_id
stringlengths
4
9
text
stringlengths
260
10k
1071991
Live attenuated simian immunodeficiency virus (SIV) vaccines (LAVs) remain the most efficacious of all vaccines in nonhuman primate models of HIV and AIDS, yet the basis of their robust protection remains poorly understood. Here we show that the degree of LAV-mediated protection against intravenous wild-type SIVmac239 challenge strongly correlates with the magnitude and function of SIV-specific, effector-differentiated T cells in the lymph node but not with the responses of such T cells in the blood or with other cellular, humoral and innate immune parameters. We found that maintenance of protective T cell responses is associated with persistent LAV replication in the lymph node, which occurs almost exclusively in follicular helper T cells. Thus, effective LAVs maintain lymphoid tissue-based, effector-differentiated, SIV-specific T cells that intercept and suppress early wild-type SIV amplification and, if present in sufficient frequencies, can completely control and perhaps clear infection, an observation that provides a rationale for the development of safe, persistent vectors that can elicit and maintain such responses.
1084345
Chaperone-mediated autophagy (CMA), a selective mechanism for degradation of cytosolic proteins in lysosomes, contributes to the removal of altered proteins as part of the cellular quality-control systems. We have previously found that CMA activity declines in aged organisms and have proposed that this failure in cellular clearance could contribute to the accumulation of altered proteins, the abnormal cellular homeostasis and, eventually, the functional loss characteristic of aged organisms. To determine whether these negative features of aging can be prevented by maintaining efficient autophagic activity until late in life, in this work we have corrected the CMA defect in aged rodents. We have generated a double transgenic mouse model in which the amount of the lysosomal receptor for CMA, previously shown to decrease in abundance with age, can be modulated. We have analyzed in this model the consequences of preventing the age-dependent decrease in receptor abundance in aged rodents at the cellular and organ levels. We show here that CMA activity is maintained until advanced ages if the decrease in the receptor abundance is prevented and that preservation of autophagic activity is associated with lower intracellular accumulation of damaged proteins, better ability to handle protein damage and improved organ function.
1103795
Antibiotic mode-of-action classification is based upon drug-target interaction and whether the resultant inhibition of cellular function is lethal to bacteria. Here we show that the three major classes of bactericidal antibiotics, regardless of drug-target interaction, stimulate the production of highly deleterious hydroxyl radicals in Gram-negative and Gram-positive bacteria, which ultimately contribute to cell death. We also show, in contrast, that bacteriostatic drugs do not produce hydroxyl radicals. We demonstrate that the mechanism of hydroxyl radical formation induced by bactericidal antibiotics is the end product of an oxidative damage cellular death pathway involving the tricarboxylic acid cycle, a transient depletion of NADH, destabilization of iron-sulfur clusters, and stimulation of the Fenton reaction. Our results suggest that all three major classes of bactericidal drugs can be potentiated by targeting bacterial systems that remediate hydroxyl radical damage, including proteins involved in triggering the DNA damage response, e.g., RecA.
1122198
Macrophage-derived foam cells express apolipoprotein E (apoE) abundantly in atherosclerotic lesions. To examine the physiologic role of apoE secretion by the macrophage in atherogenesis, bone marrow transplantation was used to reconstitute C57BL/6 mice with macrophages that were either null or wild type for the apoE gene. After 13 weeks on an atherogenic diet, C57BL/6 mice reconstituted with apoE null marrow developed 10-fold more atherosclerosis than controls in the absence of significant differences in serum cholesterol levels or lipoprotein profiles. ApoE expression was absent in the macrophage-derived foam cells of C57BL/6 mice reconstituted with apoE null marrow. Thus, lack of apoE expression by the macrophage promotes foam cell formation. These data support a protective role for apoE expression by the macrophage in early atherogenesis.
1127562
Multicellular animals rapidly clear dying cells from their bodies. Many of the pathways that mediate this cell removal are conserved through evolution. Here, we identify srgp-1 as a negative regulator of cell clearance in both Caenorhabditis elegans and mammalian cells. Loss of srgp-1 function results in improved engulfment of apoptotic cells, whereas srgp-1 overexpression inhibits apoptotic cell corpse removal. We show that SRGP-1 functions in engulfing cells and functions as a GTPase activating protein (GAP) for CED-10 (Rac1). Interestingly, loss of srgp-1 function promotes not only the clearance of already dead cells, but also the removal of cells that have been brought to the verge of death through sublethal apoptotic, necrotic or cytotoxic insults. In contrast, impaired engulfment allows damaged cells to escape clearance, which results in increased long-term survival. We propose that C. elegans uses the engulfment machinery as part of a primitive, but evolutionarily conserved, survey mechanism that identifies and removes unfit cells within a tissue.
