arxiv_id
stringlengths
10
10
published
stringlengths
20
20
titles
stringlengths
9
243
authors
sequencelengths
1
389
abstract
stringlengths
96
3.09k
categories
sequencelengths
1
10
selected
bool
2 classes
2402.13304
2024-02-20T15:01:11Z
Harmful algal bloom forecasting. A comparison between stream and batch learning
[ "Andres Molares-Ulloa", "Elisabet Rocruz", "Daniel Rivero", "Xosé A. Padin", "Rita Nolasco", "Jesús Dubert", "Enrique Fernandez-Blanco" ]
Diarrhetic Shellfish Poisoning (DSP) is a global health threat arising from shellfish contaminated with toxins produced by dinoflagellates. The condition, with its widespread incidence, high morbidity rate, and persistent shellfish toxicity, poses risks to public health and the shellfish industry. High biomass of toxin-producing algae such as DSP are known as Harmful Algal Blooms (HABs). Monitoring and forecasting systems are crucial for mitigating HABs impact. Predicting harmful algal blooms involves a time-series-based problem with a strong historical seasonal component, however, recent anomalies due to changes in meteorological and oceanographic events have been observed. Stream Learning stands out as one of the most promising approaches for addressing time-series-based problems with concept drifts. However, its efficacy in predicting HABs remains unproven and needs to be tested in comparison with Batch Learning. Historical data availability is a critical point in developing predictive systems. In oceanography, the available data collection can have some constrains and limitations, which has led to exploring new tools to obtain more exhaustive time series. In this study, a machine learning workflow for predicting the number of cells of a toxic dinoflagellate, Dinophysis acuminata, was developed with several key advancements. Seven machine learning algorithms were compared within two learning paradigms. Notably, the output data from CROCO, the ocean hydrodynamic model, was employed as the primary dataset, palliating the limitation of time-continuous historical data. This study highlights the value of models interpretability, fair models comparison methodology, and the incorporation of Stream Learning models. The model DoME, with an average R2 of 0.77 in the 3-day-ahead prediction, emerged as the most effective and interpretable predictor, outperforming the other algorithms.
[ "cs.LG", "cs.AI" ]
false
2402.13321
2024-02-20T19:00:59Z
Rigor with Machine Learning from Field Theory to the Poincaré Conjecture
[ "Sergei Gukov", "James Halverson", "Fabian Ruehle" ]
Machine learning techniques are increasingly powerful, leading to many breakthroughs in the natural sciences, but they are often stochastic, error-prone, and blackbox. How, then, should they be utilized in fields such as theoretical physics and pure mathematics that place a premium on rigor and understanding? In this Perspective we discuss techniques for obtaining rigor in the natural sciences with machine learning. Non-rigorous methods may lead to rigorous results via conjecture generation or verification by reinforcement learning. We survey applications of these techniques-for-rigor ranging from string theory to the smooth $4$d Poincar\'e conjecture in low-dimensional topology. One can also imagine building direct bridges between machine learning theory and either mathematics or theoretical physics. As examples, we describe a new approach to field theory motivated by neural network theory, and a theory of Riemannian metric flows induced by neural network gradient descent, which encompasses Perelman's formulation of the Ricci flow that was utilized to resolve the $3$d Poincar\'e conjecture.
[ "hep-th", "cs.LG" ]
false
2402.13338
2024-02-20T19:30:55Z
Incentivized Exploration via Filtered Posterior Sampling
[ "Anand Kalvit", "Aleksandrs Slivkins", "Yonatan Gur" ]
We study "incentivized exploration" (IE) in social learning problems where the principal (a recommendation algorithm) can leverage information asymmetry to incentivize sequentially-arriving agents to take exploratory actions. We identify posterior sampling, an algorithmic approach that is well known in the multi-armed bandits literature, as a general-purpose solution for IE. In particular, we expand the existing scope of IE in several practically-relevant dimensions, from private agent types to informative recommendations to correlated Bayesian priors. We obtain a general analysis of posterior sampling in IE which allows us to subsume these extended settings as corollaries, while also recovering existing results as special cases.
[ "cs.LG", "econ.TH" ]
false
2402.13366
2024-02-20T20:44:40Z
Statistical curriculum learning: An elimination algorithm achieving an oracle risk
[ "Omer Cohen", "Ron Meir", "Nir Weinberger" ]
We consider a statistical version of curriculum learning (CL) in a parametric prediction setting. The learner is required to estimate a target parameter vector, and can adaptively collect samples from either the target model, or other source models that are similar to the target model, but less noisy. We consider three types of learners, depending on the level of side-information they receive. The first two, referred to as strong/weak-oracle learners, receive high/low degrees of information about the models, and use these to learn. The third, a fully adaptive learner, estimates the target parameter vector without any prior information. In the single source case, we propose an elimination learning method, whose risk matches that of a strong-oracle learner. In the multiple source case, we advocate that the risk of the weak-oracle learner is a realistic benchmark for the risk of adaptive learners. We develop an adaptive multiple elimination-rounds CL algorithm, and characterize instance-dependent conditions for its risk to match that of the weak-oracle learner. We consider instance-dependent minimax lower bounds, and discuss the challenges associated with defining the class of instances for the bound. We derive two minimax lower bounds, and determine the conditions under which the performance weak-oracle learner is minimax optimal.
[ "cs.LG", "stat.ML" ]
false
2402.13379
2024-02-20T21:09:04Z
Referee-Meta-Learning for Fast Adaptation of Locational Fairness
[ "Weiye Chen", "Yiqun Xie", "Xiaowei Jia", "Erhu He", "Han Bao", "Bang An", "Xun Zhou" ]
When dealing with data from distinct locations, machine learning algorithms tend to demonstrate an implicit preference of some locations over the others, which constitutes biases that sabotage the spatial fairness of the algorithm. This unfairness can easily introduce biases in subsequent decision-making given broad adoptions of learning-based solutions in practice. However, locational biases in AI are largely understudied. To mitigate biases over locations, we propose a locational meta-referee (Meta-Ref) to oversee the few-shot meta-training and meta-testing of a deep neural network. Meta-Ref dynamically adjusts the learning rates for training samples of given locations to advocate a fair performance across locations, through an explicit consideration of locational biases and the characteristics of input data. We present a three-phase training framework to learn both a meta-learning-based predictor and an integrated Meta-Ref that governs the fairness of the model. Once trained with a distribution of spatial tasks, Meta-Ref is applied to samples from new spatial tasks (i.e., regions outside the training area) to promote fairness during the fine-tune step. We carried out experiments with two case studies on crop monitoring and transportation safety, which show Meta-Ref can improve locational fairness while keeping the overall prediction quality at a similar level.
