprint(file_importer)
            return model.package_model(
                fingerprint=new_fingerprint,
                output_directory=output,
                train_path=_train_path,
                fixed_model_name=fixed_model_name,
                model_prefix="nlu-",
            )
        return _train_path
 
 | 34.673704 
							 | 128 
							 | 0.654027 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 14,735 
							 | 0.815666 
							 | 5,483 
							 | 0.303515 
							 | 
					
	d99e8a9a95f28da6c2d4d1ee42e95a270ab08977 
 | 421 
							 | 
	py 
 | 
	Python 
 | 
	coding_intereview/1475. Final Prices With a Special Discount in a Shop.py 
 | 
	Jahidul007/Python-Bootcamp 
 | 
	3c870587465ff66c2c1871c8d3c4eea72463abda 
 | 
	[
  "MIT"
]  | 2 
							 | 
	2020-12-07T16:07:07.000Z 
 | 
	2020-12-07T16:08:53.000Z 
 | 
	coding_intereview/1475. Final Prices With a Special Discount in a Shop.py 
 | 
	purusharthmalik/Python-Bootcamp 
 | 
	2ed1cf886d1081de200b0fdd4cb4e28008c7e3d1 
 | 
	[
  "MIT"
]  | null  | null  | null  | 
	coding_intereview/1475. Final Prices With a Special Discount in a Shop.py 
 | 
	purusharthmalik/Python-Bootcamp 
 | 
	2ed1cf886d1081de200b0fdd4cb4e28008c7e3d1 
 | 
	[
  "MIT"
]  | 1 
							 | 
	2020-10-03T16:38:02.000Z 
 | 
	2020-10-03T16:38:02.000Z 
 | 
	class Solution:
    def finalPrices(self, prices: List[int]) -> List[int]:
        res = []
        for i in range(len(prices)):
            for j in range(i+1,len(prices)):
                if prices[j]<=prices[i]:
                    res.append(prices[i]-prices[j])
                    break
                if j==len(prices)-1:
                    res.append(prices[i])
        res.append(prices[-1])
        return res 
 | 35.083333 
							 | 58 
							 | 0.460808 
							 | 421 
							 | 1 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 
					