1145473
Down syndrome (DS) children have a high frequency of acute megakaryoblastic leukemia (AMKL) in early childhood. At least 2 in utero genetic events are required, although not sufficient, for DS-AMKL: trisomy 21 (T21) and N-terminal-truncating GATA1 mutations. To investigate the role of T21 in DS-AMKL, we compared second trimester hemopoiesis in DS without GATA1 mutations to gestation-matched normal controls. In all DS fetal livers (FLs), but not marrows, megakaryocyte-erythroid progenitor frequency was increased (55.9% +/- 4% vs 17.1% +/- 3%, CD34(+)CD38(+) cells; P < .001) with common myeloid progenitors (19.6% +/- 2% vs 44.0% +/- 7%) and granulocyte-monocyte (GM) progenitors (15.8% +/- 4% vs 34.5% +/- 9%) commensurately reduced. Clonogenicity of DS-FL versus normal FL CD34(+) cells was markedly increased (78% +/- 7% vs 15% +/- 3%) affecting megakaryocyte-erythroid ( approximately 7-fold higher) and GM and colony-forming unit-granulocyte, erythrocyte macrophage, megakaryocyte (CFU-GEMM) progenitors. Replating efficiency of CFU-GEMM was also markedly increased. These data indicate that T21 itself profoundly disturbs FL hemopoiesis and they provide a testable hypothesis to explain the increased susceptibility to GATA1 mutations in DS-AMKL and DS-associated transient myeloproliferative disorder.
1148122
Understanding the genetic basis of adaptation is a central problem in biology. However, revealing the underlying molecular mechanisms has been challenging as changes in fitness may result from perturbations to many pathways, any of which may contribute relatively little. We have developed a combined experimental/computational framework to address this problem and used it to understand the genetic basis of ethanol tolerance in Escherichia coli. We used fitness profiling to measure the consequences of single-locus perturbations in the context of ethanol exposure. A module-level computational analysis was then used to reveal the organization of the contributing loci into cellular processes and regulatory pathways (e.g. osmoregulation and cell-wall biogenesis) whose modifications significantly affect ethanol tolerance. Strikingly, we discovered that a dominant component of adaptation involves metabolic rewiring that boosts intracellular ethanol degradation and assimilation. Through phenotypic and metabolomic analysis of laboratory-evolved ethanol-tolerant strains, we investigated naturally accessible pathways of ethanol tolerance. Remarkably, these laboratory-evolved strains, by and large, follow the same adaptive paths as inferred from our coarse-grained search of the fitness landscape.
1153655
The importance of genetic factors in etiology of chronic lymphocytic leukemia (CLL) is suggested by family and population studies. However, the spectrum of malignancies sharing common genetic factors with CLL and the effects of sex and age on familial risk are unknown. We used the Swedish Family-Cancer Database to test for increased familial risks of CLL and other lymphoproliferative tumors. Cancer diagnoses from 1958 to 1998 were assessed in 14 336 first-degree relatives of 5918 CLL cases and in 28 876 first-degree relatives of 11 778 controls. Cancer risks in relatives of cases were compared with those in relatives of controls using marginal survival models. Relatives of cases were at significantly increased risk for CLL (relative risk [RR] = 7.52; 95% confidence interval [CI], 3.63-15.56), for non-Hodgkin lymphoma (RR = 1.45; 95% CI, 0.98-2.16), and for Hodgkin lymphoma (RR = 2.35; 95% CI, 1.08-5.08). CLL risks were similar in parents, siblings, and offspring of cases, in male and female relatives, and were not affected by the case's age at diagnosis. Anticipation was not significant when analyzed using life table methods. We conclude that the familial component of CLL is shared with other lymphoproliferative malignances, suggesting common genetic pathways. However, because clinically diagnosed CLL is uncommon, absolute excess risk to relatives is small.
1173667
Experience gained from the Global Malaria Eradication Program (1955-72) identified a set of shared technical and operational factors that enabled some countries to successfully eliminate malaria. Spatial data for these factors were assembled for all malaria-endemic countries and combined to provide an objective, relative ranking of countries by technical, operational, and combined elimination feasibility. The analysis was done separately for Plasmodium falciparum and Plasmodium vivax, and the limitations of the approach were discussed. The relative rankings suggested that malaria elimination would be most feasible in countries in the Americas and Asia, and least feasible in countries in central and west Africa. The results differed when feasibility was measured by technical or operational factors, highlighting the different types of challenge faced by each country. The results are not intended to be prescriptive, predictive, or to provide absolute assessments of feasibility, but they do show that spatial information is available to facilitate evidence-based assessments of the relative feasibility of malaria elimination by country that can be rapidly updated.