[ "cs.LG", "cs.CY" ]
false
2402.13393
2024-02-20T21:49:36Z
Fairness Risks for Group-conditionally Missing Demographics
[ "Kaiqi Jiang", "Wenzhe Fan", "Mao Li", "Xinhua Zhang" ]
Fairness-aware classification models have gained increasing attention in recent years as concerns grow on discrimination against some demographic groups. Most existing models require full knowledge of the sensitive features, which can be impractical due to privacy, legal issues, and an individual's fear of discrimination. The key challenge we will address is the group dependency of the unavailability, e.g., people of some age range may be more reluctant to reveal their age. Our solution augments general fairness risks with probabilistic imputations of the sensitive features, while jointly learning the group-conditionally missing probabilities in a variational auto-encoder. Our model is demonstrated effective on both image and tabular datasets, achieving an improved balance between accuracy and fairness.
[ "cs.LG", "cs.CY" ]
false
2402.13400
2024-02-20T21:59:41Z
The Dimension of Self-Directed Learning
[ "Pramith Devulapalli", "Steve Hanneke" ]
Understanding the self-directed learning complexity has been an important problem that has captured the attention of the online learning theory community since the early 1990s. Within this framework, the learner is allowed to adaptively choose its next data point in making predictions unlike the setting in adversarial online learning. In this paper, we study the self-directed learning complexity in both the binary and multi-class settings, and we develop a dimension, namely $SDdim$, that exactly characterizes the self-directed learning mistake-bound for any concept class. The intuition behind $SDdim$ can be understood as a two-player game called the "labelling game". Armed with this two-player game, we calculate $SDdim$ on a whole host of examples with notable results on axis-aligned rectangles, VC dimension $1$ classes, and linear separators. We demonstrate several learnability gaps with a central focus on self-directed learning and offline sequence learning models that include either the best or worst ordering. Finally, we extend our analysis to the self-directed binary agnostic setting where we derive upper and lower bounds.
[ "stat.ML", "cs.LG" ]
false
2402.13410
2024-02-20T22:34:53Z
Bayesian Neural Networks with Domain Knowledge Priors
[ "Dylan Sam", "Rattana Pukdee", "Daniel P. Jeong", "Yewon Byun", "J. Zico Kolter" ]
Bayesian neural networks (BNNs) have recently gained popularity due to their ability to quantify model uncertainty. However, specifying a prior for BNNs that captures relevant domain knowledge is often extremely challenging. In this work, we propose a framework for integrating general forms of domain knowledge (i.e., any knowledge that can be represented by a loss function) into a BNN prior through variational inference, while enabling computationally efficient posterior inference and sampling. Specifically, our approach results in a prior over neural network weights that assigns high probability mass to models that better align with our domain knowledge, leading to posterior samples that also exhibit this behavior. We show that BNNs using our proposed domain knowledge priors outperform those with standard priors (e.g., isotropic Gaussian, Gaussian process), successfully incorporating diverse types of prior information such as fairness, physics rules, and healthcare knowledge and achieving better predictive performance. We also present techniques for transferring the learned priors across different model architectures, demonstrating their broad utility across various settings.
[ "cs.LG", "stat.ML" ]
false
2402.13418
2024-02-20T23:06:21Z
EvolMPNN: Predicting Mutational Effect on Homologous Proteins by Evolution Encoding
[ "Zhiqiang Zhong", "Davide Mottin" ]
Predicting protein properties is paramount for biological and medical advancements. Current protein engineering mutates on a typical protein, called the wild-type, to construct a family of homologous proteins and study their properties. Yet, existing methods easily neglect subtle mutations, failing to capture the effect on the protein properties. To this end, we propose EvolMPNN, Evolution-aware Message Passing Neural Network, to learn evolution-aware protein embeddings. EvolMPNN samples sets of anchor proteins, computes evolutionary information by means of residues and employs a differentiable evolution-aware aggregation scheme over these sampled anchors. This way EvolMPNNcan capture the mutation effect on proteins with respect to the anchor proteins. Afterwards, the aggregated evolution-aware embeddings are integrated with sequence embeddings to generate final comprehensive protein embeddings. Our model shows up to 6.4% better than state-of-the-art methods and attains 36x inference speedup in comparison with large pre-trained models.
[ "cs.LG", "q-bio.BM" ]
false
2402.13421
2024-02-20T23:20:36Z
Context-Aware Quantitative Risk Assessment Machine Learning Model for Drivers Distraction
[ "Adebamigbe Fasanmade", "Ali H. Al-Bayatti", "Jarrad Neil Morden", "Fabio Caraffini" ]
Risk mitigation techniques are critical to avoiding accidents associated with driving behaviour. We provide a novel Multi-Class Driver Distraction Risk Assessment (MDDRA) model that considers the vehicle, driver, and environmental data during a journey. MDDRA categorises the driver on a risk matrix as safe, careless, or dangerous. It offers flexibility in adjusting the parameters and weights to consider each event on a specific severity level. We collect real-world data using the Field Operation Test (TeleFOT), covering drivers using the same routes in the East Midlands, United Kingdom (UK). The results show that reducing road accidents caused by driver distraction is possible. We also study the correlation between distraction (driver, vehicle, and environment) and the classification severity based on a continuous distraction severity score. Furthermore, we apply machine learning techniques to classify and predict driver distraction according to severity levels to aid the transition of control from the driver to the vehicle (vehicle takeover) when a situation is deemed risky. The Ensemble Bagged Trees algorithm performed best, with an accuracy of 96.2%.
[ "cs.LG", "cs.CY" ]
false
2402.15526
2024-02-20T08:03:05Z
Chain-of-Specificity: An Iteratively Refining Method for Eliciting Knowledge from Large Language Models
[ "Kaiwen Wei", "Jingyuan Zhang", "Hongzhi Zhang", "Fuzheng Zhang", "Di Zhang", "Li Jin", "Yue Yu" ]
Large Language Models (LLMs) exhibit remarkable generative capabilities, enabling the generation of valuable information. Despite these advancements, previous research found that LLMs sometimes struggle with adhering to specific constraints (e.g., in specific place or at specific time), at times even overlooking them, which leads to responses that are either too generic or not fully satisfactory. Existing approaches attempted to address this issue by decomposing or rewriting input instructions, yet they fall short in adequately emphasizing specific constraints and in unlocking the underlying knowledge (e.g., programming within the context of software development). In response, this paper proposes a simple yet effective method named Chain-of-Specificity (CoS). Specifically, CoS iteratively emphasizes the specific constraints in the input instructions, unlocks knowledge within LLMs, and refines responses. Experiments conducted on publicly available and self-build complex datasets demonstrate that CoS outperforms existing methods in enhancing generated content especially for the specificity. Besides, as the number of specific constraints increase, other baselines falter, while CoS still performs well. Moreover, we show that distilling responses generated by CoS effectively enhances the ability of smaller models to follow the constrained instructions. Resources of this paper will be released for further research.