	d99ed7256245422c7c5dd3c60b0661e4f78183ea 
 | 35,585 
							 | 
	py 
 | 
	Python 
 | 
	rplugin/python3/denite/ui/default.py 
 | 
	timgates42/denite.nvim 
 | 
	12a9b5456f5a4600afeb0ba284ce1098bd35e501 
 | 
	[
  "MIT"
]  | null  | null  | null  | 
	rplugin/python3/denite/ui/default.py 
 | 
	timgates42/denite.nvim 
 | 
	12a9b5456f5a4600afeb0ba284ce1098bd35e501 
 | 
	[
  "MIT"
]  | null  | null  | null  | 
	rplugin/python3/denite/ui/default.py 
 | 
	timgates42/denite.nvim 
 | 
	12a9b5456f5a4600afeb0ba284ce1098bd35e501 
 | 
	[
  "MIT"
]  | null  | null  | null  | 
	# ============================================================================
# FILE: default.py
# AUTHOR: Shougo Matsushita <Shougo.Matsu at gmail.com>
# License: MIT license
# ============================================================================
import re
import typing
from denite.util import echo, error, clearmatch, regex_convert_py_vim
from denite.util import Nvim, UserContext, Candidates, Candidate
from denite.parent import SyncParent
class Default(object):
    @property
    def is_async(self) -> bool:
        return self._is_async
    def __init__(self, vim: Nvim) -> None:
        self._vim = vim
        self._denite: typing.Optional[SyncParent] = None
        self._selected_candidates: typing.List[int] = []
        self._candidates: Candidates = []
        self._cursor = 0
        self._entire_len = 0
        self._result: typing.List[typing.Any] = []
        self._context: UserContext = {}
        self._bufnr = -1
        self._winid = -1
        self._winrestcmd = ''
        self._initialized = False
        self._winheight = 0
        self._winwidth = 0
        self._winminheight = -1
        self._is_multi = False
        self._is_async = False
        self._matched_pattern = ''
        self._displayed_texts: typing.List[str] = []
        self._statusline_sources = ''
        self._titlestring = ''
        self._ruler = False
        self._prev_action = ''
        self._prev_status: typing.Dict[str, typing.Any] = {}
        self._prev_curpos: typing.List[typing.Any] = []
        self._save_window_options: typing.Dict[str, typing.Any] = {}
        self._sources_history: typing.List[typing.Any] = []
        self._previous_text = ''
        self._floating = False
        self._filter_floating = False
        self._updated = False
        self._timers: typing.Dict[str, int] = {}
        self._matched_range_id = -1
        self._matched_char_id = -1
        self._check_matchdelete = bool(self._vim.call(
            'denite#util#check_matchdelete'))
    def start(self, sources: typing.List[typing.Any],
              context: UserContext) -> typing.List[typing.Any]:
        if not self._denite:
            # if hasattr(self._vim, 'run_coroutine'):
            #     self._denite = ASyncParent(self._vim)
            # else:
            self._denite = SyncParent(self._vim)
        self._result = []
        context['sources_queue'] = [sources]
        self._start_sources_queue(context)
        return self._result
    def do_action(self, action_name: str,
                  command: str = '', is_manual: bool = False) -> None:
        if is_manual:
            candidates = self._get_selected_candidates()
        elif self._get_cursor_candidate():
            candidates = [self._get_cursor_candidate()]
        else:
            candidates = []
        if not self._denite or not candidates or not action_name:
            return
        self._prev_action = action_name
        action = self._denite.get_action(
            self._context, action_name, candidates)
        if not action:
            return
        post_action = self._context['post_action']
        is_quit = action['is_quit'] or post_action == 'quit'
        if is_quit:
            self.quit()
        self._denite.do_action(self._context, action_name, candidates)
        self._result = candidates
        if command != '':
            self._vim.command(command)
        if is_quit and post_action == 'open':
            # Re-open denite buffer
            prev_cursor = self._cursor
            cursor_candidate = self._get_cursor_candidate()
            self._init_buffer()
            self.redraw(False)
            if cursor_candidate == self._get_candidate(prev_cursor):
                # Restore the cursor
                self._move_to_pos(prev_cursor)
            # Disable quit flag
            is_quit = False
        if not is_quit and is_manual:
            self._selected_candidates = []
            self.redraw(action['is_redraw'])
        if is_manual and self._context['sources_queue']:
            self._context['input'] = ''
            self._context['quick_move'] = ''
            self._start_sources_queue(self._context)
        return
    def redraw(self, is_force: bool = True) -> None:
        self._context['is_redraw'] = is_force
        if is_force:
            self._gather_candidates()
        if self._update_candidates():
            self._update_buffer()
        else:
            self._update_status()
        self._context['is_redraw'] = False
    def quit(self) -> None:
        if self._denite:
            self._denite.on_close(self._context)
        self._quit_buffer()
        self._result = []
        return
    def _restart(self) -> None:
        self._context['input'] = ''
        self._quit_buffer()
        self._init_denite()
        self._gather_candidates()
        self._init_buffer()
        self._update_candidates()
        self._update_buffer()
    def _start_sources_queue(self, context: UserContext) -> None:
        if not context['sources_queue']:
            return
        self._sources_history.append({
            'sources': context['sources_queue'][0],
            'path': context['path'],
        })
        self._start(context['sources_queue'][0], context)
        if context['sources_queue']:
            context['sources_queue'].pop(0)
        context['path'] = self._context['path']
    def _start(self, sources: typing.List[typing.Any],
               context: UserContext) -> None:
        from denite.ui.map import do_map
        self._vim.command('silent! autocmd! denite')
        if re.search(r'\[Command Line\]$', self._vim.current.buffer.name):
            # Ignore command line window.
            return
        resume = self._initialized and context['resume']
        if resume:
            # Skip the initialization
            update = ('immediately', 'immediately_1',
                      'cursor_pos', 'prev_winid',
                      'start_filter', 'quick_move')
            for key in update:
                self._context[key] = context[key]
            self._check_move_option()
            if self._check_do_option():
                return
            self._init_buffer()
            if context['refresh']:
                self.redraw()
            self._move_to_pos(self._cursor)
        else:
            if self._context != context:
                self._context.clear()
                self._context.update(context)
            self._context['sources'] = sources
            self._context['is_redraw'] = False
            self._is_multi = len(sources) > 1
            if not sources:
                # Ignore empty sources.
                error(self._vim, 'Empty sources')
                return
            self._init_denite()
            self._gather_candidates()
            self._update_candidates()
            self._init_cursor()
            self._check_move_option()
            if self._check_do_option():
                return
            self._init_buffer()
        self._update_displayed_texts()
        self._update_buffer()
        self._move_to_pos(self._cursor)
        if self._context['quick_move'] and do_map(self, 'quick_move', []):
            return
        if self._context['start_filter']:
            do_map(self, 'open_filter_buffer', [])
    def _init_buffer(self) -> None:
        self._prev_status = dict()
        self._displayed_texts = []
        self._prev_bufnr = self._vim.current.buffer.number
        self._prev_curpos = self._vim.call('getcurpos')
        self._prev_wininfo = self._get_wininfo()
        self._prev_winid = self._context['prev_winid']
        self._winrestcmd = self._vim.call('winrestcmd')
        self._ruler = self._vim.options['ruler']
        self._switch_buffer()
        self._bufnr = self._vim.current.buffer.number
        self._winid = self._vim.call('win_getid')
        self._resize_buffer(True)
        self._winheight = self._vim.current.window.height
        self._winwidth = self._vim.current.window.width
        self._bufvars = self._vim.current.buffer.vars
        self._bufvars['denite'] = {
            'buffer_name': self._context['buffer_name'],
        }
        self._bufvars['denite_statusline'] = {}
        self._vim.vars['denite#_previewed_buffers'] = {}
        self._save_window_options = {}
        window_options = {
            'colorcolumn',
            'concealcursor',
            'conceallevel',
            'cursorcolumn',
            'cursorline',
            'foldcolumn',
            'foldenable',
            'list',
            'number',
            'relativenumber',
            'signcolumn',
            'spell',
            'winfixheight',
            'wrap',
        }
        for k in window_options:
            self._save_window_options[k] = self._vim.current.window.options[k]
        # Note: Have to use setlocal instead of "current.window.options"
        # "current.window.options" changes global value instead of local in
        # neovim.
        self._vim.command('setlocal colorcolumn=')
        self._vim.command('setlocal conceallevel=3')
        self._vim.command('setlocal concealcursor=inv')
        self._vim.command('setlocal nocursorcolumn')
        self._vim.command('setlocal nofoldenable')
        self._vim.command('setlocal foldcolumn=0')
        self._vim.command('setlocal nolist')
        self._vim.command('setlocal nonumber')
        self._vim.command('setlocal norelativenumber')
        self._vim.command('setlocal nospell')
        self._vim.command('setlocal winfixheight')
        self._vim.command('setlocal nowrap')
        if self._context['prompt']:
            self._vim.command('setlocal signcolumn=yes')
        else:
            self._vim.command('setlocal signcolumn=auto')
        if self._context['cursorline']:
            self._vim.command('setlocal cursorline')
        options = self._vim.current.buffer.options
        if self._floating:
            # Disable ruler
            self._vim.options['ruler'] = False
        options['buftype'] = 'nofile'
        options['bufhidden'] = 'delete'
        options['swapfile'] = False
        options['buflisted'] = False
        options['modeline'] = False
        options['modifiable'] = False
        options['filetype'] = 'denite'
        if self._vim.call('exists', '#WinEnter'):
            self._vim.command('doautocmd WinEnter')
        if self._vim.call('exists', '#BufWinEnter'):
            self._vim.command('doautocmd BufWinEnter')
        if not self._vim.call('has', 'nvim'):
            # In Vim8, FileType autocmd is not fired after set filetype option.
            self._vim.command('silent doautocmd FileType denite')
        if self._context['auto_action']:
            self._vim.command('autocmd denite '
                              'CursorMoved <buffer> '
                              'call denite#call_map("auto_action")')
        self._init_syntax()
    def _switch_buffer(self) -> None:
        split = self._context['split']
        if (split != 'no' and self._winid > 0 and
                self._vim.call('win_gotoid', self._winid)):
            if split != 'vertical' and not self._floating:
                # Move the window to bottom
                self._vim.command('wincmd J')
            self._winrestcmd = ''
            return
        self._floating = split in [
            'floating',
            'floating_relative_cursor',
            'floating_relative_window',
        ]
        self._filter_floating = False
        if self._vim.current.buffer.options['filetype'] != 'denite':
            self._titlestring = self._vim.options['titlestring']
        command = 'edit'
        if split == 'tab':
            self._vim.command('tabnew')
        elif self._floating:
            self._split_floating(split)
        elif self._context['filter_split_direction'] == 'floating':
            self._filter_floating = True
        elif split != 'no':
            command = self._get_direction()
            command += ' vsplit' if split == 'vertical' else ' split'
        bufname = '[denite]-' + self._context['buffer_name']
        if self._vim.call('exists', '*bufadd'):
            bufnr = self._vim.call('bufadd', bufname)
            vertical = 'vertical' if split == 'vertical' else ''
            command = (
              'buffer' if split
              in ['no', 'tab', 'floating',
                  'floating_relative_window',
                  'floating_relative_cursor'] else 'sbuffer')
            self._vim.command(
                'silent keepalt %s %s %s %s' % (
                    self._get_direction(),
                    vertical,
                    command,
                    bufnr,
                )
            )
        else:
            self._vim.call(
                'denite#util#execute_path',
                f'silent keepalt {command}', bufname)
    def _get_direction(self) -> str:
        direction = str(self._context['direction'])
        if direction == 'dynamictop' or direction == 'dynamicbottom':
            self._update_displayed_texts()
            winwidth = self._vim.call('winwidth', 0)
            is_fit = not [x for x in self._displayed_texts
                          if self._vim.call('strwidth', x) > winwidth]
            if direction == 'dynamictop':
                direction = 'aboveleft' if is_fit else 'topleft'
            else:
                direction = 'belowright' if is_fit else 'botright'
        return direction
    def _get_wininfo(self) -> typing.List[typing.Any]:
        return [
            self._vim.options['columns'], self._vim.options['lines'],
            self._vim.call('win_getid'), self._vim.call('tabpagebuflist')
        ]
    def _switch_prev_buffer(self) -> None:
        if (self._prev_bufnr == self._bufnr or
                self._vim.buffers[self._prev_bufnr].name == ''):
            self._vim.command('enew')
        else:
            self._vim.command('buffer ' + str(self._prev_bufnr))
    def _init_syntax(self) -> None:
        self._vim.command('syntax case ignore')
        self._vim.command('highlight default link deniteInput ModeMsg')
        self._vim.command('highlight link deniteMatchedRange ' +
                          self._context['highlight_matched_range'])
        self._vim.command('highlight link deniteMatchedChar ' +
                          self._context['highlight_matched_char'])
        self._vim.command('highlight default link ' +
                          'deniteStatusLinePath Comment')
        self._vim.command('highlight default link ' +
                          'deniteStatusLineNumber LineNR')
        self._vim.command('highlight default link ' +
                          'deniteSelectedLine Statement')
        if self._floating:
            self._vim.current.window.options['winhighlight'] = (
                'Normal:' + self._context['highlight_window_background']
            )
        self._vim.command(('syntax match deniteSelectedLine /^[%s].*/' +
                           ' contains=deniteConcealedMark') % (
                               self._context['selected_icon']))
        self._vim.command(('syntax match deniteConcealedMark /^[ %s]/' +
                           ' conceal contained') % (
                               self._context['selected_icon']))
        if self._denite:
            self._denite.init_syntax(self._context, self._is_multi)
    def _update_candidates(self) -> bool:
        if not self._denite:
            return False
        [self._is_async, pattern, statuses, self._entire_len,
         self._candidates] = self._denite.filter_candidates(self._context)
        prev_displayed_texts = self._displayed_texts
        self._update_displayed_texts()
        prev_matched_pattern = self._matched_pattern
        self._matched_pattern = pattern
        prev_statusline_sources = self._statusline_sources
        self._statusline_sources = ' '.join(statuses)
        if self._is_async:
            self._start_timer('update_candidates')
        else:
            self._stop_timer('update_candidates')
        updated = (self._displayed_texts != prev_displayed_texts or
                   self._matched_pattern != prev_matched_pattern or
                   self._statusline_sources != prev_statusline_sources)
        if updated:
            self._updated = True
            self._start_timer('update_buffer')
        if self._context['search'] and self._context['input']:
            self._vim.call('setreg', '/', self._context['input'])
        return self._updated
    def _update_displayed_texts(self) -> None:
        candidates_len = len(self._candidates)
        if not self._is_async and self._context['auto_resize']:
            winminheight = self._context['winminheight']
            max_height = min(self._context['winheight'],
                             self._get_max_height())
            if (winminheight != -1 and candidates_len < winminheight):
                self._winheight = winminheight
            elif candidates_len > max_height:
                self._winheight = max_height
            elif candidates_len != self._winheight:
                self._winheight = candidates_len
        max_source_name_len = 0
        if self._candidates:
            max_source_name_len = max([
                len(self._get_display_source_name(x['source_name']))
                for x in self._candidates])
        self._context['max_source_name_len'] = max_source_name_len
        self._context['max_source_name_format'] = (