1180972
An adoption study of genetic effects on obesity in adulthood was carried out in which adoptees separated from their natural parents very early in life were compared with their biological full and half siblings reared by their natural parents. The adoptees represented four groups who by sampling from a larger population were categorised as either thin, medium weight, overweight, or obese. Weight and height were obtained for 115 full siblings of 57 adoptees and for 850 half siblings of 341 adoptees. In full siblings body mass index (kg/m2) significantly increased with weight of the adoptees. Body mass index of the half siblings showed a steady but weaker increase across the four weight groups of adoptees. There were no significant interactions with sex of the adoptees, sex of the siblings, or (for the half siblings) sex of the common parent. In contrast with the findings in half siblings and (previously) the natural parents there was a striking, significant increase in body mass index between full siblings of overweight and obese adoptees. The degree of fatness in adults living in the same environment appears to be influenced by genetic factors independent of sex, which may include polygenic as well as major gene effects on obesity.
1191830
OBJECTIVE The 1987 American College of Rheumatology (ACR; formerly the American Rheumatism Association) classification criteria for rheumatoid arthritis (RA) have been criticised for their lack of sensitivity in early disease. This work was undertaken to develop new classification criteria for RA. METHODS A joint working group from the ACR and the European League Against Rheumatism developed, in three phases, a new approach to classifying RA. The work focused on identifying, among patients newly presenting with undifferentiated inflammatory synovitis, factors that best discriminated between those who were and those who were not at high risk for persistent and/or erosive disease--this being the appropriate current paradigm underlying the disease construct 'RA'. RESULTS In the new criteria set, classification as 'definite RA' is based on the confirmed presence of synovitis in at least one joint, absence of an alternative diagnosis better explaining the synovitis, and achievement of a total score of 6 or greater (of a possible 10) from the individual scores in four domains: number and site of involved joints (range 0-5), serological abnormality (range 0-3), elevated acute-phase response (range 0-1) and symptom duration (two levels; range 0-1). CONCLUSION This new classification system redefines the current paradigm of RA by focusing on features at earlier stages of disease that are associated with persistent and/or erosive disease, rather than defining the disease by its late-stage features. This will refocus attention on the important need for earlier diagnosis and institution of effective disease-suppressing therapy to prevent or minimise the occurrence of the undesirable sequelae that currently comprise the paradigm underlying the disease construct 'RA'.
1192458
Cigarette smoke and smokeless tobacco extracts contain multiple carcinogenic compounds, but little is known about the mechanisms by which tumors develop and progress upon chronic exposure to carcinogens such as those present in tobacco products. Here, we examine the effects of smokeless tobacco extracts on human oral fibroblasts. We show that smokeless tobacco extracts elevated the levels of intracellular reactive oxygen, oxidative DNA damage, and DNA double-strand breaks in a dose-dependent manner. Extended exposure to extracts induced fibroblasts to undergo a senescence-like growth arrest, with striking accompanying changes in the secretory phenotype. Using cocultures of smokeless tobacco extracts-exposed fibroblasts and immortalized but nontumorigenic keratinocytes, we further show that factors secreted by extracts-modified fibroblasts increase the proliferation and invasiveness of partially transformed epithelial cells, but not their normal counterparts. In addition, smokeless tobacco extracts-exposed fibroblasts caused partially transformed keratinocytes to lose the expression of E-cadherin and ZO-1, as well as involucrin, changes that are indicative of compromised epithelial function and commonly associated with malignant progression. Together, our results suggest that fibroblasts may contribute to tumorigenesis indirectly by increasing epithelial cell aggressiveness. Thus, tobacco may not only initiate mutagenic changes in epithelial cells but also promote the growth and invasion of mutant cells by creating a procarcinogenic stromal environment.