[ "cs.AI", "cs.LG" ]
false
2403.14638
2024-02-20T10:38:38Z
Personalized Programming Guidance based on Deep Programming Learning Style Capturing
[ "Yingfan Liu", "Renyu Zhu", "Ming Gao" ]
With the rapid development of big data and AI technology, programming is in high demand and has become an essential skill for students. Meanwhile, researchers also focus on boosting the online judging system's guidance ability to reduce students' dropout rates. Previous studies mainly targeted at enhancing learner engagement on online platforms by providing personalized recommendations. However, two significant challenges still need to be addressed in programming: C1) how to recognize complex programming behaviors; C2) how to capture intrinsic learning patterns that align with the actual learning process. To fill these gaps, in this paper, we propose a novel model called Programming Exercise Recommender with Learning Style (PERS), which simulates learners' intricate programming behaviors. Specifically, since programming is an iterative and trial-and-error process, we first introduce a positional encoding and a differentiating module to capture the changes of consecutive code submissions (which addresses C1). To better profile programming behaviors, we extend the Felder-Silverman learning style model, a classical pedagogical theory, to perceive intrinsic programming patterns. Based on this, we align three latent vectors to record and update programming ability, processing style, and understanding style, respectively (which addresses C2). We perform extensive experiments on two real-world datasets to verify the rationality of modeling programming learning styles and the effectiveness of PERS for personalized programming guidance.
[ "cs.CY", "cs.LG" ]
false
2402.12710
2024-02-20T04:13:59Z
Integrating Active Learning in Causal Inference with Interference: A Novel Approach in Online Experiments
[ "Hongtao Zhu", "Sizhe Zhang", "Yang Su", "Zhenyu Zhao", "Nan Chen" ]
In the domain of causal inference research, the prevalent potential outcomes framework, notably the Rubin Causal Model (RCM), often overlooks individual interference and assumes independent treatment effects. This assumption, however, is frequently misaligned with the intricate realities of real-world scenarios, where interference is not merely a possibility but a common occurrence. Our research endeavors to address this discrepancy by focusing on the estimation of direct and spillover treatment effects under two assumptions: (1) network-based interference, where treatments on neighbors within connected networks affect one's outcomes, and (2) non-random treatment assignments influenced by confounders. To improve the efficiency of estimating potentially complex effects functions, we introduce an novel active learning approach: Active Learning in Causal Inference with Interference (ACI). This approach uses Gaussian process to flexibly model the direct and spillover treatment effects as a function of a continuous measure of neighbors' treatment assignment. The ACI framework sequentially identifies the experimental settings that demand further data. It further optimizes the treatment assignments under the network interference structure using genetic algorithms to achieve efficient learning outcome. By applying our method to simulation data and a Tencent game dataset, we demonstrate its feasibility in achieving accurate effects estimations with reduced data requirements. This ACI approach marks a significant advancement in the realm of data efficiency for causal inference, offering a robust and efficient alternative to traditional methodologies, particularly in scenarios characterized by complex interference patterns.
[ "stat.ME", "cs.LG", "stat.ML" ]
false
2402.12794
2024-02-20T08:08:07Z
Autonomous Reality Modelling for Cultural Heritage Sites employing cooperative quadrupedal robots and unmanned aerial vehicles
[ "Nikolaos Giakoumidis", "Christos-Nikolaos Anagnostopoulos" ]
Nowadays, the use of advanced sensors, such as terrestrial 3D laser scanners, mobile LiDARs and Unmanned Aerial Vehicles (UAV) photogrammetric imaging, has become the prevalent practice for 3D Reality Modeling and digitization of large-scale monuments of Cultural Heritage (CH). In practice, this process is heavily related to the expertise of the surveying team, handling the laborious planning and time-consuming execution of the 3D mapping process that is tailored to the specific requirements and constraints of each site. To minimize human intervention, this paper introduces a novel methodology for autonomous 3D Reality Modeling for CH monuments by employing au-tonomous biomimetic quadrupedal robotic agents and UAVs equipped with the appropriate sensors. These autonomous robotic agents carry out the 3D RM process in a systematic and repeatable ap-proach. The outcomes of this automated process may find applications in digital twin platforms, facilitating secure monitoring and management of cultural heritage sites and spaces, in both indoor and outdoor environments.
[ "cs.RO", "cs.AI", "cs.LG" ]
false
2402.12828
2024-02-20T08:54:07Z
SGD with Clipping is Secretly Estimating the Median Gradient
[ "Fabian Schaipp", "Guillaume Garrigos", "Umut Simsekli", "Robert Gower" ]
There are several applications of stochastic optimization where one can benefit from a robust estimate of the gradient. For example, domains such as distributed learning with corrupted nodes, the presence of large outliers in the training data, learning under privacy constraints, or even heavy-tailed noise due to the dynamics of the algorithm itself. Here we study SGD with robust gradient estimators based on estimating the median. We first consider computing the median gradient across samples, and show that the resulting method can converge even under heavy-tailed, state-dependent noise. We then derive iterative methods based on the stochastic proximal point method for computing the geometric median and generalizations thereof. Finally we propose an algorithm estimating the median gradient across iterations, and find that several well known methods - in particular different forms of clipping - are particular cases of this framework.
[ "stat.ML", "cs.LG", "math.OC", "90C26, 68T07, 62-08" ]
false
2402.12854
2024-02-20T09:33:22Z
Differentiable Mapper For Topological Optimization Of Data Representation
[ "Ziyad Oulhaj", "Mathieu Carrière", "Bertrand Michel" ]
Unsupervised data representation and visualization using tools from topology is an active and growing field of Topological Data Analysis (TDA) and data science. Its most prominent line of work is based on the so-called Mapper graph, which is a combinatorial graph whose topological structures (connected components, branches, loops) are in correspondence with those of the data itself. While highly generic and applicable, its use has been hampered so far by the manual tuning of its many parameters-among these, a crucial one is the so-called filter: it is a continuous function whose variations on the data set are the main ingredient for both building the Mapper representation and assessing the presence and sizes of its topological structures. However, while a few parameter tuning methods have already been investigated for the other Mapper parameters (i.e., resolution, gain, clustering), there is currently no method for tuning the filter itself. In this work, we build on a recently proposed optimization framework incorporating topology to provide the first filter optimization scheme for Mapper graphs. In order to achieve this, we propose a relaxed and more general version of the Mapper graph, whose convergence properties are investigated. Finally, we demonstrate the usefulness of our approach by optimizing Mapper graph representations on several datasets, and showcasing the superiority of the optimized representation over arbitrary ones.