            '{:<' + str(self._context['max_source_name_len']) + '}')
        self._displayed_texts = [
            self._get_candidate_display_text(i)
            for i in range(0, candidates_len)
        ]
    def _update_buffer(self) -> None:
        is_current_buffer = self._bufnr == self._vim.current.buffer.number
        self._update_status()
        if self._check_matchdelete and self._context['match_highlight']:
            matches = [x['id'] for x in
                       self._vim.call('getmatches', self._winid)]
            if self._matched_range_id in matches:
                self._vim.call('matchdelete',
                               self._matched_range_id, self._winid)
                self._matched_range_id = -1
            if self._matched_char_id in matches:
                self._vim.call('matchdelete',
                               self._matched_char_id, self._winid)
                self._matched_char_id = -1
            if self._matched_pattern != '':
                self._matched_range_id = self._vim.call(
                    'matchadd', 'deniteMatchedRange',
                    r'\c' + regex_convert_py_vim(self._matched_pattern),
                    10, -1, {'window': self._winid})
                matched_char_pattern = '[{}]'.format(re.sub(
                    r'([\[\]\\^-])',
                    r'\\\1',
                    self._context['input'].replace(' ', '')
                ))
                self._matched_char_id = self._vim.call(
                    'matchadd', 'deniteMatchedChar',
                    matched_char_pattern,
                    10, -1, {'window': self._winid})
        prev_linenr = self._vim.call('line', '.')
        prev_candidate = self._get_cursor_candidate()
        buffer = self._vim.buffers[self._bufnr]
        buffer.options['modifiable'] = True
        self._vim.vars['denite#_candidates'] = [
            x['word'] for x in self._candidates]
        buffer[:] = self._displayed_texts
        buffer.options['modifiable'] = False
        self._previous_text = self._context['input']
        self._resize_buffer(is_current_buffer)
        is_changed = (self._context['reversed'] or
                      (is_current_buffer and
                       self._previous_text != self._context['input']))
        if self._updated and is_changed:
            if not is_current_buffer:
                save_winid = self._vim.call('win_getid')
                self._vim.call('win_gotoid', self._winid)
            self._init_cursor()
            self._move_to_pos(self._cursor)
            if not is_current_buffer:
                self._vim.call('win_gotoid', save_winid)
        elif is_current_buffer:
            self._vim.call('cursor', [prev_linenr, 0])
        if is_current_buffer:
            if (self._context['auto_action'] and
                    prev_candidate != self._get_cursor_candidate()):
                self.do_action(self._context['auto_action'])
        self._updated = False
        self._stop_timer('update_buffer')
    def _update_status(self) -> None:
        inpt = ''
        if self._context['input']:
            inpt = self._context['input'] + ' '
        if self._context['error_messages']:
            inpt = '[ERROR] ' + inpt
        path = '[' + self._context['path'] + ']'
        status = {
            'input': inpt,
            'sources': self._statusline_sources,
            'path': path,
            # Extra
            'buffer_name': self._context['buffer_name'],
            'line_total': len(self._candidates),
        }
        if status == self._prev_status:
            return
        self._bufvars['denite_statusline'] = status
        self._prev_status = status
        linenr = "printf('%'.(len(line('$'))+2).'d/%d',line('.'),line('$'))"
        if self._context['statusline']:
            if self._floating or self._filter_floating:
                self._vim.options['titlestring'] = (
                    "%{denite#get_status('input')}%* " +
                    "%{denite#get_status('sources')} " +
                    " %{denite#get_status('path')}%*" +
                    "%{" + linenr + "}%*")
            else:
                winnr = self._vim.call('win_id2win', self._winid)
                self._vim.call('setwinvar', winnr, '&statusline', (
                    "%#deniteInput#%{denite#get_status('input')}%* " +
                    "%{denite#get_status('sources')} %=" +
                    "%#deniteStatusLinePath# %{denite#get_status('path')}%*" +
                    "%#deniteStatusLineNumber#%{" + linenr + "}%*"))
    def _get_display_source_name(self, name: str) -> str:
        source_names = self._context['source_names']
        if not self._is_multi or source_names == 'hide':
            source_name = ''
        else:
            short_name = (re.sub(r'([a-zA-Z])[a-zA-Z]+', r'\1', name)
                          if re.search(r'[^a-zA-Z]', name) else name[:2])
            source_name = short_name if source_names == 'short' else name
        return source_name
    def _get_candidate_display_text(self, index: int) -> str:
        source_names = self._context['source_names']
        candidate = self._candidates[index]
        terms = []
        if self._is_multi and source_names != 'hide':
            terms.append(self._context['max_source_name_format'].format(
                self._get_display_source_name(candidate['source_name'])))
        encoding = self._context['encoding']
        abbr = candidate.get('abbr', candidate['word']).encode(
            encoding, errors='replace').decode(encoding, errors='replace')
        terms.append(abbr[:int(self._context['max_candidate_width'])])
        return (str(self._context['selected_icon'])
                if index in self._selected_candidates
                else ' ') + ' '.join(terms).replace('\n', '')
    def _get_max_height(self) -> int:
        return int(self._vim.options['lines']) if not self._floating else (
            int(self._vim.options['lines']) -
            int(self._context['winrow']) -
            int(self._vim.options['cmdheight']))
    def _resize_buffer(self, is_current_buffer: bool) -> None:
        split = self._context['split']
        if (split == 'no' or split == 'tab' or
                self._vim.call('winnr', '$') == 1):
            return
        winheight = max(self._winheight, 1)
        winwidth = max(self._winwidth, 1)
        is_vertical = split == 'vertical'
        if not is_current_buffer:
            restore = self._vim.call('win_getid')
            self._vim.call('win_gotoid', self._winid)
        if not is_vertical and self._vim.current.window.height != winheight:
            if self._floating:
                wincol = self._context['winrow']
                row = wincol
                if split == 'floating':
                    if self._context['auto_resize'] and row > 1:
                        row += self._context['winheight']
                        row -= self._winheight
                    self._vim.call('nvim_win_set_config', self._winid, {
                        'relative': 'editor',
                        'row': row,
                        'col': self._context['wincol'],
                        'width': winwidth,
                        'height': winheight,
                    })
                    filter_row = 0 if wincol == 1 else row + winheight
                    filter_col = self._context['wincol']
                else:
                    init_pos = self._vim.call('nvim_win_get_config',
                                              self._winid)
                    self._vim.call('nvim_win_set_config', self._winid, {
                        'relative': 'win',
                        'win': init_pos['win'],
                        'row': init_pos['row'],
                        'col': init_pos['col'],
                        'width': winwidth,
                        'height': winheight,
                    })
                    filter_col = init_pos['col']
                    if init_pos['anchor'] == 'NW':
                        winpos = self._vim.call('nvim_win_get_position',
                                                self._winid)
                        filter_row = winpos[0] + winheight
                filter_winid = self._vim.vars['denite#_filter_winid']
                self._context['filter_winrow'] = row
                if self._vim.call('win_id2win', filter_winid) > 0:
                    self._vim.call('nvim_win_set_config', filter_winid, {
                        'relative': 'editor',
                        'row': filter_row,
                        'col': filter_col,
                    })
            self._vim.command('resize ' + str(winheight))
            if self._context['reversed']:
                self._vim.command('normal! zb')
        elif is_vertical and self._vim.current.window.width != winwidth:
            self._vim.command('vertical resize ' + str(winwidth))
        if not is_current_buffer:
            self._vim.call('win_gotoid', restore)
    def _check_do_option(self) -> bool:
        if self._context['do'] != '':
            self._do_command(self._context['do'])
            return True
        elif (self._candidates and self._context['immediately'] or
                len(self._candidates) == 1 and self._context['immediately_1']):
            self._do_immediately()
            return True
        return not (self._context['empty'] or
                    self._is_async or self._candidates)
    def _check_move_option(self) -> None:
        if self._context['cursor_pos'].isnumeric():
            self._cursor = int(self._context['cursor_pos']) + 1
        elif re.match(r'\+\d+', self._context['cursor_pos']):
            for _ in range(int(self._context['cursor_pos'][1:])):
                self._move_to_next_line()
        elif re.match(r'-\d+', self._context['cursor_pos']):
            for _ in range(int(self._context['cursor_pos'][1:])):
                self._move_to_prev_line()
        elif self._context['cursor_pos'] == '$':
            self._move_to_last_line()
    def _do_immediately(self) -> None:
        goto = self._winid > 0 and self._vim.call(
            'win_gotoid', self._winid)
        if goto:
            # Jump to denite window
            self._init_buffer()
        self.do_action('default')
        candidate = self._get_cursor_candidate()
        if not candidate:
            return
        echo(self._vim, 'Normal', '[{}/{}] {}'.format(
            self._cursor, len(self._candidates),
            candidate.get('abbr', candidate['word'])))
        if goto:
            # Move to the previous window
            self._vim.command('wincmd p')
    def _do_command(self, command: str) -> None:
        self._init_cursor()
        cursor = 1
        while cursor < len(self._candidates):
            self.do_action('default', command)
            self._move_to_next_line()
        self._quit_buffer()
    def _cleanup(self) -> None:
        self._stop_timer('update_candidates')
        self._stop_timer('update_buffer')
        if self._vim.current.buffer.number == self._bufnr:
            self._cursor = self._vim.call('line', '.')
        # Note: Close filter window before preview window
        self._vim.call('denite#filter#_close_filter_window')
        if not self._context['has_preview_window']:
            self._vim.command('pclose!')
        # Clear previewed buffers
        for bufnr in self._vim.vars['denite#_previewed_buffers'].keys():
            if not self._vim.call('win_findbuf', bufnr):
                self._vim.command('silent bdelete ' + str(bufnr))
        self._vim.vars['denite#_previewed_buffers'] = {}
        self._vim.command('highlight! link CursorLine CursorLine')
        if self._floating or self._filter_floating:
            self._vim.options['titlestring'] = self._titlestring
            self._vim.options['ruler'] = self._ruler
    def _close_current_window(self) -> None:
        if self._vim.call('winnr', '$') == 1:
            self._vim.command('buffer #')
        else:
            self._vim.command('close!')
    def _quit_buffer(self) -> None:
        self._cleanup()
        if self._vim.call('bufwinnr', self._bufnr) < 0:
            # Denite buffer is already closed
            return
        winids = self._vim.call('win_findbuf',
                                self._vim.vars['denite#_filter_bufnr'])
        if winids:
            # Quit filter buffer
            self._vim.call('win_gotoid', winids[0])
            self._close_current_window()
            # Move to denite window
            self._vim.call('win_gotoid', self._winid)
        # Restore the window
        if self._context['split'] == 'no':
            self._switch_prev_buffer()
            for k, v in self._save_window_options.items():
                self._vim.current.window.options[k] = v
        else:
            if self._context['split'] == 'tab':
                self._vim.command('tabclose!')
            if self._context['split'] != 'tab':
                self._close_current_window()
            self._vim.call('win_gotoid', self._prev_winid)
        # Restore the position
        self._vim.call('setpos', '.', self._prev_curpos)
        if self._get_wininfo() and self._get_wininfo() == self._prev_wininfo:
            # Note: execute restcmd twice to restore layout properly
            self._vim.command(self._winrestcmd)
            self._vim.command(self._winrestcmd)
        clearmatch(self._vim)
    def _get_cursor_candidate(self) -> Candidate:
        return self._get_candidate(self._cursor)
    def _get_candidate(self, pos: int) -> Candidate:
        if not self._candidates or pos > len(self._candidates):
            return {}
        return self._candidates[pos - 1]
    def _get_selected_candidates(self) -> Candidates:
        if not self._selected_candidates:
            return [self._get_cursor_candidate()
                    ] if self._get_cursor_candidate() else []
        return [self._candidates[x] for x in self._selected_candidates]
    def _init_denite(self) -> None:
        if self._denite:
            self._denite.start(self._context)
            self._denite.on_init(self._context)
        self._initialized = True
        self._winheight = self._context['winheight']
        self._winwidth = self._context['winwidth']
    def _gather_candidates(self) -> None:
        self._selected_candidates = []
        if self._denite:
            self._denite.gather_candidates(self._context)
    def _init_cursor(self) -> None:
        if self._context['reversed']:
            self._move_to_last_line()
        else:
            self._move_to_first_line()
    def _move_to_pos(self, pos: int) -> None:
        self._vim.call('cursor', pos, 0)
        self._cursor = pos
        if self._context['reversed']:
            self._vim.command('normal! zb')
    def _move_to_next_line(self) -> None:
        if self._cursor < len(self._candidates):
            self._cursor += 1
    def _move_to_prev_line(self) -> None:
        if self._cursor >= 1:
            self._cursor -= 1
    def _move_to_first_line(self) -> None:
        self._cursor = 1
    def _move_to_last_line(self) -> None:
        self._cursor = len(self._candidates)
    def _start_timer(self, key: str) -> None:
        if key in self._timers:
            return
        if key == 'update_candidates':
            self._timers[key] = self._vim.call(
                'denite#helper#_start_update_candidates_timer', self._bufnr)
        elif key == 'update_buffer':
            self._timers[key] = self._vim.call(
                'denite#helper#_start_update_buffer_timer', self._bufnr)
    def _stop_timer(self, key: str) -> None:
        if key not in self._timers:
            return
        self._vim.call('timer_stop', self._timers[key])
        # Note: After timer_stop is called, self._timers may be removed
        if key in self._timers:
            self._timers.pop(key)
    def _split_floating(self, split: str) -> None:
        # Use floating window
        if split == 'floating':
            self._vim.call(
                'nvim_open_win',
                self._vim.call('bufnr', '%'), True, {
                    'relative': 'editor',
                    'row': self._context['winrow'],
                    'col': self._context['wincol'],
                    'width': self._context['winwidth'],
                    'height': self._context['winheight'],
                })
        elif split == 'floating_relative_cursor':
            opened_pos = (self._vim.call('nvim_win_get_position', 0)[0] +
                          self._vim.call('winline') - 1)
            if self._context['auto_resize']:
                height = max(self._winheight, 1)
                width = max(self._winwidth, 1)
            else:
                width = self._context['winwidth']
                height = self._context['winheight']
            if opened_pos + height + 3 > self._vim.options['lines']:
                anchor = 'SW'
                row = 0
                self._context['filter_winrow'] = row + opened_pos
            else:
                anchor = 'NW'
                row = 1
                self._context['filter_winrow'] = row + height + opened_pos
            self._vim.call(
                'nvim_open_win',
                self._vim.call('bufnr', '%'), True, {
                    'relative': 'cursor',
                    'row': row,
                    'col': 0,
                    'width': width,
                    'height': height,
                    'anchor': anchor,
                })
        elif split == 'floating_relative_window':
            self._vim.call(
                'nvim_open_win',
                self._vim.call('bufnr', '%'), True, {
                    'relative': 'win',
                    'row': self._context['winrow'],
                    'col': self._context['wincol'],
                    'width': self._context['winwidth'],
                    'height': self._context['winheight'],
                })
 