1196631
Antigen cross-presentation by dendritic cells (DCs) is thought to play a critical role in driving a polyclonal and durable T cell response against cancer. It follows, therefore, that the capacity of emerging immunotherapeutic agents to orchestrate tumour eradication may depend on their ability to induce antigen cross-presentation. ImmTACs [immune-mobilising monoclonal TCRs (T cell receptors) against cancer] are a new class of soluble bi-specific anti-cancer agents that combine pico-molar affinity TCR-based antigen recognition with T cell activation via a CD3-specific antibody fragment. ImmTACs specifically recognise human leucocyte antigen (HLA)-restricted tumour-associated antigens, presented by cancer cells, leading to T cell redirection and a potent anti-tumour response. Using an ImmTAC specific for a HLA-A*02-restricted peptide derived from the melanoma antigen gp100 (termed IMCgp100), we here observe that ImmTAC-driven melanoma-cell death leads to cross-presentation of melanoma antigens by DCs. These, in turn, can activate both melanoma-specific T cells and polyclonal T cells redirected by IMCgp100. Moreover, activation of melanoma-specific T cells by cross-presenting DCs is enhanced in the presence of IMCgp100; a feature that serves to increase the prospect of breaking tolerance in the tumour microenvironment. The mechanism of DC cross-presentation occurs via ‘cross-dressing’ which involves the rapid and direct capture by DCs of membrane fragments from dying tumour cells. DC cross-presentation of gp100-peptide-HLA complexes was visualised and quantified using a fluorescently labelled soluble TCR. These data demonstrate how ImmTACs engage with the innate and adaptive components of the immune system enhancing the prospect of mediating an effective and durable anti-tumour response in patients.
1203035
Human papillomavirus (HPV) infection appears to be an early event in cervical carcinogenesis with additional abnormalities being required for biological transformation. We have analysed 179 low-grade cervical squamous intra-epithelial lesions (SILs) and 15 normal cervices for the presence of HPV using both in situ hybridization and polymerase chain reaction (PCR). PCR was performed with GP5+/GP6+ primers followed by hybridization using probes for low (HPV 6, 11, 40, 42, 43, 44), intermediate (HPV 31, 33, 35, 39, 51, 52, 58, 59, 66 and 68) and high-risk HPVs (HPV 16, 18, 45 and 56). Interphase cytogenetic analysis using pericentromeric probes for chromosomes 1, 3, 4, 6, 10, 11, 17, 18 and X was also performed to identify numerical chromosomal abnormalities. Tetrasomy of all nine chromosomes was identified within basal keratinocytes, was restricted to epithelia infected with high risk (17 of 46) or intermediate risk (23 of 83) HPVs but was not HPV type-specific. Tetrasomy was not identified in any of the epithelia infected with low risk HPVs (n = 62). These numbers include multiple infection. These findings indicate that the induction of tetrasomy is a property restricted to high and intermediate-risk HPV types but that it is not type-specific. The factors governing which lesions will develop this abnormality are as yet unclear. © 2000 Cancer Research Campaign
1215116
Over the past two decades there have been significant achievements in the control of a handful of important human tropical infections [1]. These achievements include the substantive reductions in the prevalence and incidence of the so-called neglected diseases such as lymphatic filariasis, onchocerciasis, guinea worm, leprosy, and trachoma (Box 1) [2]. Each of these neglected diseases is a poverty-promoting and often stigmatizing condition occurring primarily in rural areas of low-income countries (Box 2) [3]. They are ancient afflictions, described in the Bible and other ancient texts, which have burdened humanity for millennia [3]. But now, as a result of aggressive regional vertical interventions, there is a possibility that some neglected tropical infections could be eventually controlled to the point of elimination in some areas of endemicity [2–8]. In the case of guinea worm infection, disease eradication might also soon be possible [9]. Box 2. Common Features of the Neglected Tropical Diseases Ancient afflictions that have burdened humanity for centuries Poverty-promoting conditions Associated with stigma Rural areas of low-income countries and fragile states No commercial markets for products that target these diseases Interventions, when applied, have a history of success
1220287
Huntington disease (HD) is a genetic neurodegenerative disorder for which there is currently no cure and no way to stop or even slow the brain changes it causes. In the present study, we aimed to investigate whether FTY720, the first approved oral therapy for multiple sclerosis, may be effective in HD models and eventually constitute an alternative therapeutic approach for the treatment of the disease. Here, we utilized preclinical target validation paradigms and examined the in vivo efficacy of chronic administration of FTY720 in R6/2 HD mouse model. Our findings indicate that FTY720 improved motor function, prolonged survival and reduced brain atrophy in R6/2 mice. The beneficial effect of FTY720 administration was associated with a significant strengthening of neuronal activity and connectivity and, with reduction of mutant huntingtin aggregates, and it was also paralleled by increased phosphorylation of mutant huntingtin at serine 13/16 residues that are predicted to attenuate protein toxicity.