[ "cs.LG", "cs.CG", "math.AT" ]
false
2402.12875
2024-02-20T10:11:03Z
Chain of Thought Empowers Transformers to Solve Inherently Serial Problems
[ "Zhiyuan Li", "Hong Liu", "Denny Zhou", "Tengyu Ma" ]
Instructing the model to generate a sequence of intermediate steps, a.k.a., a chain of thought (CoT), is a highly effective method to improve the accuracy of large language models (LLMs) on arithmetics and symbolic reasoning tasks. However, the mechanism behind CoT remains unclear. This work provides a theoretical understanding of the power of CoT for decoder-only transformers through the lens of expressiveness. Conceptually, CoT empowers the model with the ability to perform inherently serial computation, which is otherwise lacking in transformers, especially when depth is low. Given input length $n$, previous works have shown that constant-depth transformers with finite precision $\mathsf{poly}(n)$ embedding size can only solve problems in $\mathsf{TC}^0$ without CoT. We first show an even tighter expressiveness upper bound for constant-depth transformers with constant-bit precision, which can only solve problems in $\mathsf{AC}^0$, a proper subset of $ \mathsf{TC}^0$. However, with $T$ steps of CoT, constant-depth transformers using constant-bit precision and $O(\log n)$ embedding size can solve any problem solvable by boolean circuits of size $T$. Empirically, enabling CoT dramatically improves the accuracy for tasks that are hard for parallel computation, including the composition of permutation groups, iterated squaring, and circuit value problems, especially for low-depth transformers.
[ "cs.LG", "cs.CC", "stat.ML" ]
false
2402.12954
2024-02-20T12:17:01Z
Conditional Logical Message Passing Transformer for Complex Query Answering
[ "Chongzhi Zhang", "Zhiping Peng", "Junhao Zheng", "Qianli Ma" ]
Complex Query Answering (CQA) over Knowledge Graphs (KGs) is a challenging task. Given that KGs are usually incomplete, neural models are proposed to solve CQA by performing multi-hop logical reasoning. However, most of them cannot perform well on both one-hop and multi-hop queries simultaneously. Recent work proposes a logical message passing mechanism based on the pre-trained neural link predictors. While effective on both one-hop and multi-hop queries, it ignores the difference between the constant and variable nodes in a query graph. In addition, during the node embedding update stage, this mechanism cannot dynamically measure the importance of different messages, and whether it can capture the implicit logical dependencies related to a node and received messages remains unclear. In this paper, we propose Conditional Logical Message Passing Transformer (CLMPT), which considers the difference between constants and variables in the case of using pre-trained neural link predictors and performs message passing conditionally on the node type. We empirically verified that this approach can reduce computational costs without affecting performance. Furthermore, CLMPT uses the transformer to aggregate received messages and update the corresponding node embedding. Through the self-attention mechanism, CLMPT can assign adaptive weights to elements in an input set consisting of received messages and the corresponding node and explicitly model logical dependencies between various elements. Experimental results show that CLMPT is a new state-of-the-art neural CQA model.
[ "cs.LG", "cs.AI", "cs.LO" ]
false
2402.12993
2024-02-20T13:21:46Z
An Autonomous Large Language Model Agent for Chemical Literature Data Mining
[ "Kexin Chen", "Hanqun Cao", "Junyou Li", "Yuyang Du", "Menghao Guo", "Xin Zeng", "Lanqing Li", "Jiezhong Qiu", "Pheng Ann Heng", "Guangyong Chen" ]
Chemical synthesis, which is crucial for advancing material synthesis and drug discovery, impacts various sectors including environmental science and healthcare. The rise of technology in chemistry has generated extensive chemical data, challenging researchers to discern patterns and refine synthesis processes. Artificial intelligence (AI) helps by analyzing data to optimize synthesis and increase yields. However, AI faces challenges in processing literature data due to the unstructured format and diverse writing style of chemical literature. To overcome these difficulties, we introduce an end-to-end AI agent framework capable of high-fidelity extraction from extensive chemical literature. This AI agent employs large language models (LLMs) for prompt generation and iterative optimization. It functions as a chemistry assistant, automating data collection and analysis, thereby saving manpower and enhancing performance. Our framework's efficacy is evaluated using accuracy, recall, and F1 score of reaction condition data, and we compared our method with human experts in terms of content correctness and time efficiency. The proposed approach marks a significant advancement in automating chemical literature extraction and demonstrates the potential for AI to revolutionize data management and utilization in chemistry.
[ "cs.IR", "cs.AI", "cs.LG", "q-bio.QM" ]
false
2402.13019
2024-02-20T14:01:26Z
Improving Neural-based Classification with Logical Background Knowledge
[ "Arthur Ledaguenel", "Céline Hudelot", "Mostepha Khouadjia" ]
Neurosymbolic AI is a growing field of research aiming to combine neural networks learning capabilities with the reasoning abilities of symbolic systems. This hybridization can take many shapes. In this paper, we propose a new formalism for supervised multi-label classification with propositional background knowledge. We introduce a new neurosymbolic technique called semantic conditioning at inference, which only constrains the system during inference while leaving the training unaffected. We discuss its theoritical and practical advantages over two other popular neurosymbolic techniques: semantic conditioning and semantic regularization. We develop a new multi-scale methodology to evaluate how the benefits of a neurosymbolic technique evolve with the scale of the network. We then evaluate experimentally and compare the benefits of all three techniques across model scales on several datasets. Our results demonstrate that semantic conditioning at inference can be used to build more accurate neural-based systems with fewer resources while guaranteeing the semantic consistency of outputs.
[ "cs.AI", "cs.LG", "cs.SC" ]
false
2402.13033
2024-02-20T14:18:43Z
Enhancing Real-World Complex Network Representations with Hyperedge Augmentation
[ "Xiangyu Zhao", "Zehui Li", "Mingzhu Shen", "Guy-Bart Stan", "Pietro Liò", "Yiren Zhao" ]
Graph augmentation methods play a crucial role in improving the performance and enhancing generalisation capabilities in Graph Neural Networks (GNNs). Existing graph augmentation methods mainly perturb the graph structures and are usually limited to pairwise node relations. These methods cannot fully address the complexities of real-world large-scale networks that often involve higher-order node relations beyond only being pairwise. Meanwhile, real-world graph datasets are predominantly modelled as simple graphs, due to the scarcity of data that can be used to form higher-order edges. Therefore, reconfiguring the higher-order edges as an integration into graph augmentation strategies lights up a promising research path to address the aforementioned issues. In this paper, we present Hyperedge Augmentation (HyperAug), a novel graph augmentation method that constructs virtual hyperedges directly form the raw data, and produces auxiliary node features by extracting from the virtual hyperedge information, which are used for enhancing GNN performances on downstream tasks. We design three diverse virtual hyperedge construction strategies to accompany the augmentation scheme: (1) via graph statistics, (2) from multiple data perspectives, and (3) utilising multi-modality. Furthermore, to facilitate HyperAug evaluation, we provide 23 novel real-world graph datasets across various domains including social media, biology, and e-commerce. Our empirical study shows that HyperAug consistently and significantly outperforms GNN baselines and other graph augmentation methods, across a variety of application contexts, which clearly indicates that it can effectively incorporate higher-order node relations into graph augmentation methods for real-world complex networks.