 | 37.816153 
							 | 79 
							 | 0.54863 
							 | 35,128 
							 | 0.987158 
							 | 0 
							 | 0 
							 | 71 
							 | 0.001995 
							 | 0 
							 | 0 
							 | 6,935 
							 | 0.194885 
							 | 
					
	d99f875863138f11af1d76f0c753c198ad6d96bd 
 | 1,329 
							 | 
	py 
 | 
	Python 
 | 
	PyDSTool/core/context_managers.py 
 | 
	yuanz271/PyDSTool 
 | 
	886c143cdd192aea204285f3a1cb4968c763c646 
 | 
	[
  "Python-2.0",
  "OLDAP-2.7"
]  | null  | null  | null  | 
	PyDSTool/core/context_managers.py 
 | 
	yuanz271/PyDSTool 
 | 
	886c143cdd192aea204285f3a1cb4968c763c646 
 | 
	[
  "Python-2.0",
  "OLDAP-2.7"
]  | null  | null  | null  | 
	PyDSTool/core/context_managers.py 
 | 
	yuanz271/PyDSTool 
 | 
	886c143cdd192aea204285f3a1cb4968c763c646 
 | 
	[
  "Python-2.0",
  "OLDAP-2.7"
]  | null  | null  | null  | 
	# -*- coding: utf-8 -*-
"""Context managers implemented for (mostly) internal use"""
import contextlib
import functools
from io import UnsupportedOperation
import os
import sys
__all__ = ["RedirectStdout", "RedirectStderr"]
@contextlib.contextmanager
def _stdchannel_redirected(stdchannel, dest_filename, mode="w"):
    """
    A context manager to temporarily redirect stdout or stderr
    Originally by Marc Abramowitz, 2013
    (http://marc-abramowitz.com/archives/2013/07/19/python-context-manager-for-redirected-stdout-and-stderr/)
    """
    oldstdchannel = None
    dest_file = None
    try:
        if stdchannel is None:
            yield iter([None])
        else:
            oldstdchannel = os.dup(stdchannel.fileno())
            dest_file = open(dest_filename, mode)
            os.dup2(dest_file.fileno(), stdchannel.fileno())
            yield
    except (UnsupportedOperation, AttributeError):
        yield iter([None])
    finally:
        if oldstdchannel is not None:
            os.dup2(oldstdchannel, stdchannel.fileno())
        if dest_file is not None:
            dest_file.close()
RedirectStdout = functools.partial(_stdchannel_redirected, sys.stdout)
RedirectStderr = functools.partial(_stdchannel_redirected, sys.stderr)
RedirectNoOp = functools.partial(_stdchannel_redirected, None, "")
 
 | 28.891304 
							 | 109 
							 | 0.68924 
							 | 0 
							 | 0 
							 | 860 
							 | 0.647103 
							 | 887 
							 | 0.667419 
							 | 0 
							 | 0 
							 | 345 
							 | 0.259594 
							 | 
					
	d99ff34b5f61cee604590c456f40398d7da18182 
 | 3,215 
							 | 
	py 
 | 
	Python 
 | 
	pos_kiosk/hooks.py 
 | 
	Muzzy73/pos_kiosk 
 | 
	1ed42cfaeb15f009293b76d05dd85bd322b42f03 
 | 
	[
  "MIT"
]  | 1 
							 | 
	2022-03-05T11:42:36.000Z 
 | 
	2022-03-05T11:42:36.000Z 
 | 
	pos_kiosk/hooks.py 
 | 
	Muzzy73/pos_kiosk 
 | 
	1ed42cfaeb15f009293b76d05dd85bd322b42f03 
 | 
	[
  "MIT"
]  | null  | null  | null  | 
	pos_kiosk/hooks.py 
 | 
	Muzzy73/pos_kiosk 
 | 
	1ed42cfaeb15f009293b76d05dd85bd322b42f03 
 | 
	[
  "MIT"
]  | 1 
							 | 
	2022-03-05T11:42:37.000Z 
 | 
	2022-03-05T11:42:37.000Z 
 | 
	# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from . import __version__ as app_version
app_name = "pos_kiosk"
app_title = "Pos Kiosk"
app_publisher = "9t9it"
app_description = "Kiosk App"
app_icon = "octicon octicon-file-directory"
app_color = "grey"
app_email = "info@9t9it.com"
app_license = "MIT"
# Includes in <head>
# ------------------
# include js, css files in header of desk.html
# app_include_css = "/assets/pos_kiosk/css/pos_kiosk.css"
# app_include_js = "/assets/pos_kiosk/js/pos_kiosk.js"
# include js, css files in header of web template
# web_include_css = "/assets/pos_kiosk/css/pos_kiosk.css"
# web_include_js = "/assets/pos_kiosk/js/pos_kiosk.js"
# include js in page
# page_js = {"page" : "public/js/file.js"}
# page_js = {
#     "kiosk": ["public/js/pos_page_js.js", "public/js/includes/number_to_words.js"]
# }
# include js in doctype views
# doctype_js = {"doctype" : "public/js/doctype.js"}
# doctype_list_js = {"doctype" : "public/js/doctype_list.js"}
# doctype_tree_js = {"doctype" : "public/js/doctype_tree.js"}
# doctype_calendar_js = {"doctype" : "public/js/doctype_calendar.js"}
fixtures = [
    {
        "doctype": "Custom Field",
        "filters": [
            [
                "name",
                "in",
                [
                    "Sales Invoice Item-pos_kiosk",
                    "Mode of Payment-logo"
                ]
            ]
        ]
    }
]
# Home Pages
# ----------
# application home page (will override Website Settings)
# home_page = "login"
# website user home page (by Role)
# role_home_page = {
#	"Role": "home_page"
# }
# Website user home page (by function)
# get_website_user_home_page = "pos_kiosk.utils.get_home_page"
# Generators
# ----------
# automatically create page for each record of this doctype
# website_generators = ["Web Page"]
# Installation
# ------------
# before_install = "pos_kiosk.install.before_install"
# after_install = "pos_kiosk.install.after_install"
# Desk Notifications
# ------------------
# See frappe.core.notifications.get_notification_config
# notification_config = "pos_kiosk.notifications.get_notification_config"
# Permissions
# -----------
# Permissions evaluated in scripted ways
# permission_query_conditions = {
# 	"Event": "frappe.desk.doctype.event.event.get_permission_query_conditions",
# }
#
# has_permission = {
# 	"Event": "frappe.desk.doctype.event.event.has_permission",
# }
# Document Events
# ---------------
# Hook on document methods and events
# doc_events = {
# 	"*": {
# 		"on_update": "method",
# 		"on_cancel": "method",
# 		"on_trash": "method"
#	}
# }
# Scheduled Tasks
# ---------------
# scheduler_events = {
# 	"all": [
# 		"pos_kiosk.tasks.all"
# 	],
# 	"daily": [
# 		"pos_kiosk.tasks.daily"
# 	],
# 	"hourly": [
# 		"pos_kiosk.tasks.hourly"
# 	],
# 	"weekly": [
# 		"pos_kiosk.tasks.weekly"
# 	]
# 	"monthly": [
# 		"pos_kiosk.tasks.monthly"
# 	]
# }
# Testing
# -------
# before_tests = "pos_kiosk.install.before_tests"
# Overriding Whitelisted Methods
# ------------------------------
#
# override_whitelisted_methods = {
# 	"pos_bahrain.api.get_item_details.get_item_details": "pos_kiosk.api.item.get_item_details"  # noqa
# }
 