[ "cs.LG", "cs.IR", "cs.SI" ]
false
2402.13076
2024-02-20T15:22:25Z
Not All Weights Are Created Equal: Enhancing Energy Efficiency in On-Device Streaming Speech Recognition
[ "Yang Li", "Yuan Shangguan", "Yuhao Wang", "Liangzhen Lai", "Ernie Chang", "Changsheng Zhao", "Yangyang Shi", "Vikas Chandra" ]
Power consumption plays an important role in on-device streaming speech recognition, as it has a direct impact on the user experience. This study delves into how weight parameters in speech recognition models influence the overall power consumption of these models. We discovered that the impact of weight parameters on power consumption varies, influenced by factors including how often they are invoked and their placement in memory. Armed with this insight, we developed design guidelines aimed at optimizing on-device speech recognition models. These guidelines focus on minimizing power use without substantially affecting accuracy. Our method, which employs targeted compression based on the varying sensitivities of weight parameters, demonstrates superior performance compared to state-of-the-art compression methods. It achieves a reduction in energy usage of up to 47% while maintaining similar model accuracy and improving the real-time factor.
[ "cs.SD", "cs.LG", "eess.AS" ]
false
2402.13077
2024-02-20T15:23:24Z
Mechanistic Neural Networks for Scientific Machine Learning
[ "Adeel Pervez", "Francesco Locatello", "Efstratios Gavves" ]
This paper presents Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences. It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations, revealing the underlying dynamics of data and enhancing interpretability and efficiency in data modeling. Central to our approach is a novel Relaxed Linear Programming Solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs. This integrates well with neural networks and surpasses the limitations of traditional ODE solvers enabling scalable GPU parallel processing. Overall, Mechanistic Neural Networks demonstrate their versatility for scientific machine learning applications, adeptly managing tasks from equation discovery to dynamic systems modeling. We prove their comprehensive capabilities in analyzing and interpreting complex scientific data across various applications, showing significant performance against specialized state-of-the-art methods.
[ "cs.LG", "cs.AI", "cs.NE" ]
false
2402.13101
2024-02-20T15:54:24Z
A Microstructure-based Graph Neural Network for Accelerating Multiscale Simulations
[ "J. Storm", "I. B. C. M. Rocha", "F. P. van der Meer" ]
Simulating the mechanical response of advanced materials can be done more accurately using concurrent multiscale models than with single-scale simulations. However, the computational costs stand in the way of the practical application of this approach. The costs originate from microscale Finite Element (FE) models that must be solved at every macroscopic integration point. A plethora of surrogate modeling strategies attempt to alleviate this cost by learning to predict macroscopic stresses from macroscopic strains, completely replacing the microscale models. In this work, we introduce an alternative surrogate modeling strategy that allows for keeping the multiscale nature of the problem, allowing it to be used interchangeably with an FE solver for any time step. Our surrogate provides all microscopic quantities, which are then homogenized to obtain macroscopic quantities of interest. We achieve this for an elasto-plastic material by predicting full-field microscopic strains using a graph neural network (GNN) while retaining the microscopic constitutive material model to obtain the stresses. This hybrid data-physics graph-based approach avoids the high dimensionality originating from predicting full-field responses while allowing non-locality to arise. By training the GNN on a variety of meshes, it learns to generalize to unseen meshes, allowing a single model to be used for a range of microstructures. The embedded microscopic constitutive model in the GNN implicitly tracks history-dependent variables and leads to improved accuracy. We demonstrate for several challenging scenarios that the surrogate can predict complex macroscopic stress-strain paths. As the computation time of our method scales favorably with the number of elements in the microstructure compared to the FE method, our method can significantly accelerate FE2 simulations.
[ "cs.LG", "cs.NA", "math.NA" ]
false
2402.13103
2024-02-20T15:58:45Z
Multivariate Functional Linear Discriminant Analysis for the Classification of Short Time Series with Missing Data
[ "Rahul Bordoloi", "Clémence Réda", "Orell Trautmann", "Saptarshi Bej", "Olaf Wolkenhauer" ]
Functional linear discriminant analysis (FLDA) is a powerful tool that extends LDA-mediated multiclass classification and dimension reduction to univariate time-series functions. However, in the age of large multivariate and incomplete data, statistical dependencies between features must be estimated in a computationally tractable way, while also dealing with missing data. There is a need for a computationally tractable approach that considers the statistical dependencies between features and can handle missing values. We here develop a multivariate version of FLDA (MUDRA) to tackle this issue and describe an efficient expectation/conditional-maximization (ECM) algorithm to infer its parameters. We assess its predictive power on the "Articulary Word Recognition" data set and show its improvement over the state-of-the-art, especially in the case of missing data. MUDRA allows interpretable classification of data sets with large proportions of missing data, which will be particularly useful for medical or psychological data sets.
[ "cs.LG", "math.ST", "stat.TH", "62R10 (Primary), 62R07 (Secondary)" ]
false
2402.13106
2024-02-20T16:01:39Z
On Generalization Bounds for Deep Compound Gaussian Neural Networks
[ "Carter Lyons", "Raghu G. Raj", "Margaret Cheney" ]
Algorithm unfolding or unrolling is the technique of constructing a deep neural network (DNN) from an iterative algorithm. Unrolled DNNs often provide better interpretability and superior empirical performance over standard DNNs in signal estimation tasks. An important theoretical question, which has only recently received attention, is the development of generalization error bounds for unrolled DNNs. These bounds deliver theoretical and practical insights into the performance of a DNN on empirical datasets that are distinct from, but sampled from, the probability density generating the DNN training data. In this paper, we develop novel generalization error bounds for a class of unrolled DNNs that are informed by a compound Gaussian prior. These compound Gaussian networks have been shown to outperform comparative standard and unfolded deep neural networks in compressive sensing and tomographic imaging problems. The generalization error bound is formulated by bounding the Rademacher complexity of the class of compound Gaussian network estimates with Dudley's integral. Under realistic conditions, we show that, at worst, the generalization error scales $\mathcal{O}(n\sqrt{\ln(n)})$ in the signal dimension and $\mathcal{O}(($Network Size$)^{3/2})$ in network size.