 | 22.964286 
							 | 101 
							 | 0.631415 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 2,702 
							 | 0.840435 
							 | 
					
	d9a00b2c6f1a0e88ad5b4a7def2a45bd074f417f 
 | 3,880 
							 | 
	py 
 | 
	Python 
 | 
	pypagai/models/model_lstm.py 
 | 
	gcouti/pypagAI 
 | 
	d08fac95361dcc036d890a88cb86ce090322a612 
 | 
	[
  "Apache-2.0"
]  | 1 
							 | 
	2018-07-24T18:53:26.000Z 
 | 
	2018-07-24T18:53:26.000Z 
 | 
	pypagai/models/model_lstm.py 
 | 
	gcouti/pypagAI 
 | 
	d08fac95361dcc036d890a88cb86ce090322a612 
 | 
	[
  "Apache-2.0"
]  | 7 
							 | 
	2020-01-28T21:45:14.000Z 
 | 
	2022-03-11T23:20:53.000Z 
 | 
	pypagai/models/model_lstm.py 
 | 
	gcouti/pypagAI 
 | 
	d08fac95361dcc036d890a88cb86ce090322a612 
 | 
	[
  "Apache-2.0"
]  | null  | null  | null  | 
	from keras import Model, Input
from keras.layers import Dense, concatenate, LSTM, Reshape, Permute, Embedding, Dropout, Convolution1D, Flatten
from keras.optimizers import Adam
from pypagai.models.base import KerasModel
class SimpleLSTM(KerasModel):
    """
    Use a simple lstm neural network
    """
    @staticmethod
    def default_config():
        config = KerasModel.default_config()
        config['hidden'] = 32
        return config
    def __init__(self, cfg):
        super().__init__(cfg)
        self._cfg_ = cfg
    def _create_network_(self):
        hidden = self._cfg_['hidden']
        story = Input((self._story_maxlen, ), name='story')
        question = Input((self._query_maxlen, ), name='question')
        conc = concatenate([story, question],)
        conc = Reshape((1, int(conc.shape[1])))(conc)
        conc = Permute((2, 1))(conc)
        response = LSTM(hidden, dropout=0.2, recurrent_dropout=0.2)(conc)
        response = Dense(self._vocab_size, activation='softmax')(response)
        self._model = Model(inputs=[story, question], outputs=response)
        self._model.compile(optimizer=Adam(lr=2e-4), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
class EmbedLSTM(KerasModel):
    """
    Use a simple lstm neural network
    """
    @staticmethod
    def default_config():
        config = KerasModel.default_config()
        config['hidden'] = 32
        return config
    def __init__(self, cfg):
        super().__init__(cfg)
        self._cfg_ = cfg
    def _create_network_(self):
        hidden = self._cfg_['hidden']
        story = Input((self._story_maxlen, ), name='story')
        question = Input((self._query_maxlen, ), name='question')
        eb_story = Embedding(self._vocab_size, 64)(story)
        eb_story = Dropout(0.3)(eb_story)
        eb_question = Embedding(self._vocab_size, 64)(question)
        eb_question = Dropout(0.3)(eb_question)
        conc = concatenate([eb_story, eb_question], axis=1)
        response = LSTM(hidden, dropout=0.2, recurrent_dropout=0.2)(conc)
        response = Dense(self._vocab_size, activation='softmax')(response)
        self._model = Model(inputs=[story, question], outputs=response)
        self._model.compile(optimizer=Adam(lr=2e-4), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
class ConvLSTM(KerasModel):
    """
    Use a simple lstm neural network
    """
    @staticmethod
    def default_config():
        config = KerasModel.default_config()
        config['hidden'] = 32
        return config
    def __init__(self, model_cfg):
        super().__init__(model_cfg)
        self._cfg = model_cfg
    def _create_network_(self):
        hidden = self._cfg['hidden']
        story = Input((self._story_maxlen, ), name='story')
        question = Input((self._query_maxlen, ), name='question')
        eb_story = Embedding(self._vocab_size, 64)(story)
        eb_story = Convolution1D(64, 3, padding='same')(eb_story)
        eb_story = Convolution1D(32, 3, padding='same')(eb_story)
        eb_story = Convolution1D(16, 3, padding='same')(eb_story)
        # eb_story = Flatten()(eb_story)
        eb_question = Embedding(self._vocab_size, 64)(question)
        eb_question = Convolution1D(64, 3, padding='same')(eb_question)
        eb_question = Convolution1D(32, 3, padding='same')(eb_question)
        eb_question = Convolution1D(16, 3, padding='same')(eb_question)
        # eb_question = Flatten()(eb_question)
        conc = concatenate([eb_story, eb_question], axis=1)
        response = LSTM(hidden, dropout=0.2, recurrent_dropout=0.2)(conc)
        response = Dense(self._vocab_size, activation='softmax')(response)
        self._model = Model(inputs=[story, question], outputs=response)
        self._model.compile(optimizer=Adam(lr=2e-4), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
 
 | 33.162393 
							 | 114 
							 | 0.650773 
							 | 3,650 
							 | 0.940722 
							 | 0 
							 | 0 
							 | 411 
							 | 0.105928 
							 | 0 
							 | 0 
							 | 505 
							 | 0.130155 
							 | 
					