[ "stat.ML", "cs.LG", "eess.SP" ]
false
2402.13182
2024-02-20T17:49:10Z
Order-Optimal Regret in Distributed Kernel Bandits using Uniform Sampling with Shared Randomness
[ "Nikola Pavlovic", "Sudeep Salgia", "Qing Zhao" ]
We consider distributed kernel bandits where $N$ agents aim to collaboratively maximize an unknown reward function that lies in a reproducing kernel Hilbert space. Each agent sequentially queries the function to obtain noisy observations at the query points. Agents can share information through a central server, with the objective of minimizing regret that is accumulating over time $T$ and aggregating over agents. We develop the first algorithm that achieves the optimal regret order (as defined by centralized learning) with a communication cost that is sublinear in both $N$ and $T$. The key features of the proposed algorithm are the uniform exploration at the local agents and shared randomness with the central server. Working together with the sparse approximation of the GP model, these two key components make it possible to preserve the learning rate of the centralized setting at a diminishing rate of communication.
[ "cs.LG", "cs.DC", "stat.ML" ]
false
2402.13187
2024-02-20T17:53:24Z
Testing Calibration in Subquadratic Time
[ "Lunjia Hu", "Kevin Tian", "Chutong Yang" ]
In the recent literature on machine learning and decision making, calibration has emerged as a desirable and widely-studied statistical property of the outputs of binary prediction models. However, the algorithmic aspects of measuring model calibration have remained relatively less well-explored. Motivated by [BGHN23], which proposed a rigorous framework for measuring distances to calibration, we initiate the algorithmic study of calibration through the lens of property testing. We define the problem of calibration testing from samples where given $n$ draws from a distribution $\mathcal{D}$ on (predictions, binary outcomes), our goal is to distinguish between the case where $\mathcal{D}$ is perfectly calibrated, and the case where $\mathcal{D}$ is $\varepsilon$-far from calibration. We design an algorithm based on approximate linear programming, which solves calibration testing information-theoretically optimally (up to constant factors) in time $O(n^{1.5} \log(n))$. This improves upon state-of-the-art black-box linear program solvers requiring $\Omega(n^\omega)$ time, where $\omega > 2$ is the exponent of matrix multiplication. We also develop algorithms for tolerant variants of our testing problem, and give sample complexity lower bounds for alternative calibration distances to the one considered in this work. Finally, we present preliminary experiments showing that the testing problem we define faithfully captures standard notions of calibration, and that our algorithms scale to accommodate moderate sample sizes.
[ "cs.LG", "cs.DS", "stat.CO", "stat.ML" ]
false
2402.13201
2024-02-20T18:10:39Z
Tiny Reinforcement Learning for Quadruped Locomotion using Decision Transformers
[ "Orhan Eren Akgün", "Néstor Cuevas", "Matheus Farias", "Daniel Garces" ]
Resource-constrained robotic platforms are particularly useful for tasks that require low-cost hardware alternatives due to the risk of losing the robot, like in search-and-rescue applications, or the need for a large number of devices, like in swarm robotics. For this reason, it is crucial to find mechanisms for adapting reinforcement learning techniques to the constraints imposed by lower computational power and smaller memory capacities of these ultra low-cost robotic platforms. We try to address this need by proposing a method for making imitation learning deployable onto resource-constrained robotic platforms. Here we cast the imitation learning problem as a conditional sequence modeling task and we train a decision transformer using expert demonstrations augmented with a custom reward. Then, we compress the resulting generative model using software optimization schemes, including quantization and pruning. We test our method in simulation using Isaac Gym, a realistic physics simulation environment designed for reinforcement learning. We empirically demonstrate that our method achieves natural looking gaits for Bittle, a resource-constrained quadruped robot. We also run multiple simulations to show the effects of pruning and quantization on the performance of the model. Our results show that quantization (down to 4 bits) and pruning reduce model size by around 30\% while maintaining a competitive reward, making the model deployable in a resource-constrained system.
[ "cs.RO", "cs.AI", "cs.LG" ]
false
2402.13425
2024-02-20T23:29:41Z
Investigating the Histogram Loss in Regression
[ "Ehsan Imani", "Kai Luedemann", "Sam Scholnick-Hughes", "Esraa Elelimy", "Martha White" ]
It is becoming increasingly common in regression to train neural networks that model the entire distribution even if only the mean is required for prediction. This additional modeling often comes with performance gain and the reasons behind the improvement are not fully known. This paper investigates a recent approach to regression, the Histogram Loss, which involves learning the conditional distribution of the target variable by minimizing the cross-entropy between a target distribution and a flexible histogram prediction. We design theoretical and empirical analyses to determine why and when this performance gain appears, and how different components of the loss contribute to it. Our results suggest that the benefits of learning distributions in this setup come from improvements in optimization rather than learning a better representation. We then demonstrate the viability of the Histogram Loss in common deep learning applications without a need for costly hyperparameter tuning.
[ "cs.LG", "cs.AI", "stat.ML" ]
false
2402.13429
2024-02-20T23:45:37Z
Everything You Always Wanted to Know About Storage Compressibility of Pre-Trained ML Models but Were Afraid to Ask
[ "Zhaoyuan Su", "Ammar Ahmed", "Zirui Wang", "Ali Anwar", "Yue Cheng" ]
As the number of pre-trained machine learning (ML) models is growing exponentially, data reduction tools are not catching up. Existing data reduction techniques are not specifically designed for pre-trained model (PTM) dataset files. This is largely due to a lack of understanding of the patterns and characteristics of these datasets, especially those relevant to data reduction and compressibility. This paper presents the first, exhaustive analysis to date of PTM datasets on storage compressibility. Our analysis spans different types of data reduction and compression techniques, from hash-based data deduplication, data similarity detection, to dictionary-coding compression. Our analysis explores these techniques at three data granularity levels, from model layers, model chunks, to model parameters. We draw new observations that indicate that modern data reduction tools are not effective when handling PTM datasets. There is a pressing need for new compression methods that take into account PTMs' data characteristics for effective storage reduction. Motivated by our findings, we design ELF, a simple yet effective, error-bounded, lossy floating-point compression method. ELF transforms floating-point parameters in such a way that the common exponent field of the transformed parameters can be completely eliminated to save storage space. We develop Elves, a compression framework that integrates ELF along with several other data reduction methods. Elves uses the most effective method to compress PTMs that exhibit different patterns. Evaluation shows that Elves achieves an overall compression ratio of $1.52\times$, which is $1.31\times$, $1.32\times$ and $1.29\times$ higher than a general-purpose compressor (zstd), an error-bounded lossy compressor (SZ3), and the uniform model quantization, respectively, with negligible model accuracy loss.
[ "cs.DB", "cs.LG", "cs.OS", "H.2.7" ]
false
2402.13430
2024-02-20T23:49:25Z
LinkSAGE: Optimizing Job Matching Using Graph Neural Networks
[ "Ping Liu", "Haichao Wei", "Xiaochen Hou", "Jianqiang Shen", "Shihai He", "Kay Qianqi Shen", "Zhujun Chen", "Fedor Borisyuk", "Daniel Hewlett", "Liang Wu", "Srikant Veeraraghavan", "Alex Tsun", "Chengming Jiang", "Wenjing Zhang" ]
We present LinkSAGE, an innovative framework that integrates Graph Neural Networks (GNNs) into large-scale personalized job matching systems, designed to address the complex dynamics of LinkedIns extensive professional network. Our approach capitalizes on a novel job marketplace graph, the largest and most intricate of its kind in industry, with billions of nodes and edges. This graph is not merely extensive but also richly detailed, encompassing member and job nodes along with key attributes, thus creating an expansive and interwoven network. A key innovation in LinkSAGE is its training and serving methodology, which effectively combines inductive graph learning on a heterogeneous, evolving graph with an encoder-decoder GNN model. This methodology decouples the training of the GNN model from that of existing Deep Neural Nets (DNN) models, eliminating the need for frequent GNN retraining while maintaining up-to-date graph signals in near realtime, allowing for the effective integration of GNN insights through transfer learning. The subsequent nearline inference system serves the GNN encoder within a real-world setting, significantly reducing online latency and obviating the need for costly real-time GNN infrastructure. Validated across multiple online A/B tests in diverse product scenarios, LinkSAGE demonstrates marked improvements in member engagement, relevance matching, and member retention, confirming its generalizability and practical impact.
[ "cs.LG", "cs.AI", "cs.SI" ]
false
2402.14029
2024-02-20T03:14:45Z
Partial Search in a Frozen Network is Enough to Find a Strong Lottery Ticket
[ "Hikari Otsuka", "Daiki Chijiwa", "Ángel López García-Arias", "Yasuyuki Okoshi", "Kazushi Kawamura", "Thiem Van Chu", "Daichi Fujiki", "Susumu Takeuchi", "Masato Motomura" ]
Randomly initialized dense networks contain subnetworks that achieve high accuracy without weight learning -- strong lottery tickets (SLTs). Recently, Gadhikar et al. (2023) demonstrated theoretically and experimentally that SLTs can also be found within a randomly pruned source network, thus reducing the SLT search space. However, this limits the search to SLTs that are even sparser than the source, leading to worse accuracy due to unintentionally high sparsity. This paper proposes a method that reduces the SLT search space by an arbitrary ratio that is independent of the desired SLT sparsity. A random subset of the initial weights is excluded from the search space by freezing it -- i.e., by either permanently pruning them or locking them as a fixed part of the SLT. Indeed, the SLT existence in such a reduced search space is theoretically guaranteed by our subset-sum approximation with randomly frozen variables. In addition to reducing search space, the random freezing pattern can also be exploited to reduce model size in inference. Furthermore, experimental results show that the proposed method finds SLTs with better accuracy and model size trade-off than the SLTs obtained from dense or randomly pruned source networks. In particular, the SLT found in a frozen graph neural network achieves higher accuracy than its weight trained counterpart while reducing model size by $40.3\times$.
[ "cs.LG", "cs.AI", "stat.ML" ]
false
2402.14031
2024-02-20T11:34:19Z
Autoencoder with Ordered Variance for Nonlinear Model Identification
[ "Midhun T. Augustine", "Parag Patil", "Mani Bhushan", "Sharad Bhartiya" ]
This paper presents a novel autoencoder with ordered variance (AEO) in which the loss function is modified with a variance regularization term to enforce order in the latent space. Further, the autoencoder is modified using ResNets, which results in a ResNet AEO (RAEO). The paper also illustrates the effectiveness of AEO and RAEO in extracting nonlinear relationships among input variables in an unsupervised setting.
[ "eess.SY", "cs.LG", "cs.SY" ]
false
2402.14859
2024-02-20T23:08:21Z
The Wolf Within: Covert Injection of Malice into MLLM Societies via an MLLM Operative
[ "Zhen Tan", "Chengshuai Zhao", "Raha Moraffah", "Yifan Li", "Yu Kong", "Tianlong Chen", "Huan Liu" ]
Due to their unprecedented ability to process and respond to various types of data, Multimodal Large Language Models (MLLMs) are constantly defining the new boundary of Artificial General Intelligence (AGI). As these advanced generative models increasingly form collaborative networks for complex tasks, the integrity and security of these systems are crucial. Our paper, ``The Wolf Within'', explores a novel vulnerability in MLLM societies - the indirect propagation of malicious content. Unlike direct harmful output generation for MLLMs, our research demonstrates how a single MLLM agent can be subtly influenced to generate prompts that, in turn, induce other MLLM agents in the society to output malicious content. This subtle, yet potent method of indirect influence marks a significant escalation in the security risks associated with MLLMs. Our findings reveal that, with minimal or even no access to MLLMs' parameters, an MLLM agent, when manipulated to produce specific prompts or instructions, can effectively ``infect'' other agents within a society of MLLMs. This infection leads to the generation and circulation of harmful outputs, such as dangerous instructions or misinformation, across the society. We also show the transferability of these indirectly generated prompts, highlighting their possibility in propagating malice through inter-agent communication. This research provides a critical insight into a new dimension of threat posed by MLLMs, where a single agent can act as a catalyst for widespread malevolent influence. Our work underscores the urgent need for developing robust mechanisms to detect and mitigate such covert manipulations within MLLM societies, ensuring their safe and ethical utilization in societal applications. Our implementation is released at \url{https://github.com/ChengshuaiZhao0/The-Wolf-Within.git}.
[ "cs.CR", "cs.AI", "cs.CY", "cs.LG" ]
false
2403.14639
2024-02-20T18:34:24Z
On Defining Smart Cities using Transformer Neural Networks
[ "Andrei Khurshudov" ]
Cities worldwide are rapidly adopting smart technologies, transforming urban life. Despite this trend, a universally accepted definition of 'smart city' remains elusive. Past efforts to define it have not yielded a consensus, as evidenced by the numerous definitions in use. In this paper, we endeavored to create a new 'compromise' definition that should resonate with most experts previously involved in defining this concept and aimed to validate one of the existing definitions. We reviewed 60 definitions of smart cities from industry, academia, and various relevant organizations, employing transformer architecture-based generative AI and semantic text analysis to reach this compromise. We proposed a semantic similarity measure as an evaluation technique, which could generally be used to compare different smart city definitions, assessing their uniqueness or resemblance. Our methodology employed generative AI to analyze various existing definitions of smart cities, generating a list of potential new composite definitions. Each of these new definitions was then tested against the pre-existing individual definitions we have gathered, using cosine similarity as our metric. This process identified smart city definitions with the highest average cosine similarity, semantically positioning them as the closest on average to all the 60 individual definitions selected.