	d9a09cb6f497e8ccdf9de40f4b8ebd6b96a1c43a 
 | 113 
							 | 
	py 
 | 
	Python 
 | 
	lib/variables/latent_variables/__init__.py 
 | 
	joelouismarino/variational_rl 
 | 
	11dc14bfb56f3ebbfccd5de206b78712a8039a9a 
 | 
	[
  "MIT"
]  | 15 
							 | 
	2020-10-20T22:09:36.000Z 
 | 
	2021-12-24T13:40:36.000Z 
 | 
	lib/variables/latent_variables/__init__.py 
 | 
	joelouismarino/variational_rl 
 | 
	11dc14bfb56f3ebbfccd5de206b78712a8039a9a 
 | 
	[
  "MIT"
]  | null  | null  | null  | 
	lib/variables/latent_variables/__init__.py 
 | 
	joelouismarino/variational_rl 
 | 
	11dc14bfb56f3ebbfccd5de206b78712a8039a9a 
 | 
	[
  "MIT"
]  | 1 
							 | 
	2020-10-23T19:48:06.000Z 
 | 
	2020-10-23T19:48:06.000Z 
 | 
	from .fully_connected import FullyConnectedLatentVariable
from .convolutional import ConvolutionalLatentVariable
 
 | 37.666667 
							 | 57 
							 | 0.911504 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 
					
	d9a0c8935f1da040f76922b94d20a857d8b8cd7d 
 | 3,338 
							 | 
	py 
 | 
	Python 
 | 
	easyai/model/backbone/cls/pnasnet.py 
 | 
	lpj0822/image_point_cloud_det 
 | 
	7b20e2f42f3f2ff4881485da58ad188a1f0d0e0f 
 | 
	[
  "MIT"
]  | 1 
							 | 
	2020-09-05T09:18:56.000Z 
 | 
	2020-09-05T09:18:56.000Z 
 | 
	easyai/model/backbone/cls/pnasnet.py 
 | 
	lpj0822/image_point_cloud_det 
 | 
	7b20e2f42f3f2ff4881485da58ad188a1f0d0e0f 
 | 
	[
  "MIT"
]  | 8 
							 | 
	2020-04-20T02:18:55.000Z 
 | 
	2022-03-12T00:24:50.000Z 
 | 
	easyai/model/backbone/cls/pnasnet.py 
 | 
	lpj0822/image_point_cloud_det 
 | 
	7b20e2f42f3f2ff4881485da58ad188a1f0d0e0f 
 | 
	[
  "MIT"
]  | null  | null  | null  | 
	#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author:
''' PNASNet in PyTorch.
Paper: Progressive Neural Architecture Search
'''
from easyai.base_name.block_name import NormalizationType, ActivationType
from easyai.base_name.backbone_name import BackboneName
from easyai.model.backbone.utility.base_backbone import *
from easyai.model.base_block.utility.utility_block import ConvBNActivationBlock
from easyai.model.base_block.cls.pnasnet_block import CellA, CellB
__all__ = ['pnasnet_A', 'pnasnet_B']
class PNASNet(BaseBackbone):
    def __init__(self, data_channel=3, num_cells=6,
                 num_planes=44, block=CellA,
                 bnName=NormalizationType.BatchNormalize2d,
                 activationName=ActivationType.ReLU):
        super().__init__()
        self.set_name(BackboneName.PNASNetA)
        self.data_channel = data_channel
        self.num_cells = num_cells
        self.block = block
        self.activation_name = activationName
        self.bn_name = bnName
        self.first_output = num_planes
        self.in_planes = self.first_output
        self.create_block_list()
    def create_block_list(self):
        self.block_out_channels = []
        self.index = 0
        layer1 = ConvBNActivationBlock(in_channels=self.data_channel,
                                       out_channels=self.first_output,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1,
                                       bias=False,
                                       bnName=self.bn_name,
                                       activationName=self.activation_name)
        self.add_block_list(layer1.get_name(), layer1, self.first_output)
        self.make_layer(self.first_output, self.num_cells)
        self.downsample(self.first_output * 2)
        self.make_layer(self.first_output * 2, self.num_cells)
        self.downsample(self.first_output * 4)
        self.make_layer(self.first_output * 4, self.num_cells)
    def make_layer(self, planes, num_cells):
        for _ in range(num_cells):
            temp_block = self.block(self.in_planes, planes, stride=1,
                                    bn_name=self.bn_name, activation_name=self.activation_name)
            self.add_block_list(temp_block.get_name(), temp_block, planes)
            self.in_planes = planes
    def downsample(self, planes):
        down_block = self.block(self.in_planes, planes, stride=2,
                                bn_name=self.bn_name, activation_name=self.activation_name)
        self.add_block_list(down_block.get_name(), down_block, planes)
        self.in_planes = planes
    def forward(self, x):
        output_list = []
        for block in self._modules.values():
            x = block(x)
            output_list.append(x)
        return output_list
def pnasnet_A(data_channel):
    model = PNASNet(data_channel=data_channel,
                    num_cells=6,
                    num_planes=44,
                    block=CellA)
    model.set_name(BackboneName.PNASNetA)
    return model
def pnasnet_B(data_channel):
    model = PNASNet(data_channel=data_channel,
                    num_cells=6, num_planes=32,
                    block=CellB)
    model.set_name(BackboneName.PNASNetB)
    return model
 
 | 35.892473 
							 | 95 
							 | 0.612942 
							 | 2,376 
							 | 0.711803 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 147 
							 | 0.044038 
							 | 
					