[ "cs.CY", "cs.AI", "cs.LG" ]
false
2402.12727
2024-02-20T05:28:13Z
Diffusion Posterior Sampling is Computationally Intractable
[ "Shivam Gupta", "Ajil Jalal", "Aditya Parulekar", "Eric Price", "Zhiyang Xun" ]
Diffusion models are a remarkably effective way of learning and sampling from a distribution $p(x)$. In posterior sampling, one is also given a measurement model $p(y \mid x)$ and a measurement $y$, and would like to sample from $p(x \mid y)$. Posterior sampling is useful for tasks such as inpainting, super-resolution, and MRI reconstruction, so a number of recent works have given algorithms to heuristically approximate it; but none are known to converge to the correct distribution in polynomial time. In this paper we show that posterior sampling is \emph{computationally intractable}: under the most basic assumption in cryptography -- that one-way functions exist -- there are instances for which \emph{every} algorithm takes superpolynomial time, even though \emph{unconditional} sampling is provably fast. We also show that the exponential-time rejection sampling algorithm is essentially optimal under the stronger plausible assumption that there are one-way functions that take exponential time to invert.
[ "cs.LG", "cs.AI", "math.ST", "stat.ML", "stat.TH" ]
false
2402.13079
2024-02-20T15:24:21Z
Mode Estimation with Partial Feedback
[ "Charles Arnal", "Vivien Cabannes", "Vianney Perchet" ]
The combination of lightly supervised pre-training and online fine-tuning has played a key role in recent AI developments. These new learning pipelines call for new theoretical frameworks. In this paper, we formalize core aspects of weakly supervised and active learning with a simple problem: the estimation of the mode of a distribution using partial feedback. We show how entropy coding allows for optimal information acquisition from partial feedback, develop coarse sufficient statistics for mode identification, and adapt bandit algorithms to our new setting. Finally, we combine those contributions into a statistically and computationally efficient solution to our problem.
[ "stat.ML", "cs.IR", "cs.IT", "cs.LG", "math.IT", "62L05, 62B86, 62D10, 62B10" ]
false
2402.13380
2024-02-20T21:13:38Z
Toward TransfORmers: Revolutionizing the Solution of Mixed Integer Programs with Transformers
[ "Joshua F. Cooper", "Seung Jin Choi", "I. Esra Buyuktahtakin" ]
In this study, we introduce an innovative deep learning framework that employs a transformer model to address the challenges of mixed-integer programs, specifically focusing on the Capacitated Lot Sizing Problem (CLSP). Our approach, to our knowledge, is the first to utilize transformers to predict the binary variables of a mixed-integer programming (MIP) problem. Specifically, our approach harnesses the encoder decoder transformer's ability to process sequential data, making it well-suited for predicting binary variables indicating production setup decisions in each period of the CLSP. This problem is inherently dynamic, and we need to handle sequential decision making under constraints. We present an efficient algorithm in which CLSP solutions are learned through a transformer neural network. The proposed post-processed transformer algorithm surpasses the state-of-the-art solver, CPLEX and Long Short-Term Memory (LSTM) in solution time, optimal gap, and percent infeasibility over 240K benchmark CLSP instances tested. After the ML model is trained, conducting inference on the model, including post-processing, reduces the MIP into a linear program (LP). This transforms the ML-based algorithm, combined with an LP solver, into a polynomial-time approximation algorithm to solve a well-known NP-Hard problem, with almost perfect solution quality.
[ "cs.AI", "cs.LG", "math.CO", "math.OC", "stat.ML" ]
false
2402.13412
2024-02-20T22:45:00Z
Scaling physics-informed hard constraints with mixture-of-experts
[ "Nithin Chalapathi", "Yiheng Du", "Aditi Krishnapriyan" ]
Imposing known physical constraints, such as conservation laws, during neural network training introduces an inductive bias that can improve accuracy, reliability, convergence, and data efficiency for modeling physical dynamics. While such constraints can be softly imposed via loss function penalties, recent advancements in differentiable physics and optimization improve performance by incorporating PDE-constrained optimization as individual layers in neural networks. This enables a stricter adherence to physical constraints. However, imposing hard constraints significantly increases computational and memory costs, especially for complex dynamical systems. This is because it requires solving an optimization problem over a large number of points in a mesh, representing spatial and temporal discretizations, which greatly increases the complexity of the constraint. To address this challenge, we develop a scalable approach to enforce hard physical constraints using Mixture-of-Experts (MoE), which can be used with any neural network architecture. Our approach imposes the constraint over smaller decomposed domains, each of which is solved by an "expert" through differentiable optimization. During training, each expert independently performs a localized backpropagation step by leveraging the implicit function theorem; the independence of each expert allows for parallelization across multiple GPUs. Compared to standard differentiable optimization, our scalable approach achieves greater accuracy in the neural PDE solver setting for predicting the dynamics of challenging non-linear systems. We also improve training stability and require significantly less computation time during both training and inference stages.
[ "cs.LG", "cs.AI", "cs.NA", "math.NA", "math.OC" ]
false
2402.13219
2024-02-20T18:31:27Z
Analyzing Operator States and the Impact of AI-Enhanced Decision Support in Control Rooms: A Human-in-the-Loop Specialized Reinforcement Learning Framework for Intervention Strategies
[ "Ammar N. Abbas", "Chidera W. Amazu", "Joseph Mietkiewicz", "Houda Briwa", "Andres Alonzo Perez", "Gabriele Baldissone", "Micaela Demichela", "Georgios G. Chasparis", "John D. Kelleher", "Maria Chiara Leva" ]
In complex industrial and chemical process control rooms, effective decision-making is crucial for safety and efficiency. The experiments in this paper evaluate the impact and applications of an AI-based decision support system integrated into an improved human-machine interface, using dynamic influence diagrams, a hidden Markov model, and deep reinforcement learning. The enhanced support system aims to reduce operator workload, improve situational awareness, and provide different intervention strategies to the operator adapted to the current state of both the system and human performance. Such a system can be particularly useful in cases of information overload when many alarms and inputs are presented all within the same time window, or for junior operators during training. A comprehensive cross-data analysis was conducted, involving 47 participants and a diverse range of data sources such as smartwatch metrics, eye-tracking data, process logs, and responses from questionnaires. The results indicate interesting insights regarding the effectiveness of the approach in aiding decision-making, decreasing perceived workload, and increasing situational awareness for the scenarios considered. Additionally, the results provide valuable insights to compare differences between styles of information gathering when using the system by individual participants. These findings are particularly relevant when predicting the overall performance of the individual participant and their capacity to successfully handle a plant upset and the alarms connected to it using process and human-machine interaction logs in real-time. These predictions enable the development of more effective intervention strategies.
[ "cs.AI", "cs.HC", "cs.LG", "cs.MA", "cs.SY", "eess.SY" ]
false