	d9a0daeef5f3a3455af5c2983af478cd08c74a7b 
 | 11,247 
							 | 
	py 
 | 
	Python 
 | 
	map_download/cmd/TerrainDownloader.py 
 | 
	cugxy/map_download 
 | 
	02142b33edb2bc163f7ae971f443efe84c13e029 
 | 
	[
  "MIT"
]  | 27 
							 | 
	2019-04-02T08:34:16.000Z 
 | 
	2022-01-11T01:48:50.000Z 
 | 
	map_download/cmd/TerrainDownloader.py 
 | 
	cugxy/map_download 
 | 
	02142b33edb2bc163f7ae971f443efe84c13e029 
 | 
	[
  "MIT"
]  | 8 
							 | 
	2019-10-10T03:03:51.000Z 
 | 
	2021-11-14T11:01:47.000Z 
 | 
	map_download/cmd/TerrainDownloader.py 
 | 
	cugxy/map_download 
 | 
	02142b33edb2bc163f7ae971f443efe84c13e029 
 | 
	[
  "MIT"
]  | 7 
							 | 
	2019-04-02T08:43:04.000Z 
 | 
	2020-08-11T02:14:24.000Z 
 | 
	# -*- coding: utf-8 -*-
#  coding=utf-8
import json
import os
import math
import logging
import requests
import time
from map_download.cmd.BaseDownloader import DownloadEngine, BaseDownloaderThread, latlng2tile_terrain, BoundBox
def get_access_token(token):
    resp = None
    request_count = 0
    url = "https://api.cesium.com/v1/assets/1/endpoint"
    while True:
        if request_count > 4:
            break
        try:
            request_count += 1
            param = {'access_token': token}
            resp = requests.get(url, params=param, timeout=2)
            if resp.status_code != 200:
                continue
            break
        except Exception as e:
            resp = None
            time.sleep(3)
    if resp is None:
        return None
    resp_json = resp.json()
    return resp_json.get('accessToken')
class TerrainDownloaderThread(BaseDownloaderThread):
    URL = "https://assets.cesium.com/1/{z}/{x}/{y}.terrain?extensions=octvertexnormals-watermask&v=1.1.0"
    def __init__(self, root_dir, bbox, token, task_q, logger=None, write_db=False):
        super(TerrainDownloaderThread, self).__init__(
            root_dir, bbox, task_q, logger, write_db=write_db, db_file_name='Terrain.db')
        self.token = token
        self._init_metadata(
            format='terrain',
            bounds='%f,%f,%f,%f' % (self.bbox.min_lng, self.bbox.min_lat, self.bbox.max_lng, self.bbox.max_lat))
    def get_url(self, x, y, z):
        return self.URL.format(x=x, y=y, z=z)
    def _download(self, x, y, z):
        file_path = '%s/%s/%i/%i/%i.%s' % (self.root_dir, 'Terrain', z, x, y, 'terrain')
        if os.path.exists(file_path):
            self._data2DB(x, y, z, file_path)
            return 0
        os.makedirs(os.path.dirname(file_path), exist_ok=True)
        resp = None
        requre_count = 0
        _url = ''
        access_token = get_access_token(self.token)
        if access_token is None:
            return -1
        param = {'extensions': 'octvertexnormals-watermask', 'v': '1.1.0', 'access_token': access_token}
        while True:
            if requre_count > 4: break
            try:
                _url = self.get_url(x, y, z)
                resp = requests.get(_url, params=param, stream=True, timeout=2)
                break
            except Exception as e:
                resp = None
                time.sleep(3)
            requre_count += 1
        if resp is None:
            return -1
        if resp.status_code != 200:
            return -1
        try:
            with open(file_path, 'wb') as f:
                for chunk in resp.iter_content(chunk_size=1024):
                    if chunk:
                        f.write(chunk)
        except Exception as e:
            return -1
        self._data2DB(x, y, z, file_path)
        return 1
class TerrainDownloadEngine(DownloadEngine):
    root_dir = ''
    def __init__(self, root_dir, bbox, token, thread_num, logger=None, write_db=False):
        super(TerrainDownloadEngine, self).__init__(bbox, thread_num, logger, write_db=write_db)
        self.root_dir = root_dir
        self.token = token
    def bbox2xyz(self, bbox, z):
        min_x, min_y = latlng2tile_terrain(bbox.min_lat, bbox.min_lng, z)
        max_x, max_y = latlng2tile_terrain(bbox.max_lat, bbox.max_lng, z)
        return math.floor(min_x), math.floor(min_y), math.ceil(max_x) + 1, math.ceil(max_y) + 1
    def generate_metadata(self):
        try:
            metadatas = {
                "attribution": "© Analytical Graphics Inc., © CGIAR-CSI, Produced using Copernicus data and "
                               "information funded by the European Union - EU-DEM layers",
                "available": [
                    [
                        {
                            "endX": 1,
                            "endY": 0,
                            "startX": 0,
                            "startY": 0
                        }
                    ],
                    [
                        {
                            "endX": 3,
                            "endY": 1,
                            "startX": 0,
                            "startY": 0
                        }
                    ],
                    [
                        {
                            "endX": 7,
                            "endY": 3,
                            "startX": 0,
                            "startY": 0
                        }
                    ],
                    [
                        {
                            "endX": 15,
                            "endY": 7,
                            "startX": 0,
                            "startY": 0
                        }
                    ],
                    [
                        {
                            "endX": 31,
                            "endY": 15,
                            "startX": 0,
                            "startY": 0
                        }
                    ],
                    [
                        {
                            "endX": 63,
                            "endY": 31,
                            "startX": 0,
                            "startY": 0
                        }
                    ],
                    [
                        {
                            "endX": 127,
                            "endY": 63,
                            "startX": 0,
                            "startY": 0
                        }
                    ],
                    [
                        {
                            "endX": 255,
                            "endY": 127,
                            "startX": 0,
                            "startY": 0
                        }
                    ],
                    [
                        {
                            "endX": 511,
                            "endY": 255,
                            "startX": 0,
                            "startY": 0
                        }
                    ],
                    [
                        {
                            "endX": 1023,
                            "endY": 511,
                            "startX": 0,
                            "startY": 0
                        }
                    ],
                    [
                        {
                            "endX": 2047,
                            "endY": 1023,
                            "startX": 0,
                            "startY": 0
                        }
                    ],
                    [
                        {
                            "endX": 4095,
                            "endY": 2047,
                            "startX": 0,
                            "startY": 0
                        }
                    ],
                            [
                        {
                            "endX": 8191,
                            "endY": 4095,
                            "startX": 0,
                            "startY": 0
                        }
                    ],
                            [
                        {
                            "endX": 16383,
                            "endY": 8191,
                            "startX": 0,
                            "startY": 0
                        }
                    ],
                        [
                            {
                                "endX": 32767,
                                "endY": 16383,
                                "startX": 0,
                                "startY": 0
                            }
                    ]
                ],
                "bounds": [-180, -90, 180, 90, ],
                "description": "STK World Terrain Premium Tileset, v1.3. 10m - 30m resolution CONUS, 30m resolution "
                               "SRTM between 60N and 60S, 30m Europe.   Minimum global coverage of 1000m.",
                "extensions": ["watermask", "vertexnormals", "octvertexnormals", ],
                "format": "quantized-mesh-1.0",
                "maxzoom": 13,
                "minzoom": 0,
                "name": "world",
                "projection": "EPSG:4326",
                "scheme": "tms",
                "tilejson": "2.1.0",
                "tiles": ["{z}/{x}/{y}.terrain?v={version}", ],
                "version": "1.31376.0"
            }
            _dir = os.path.join(self.root_dir, 'Terrain')
            os.makedirs(_dir, exist_ok=True)
            metadatas_path = os.path.join(_dir, 'layer.json')
            with open(metadatas_path, 'w') as f:
                json.dump(metadatas, f)
        except Exception as e:
            if self.logger is not None:
                self.logger.exception(e)
    def run(self):
        try:
            self.generate_metadata()
            count = 0
            bboxs = self.cut_bbox()
            for bbox in bboxs:
                _count = self.get_task_count(bbox)
                count += _count
            self.division_done_signal.emit(count)
            for bbox in bboxs:
                while True:
                    if not self.running:
                        time.sleep(0.01)
                    else:
                        break
                task_q = self.get_task_queue(bbox)
                self.threads = []
                for i in range(self.thread_num):
                    thread = TerrainDownloaderThread(self.root_dir, self.bbox, self.token, task_q, self.logger,
                                                     write_db=self.write_db)
                    thread.sub_progressBar_updated_signal.connect(self.sub_update_progressBar)
                    self.threads.append(thread)
                for thread in self.threads:
                    thread.start()
                for thread in self.threads:
                    thread.wait()
                for t in self.threads:
                    t.stop()
                    t.quit()
                self.threads = []
            self.download_done_signal.emit()
        except Exception as e:
            if self.logger is not None:
                self.logger.error(e)
if __name__ == '__main__':
    if 1:
        logger = logging.getLogger('down')
        try:
            root = r'/Users/cugxy/Documents/data/downloader'
            formatter = logging.Formatter('%(levelname)s-%(message)s')
            hdlr = logging.StreamHandler()
            log_file = os.path.join(root, 'down.log')
            file_hdlr = logging.FileHandler(log_file)
            file_hdlr.setFormatter(formatter)
            logger.addHandler(file_hdlr)
            logger.addHandler(hdlr)
            logger.setLevel(logging.INFO)
            min_lng = -180.0
            max_lng = 180.0
            min_lat = -90.0
            max_lat = 90.0
            start_zoom = 0
            end_zoom = 5
            bbox = BoundBox(max_lat, max_lng, min_lat, min_lng, start_zoom, end_zoom)
            d = TerrainDownloadEngine(root, bbox, 8, logger)
            d.start()
            time.sleep(10000)
            logger.error('main thread out')
        except Exception as e:
            logger.error(e)
    if 0:
        accessToken = get_access_token()
    pass
 
 | 35.479495 
							 | 117 
							 | 0.384992 
							 | 9,331 
							 | 0.829496 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 0 
							 | 1,475 
							 | 0.131123 
							 | 
					
End of preview. Expand
						in Data Studio
					
	README.md exists but content is empty.
								
- Downloads last month
 - 86