1227277
Mammalian target of rapamycin (mTOR) is an atypical protein kinase that controls growth and metabolism in response to nutrients, growth factors and cellular energy levels, and it is frequently dysregulated in cancer and metabolic disorders. Rapamycin is an allosteric inhibitor of mTOR, and was approved as an immuno-suppressant in 1999. In recent years, interest has focused on its potential as an anticancer drug. However, the performance of rapamycin and its analogues (rapalogues) has been undistinguished despite isolated successes in subsets of cancer, suggesting that the full therapeutic potential of targeting mTOR has yet to be exploited. A new generation of ATP-competitive inhibitors that directly target the mTOR catalytic site display potent and comprehensive mTOR inhibition and are in early clinical trials.
1234098
Bacterial pathogens produce complex carbohydrate capsules to protect against bactericidal immune molecules. Paradoxically, the pneumococcal capsule sensitizes the bacterium to antimicrobial peptides found on epithelial surfaces. Here we show that upon interaction with antimicrobial peptides, encapsulated pneumococci survive by removing capsule from the cell surface within minutes in a process dependent on the suicidal amidase autolysin LytA. In contrast to classical bacterial autolysis, during capsule shedding, LytA promotes bacterial survival and is dispersed circumferentially around the cell. However, both autolysis and capsule shedding depend on the cell wall hydrolytic activity of LytA. Capsule shedding drastically increases invasion of epithelial cells and is the main pathway by which pneumococci reduce surface bound capsule during early acute lung infection of mice. The previously unrecognized role of LytA in removing capsule to combat antimicrobial peptides may explain why nearly all clinical isolates of pneumococci conserve this enzyme despite the lethal selective pressure of antibiotics.
1243475
A characteristic feature of anaplastic large cell lymphoma is the significant repression of the T-cell expression program despite its T-cell origin. The reasons for this down-regulation of T-cell phenotype are still unknown. To elucidate whether epigenetic mechanisms are responsible for the loss of the T-cell phenotype, we treated anaplastic large cell lymphoma and T-cell lymphoma/leukemia cell lines (n=4, each) with epigenetic modifiers to evoke DNA demethylation and histone acetylation. Global gene expression data from treated and untreated cell lines were generated and selected, and differentially expressed genes were evaluated by real-time reverse transcriptase polymerase chain reaction and western blot analysis. Additionally, histone H3 lysine 27 trimethylation was analyzed by chromatin immunoprecipitation. Combined DNA demethylation and histone acetylation of anaplastic large cell lymphoma cells was not able to reconstitute their T-cell phenotype. Instead, the same treatment induced in T cells: (i) an up-regulation of anaplastic large cell lymphoma-characteristic genes (e.g. ID2, LGALS1, c-JUN), and (ii) an almost complete extinction of their T-cell phenotype including CD3, LCK and ZAP70. In addition, suppressive trimethylation of histone H3 lysine 27 of important T-cell transcription factor genes (GATA3, LEF1, TCF1) was present in anaplastic large cell lymphoma cells, which is in line with their absence in primary tumor specimens as demonstrated by immunohistochemistry. Our data suggest that epigenetically activated suppressors (e.g. ID2) contribute to the down-regulation of the T-cell expression program in anaplastic large cell lymphoma, which is maintained by trimethylation of histone H3 lysine 27.
1263446
BACKGROUND Neonatal mortality accounts for almost 40 per cent of under-five child mortality, globally. An understanding of the factors related to neonatal mortality is important to guide the development of focused and evidence-based health interventions to prevent neonatal deaths. This study aimed to identify the determinants of neonatal mortality in Indonesia, for a nationally representative sample of births from 1997 to 2002. METHODS The data source for the analysis was the 2002-2003 Indonesia Demographic and Health Survey from which survival information of 15,952 singleton live-born infants born between 1997 and 2002 was examined. Multilevel logistic regression using a hierarchical approach was performed to analyze the factors associated with neonatal deaths, using community, socio-economic status and proximate determinants. RESULTS At the community level, the odds of neonatal death was significantly higher for infants from East Java (OR = 5.01, p = 0.00), and for North, Central and Southeast Sulawesi and Gorontalo combined (OR = 3.17, p = 0.03) compared to the lowest neonatal mortality regions of Bali, South Sulawesi and Jambi provinces. A progressive reduction in the odds was found as the percentage of deliveries assisted by trained delivery attendants in the cluster increased. The odds of neonatal death were higher for infants born to both mother and father who were employed (OR = 1.84, p = 0.00) and for infants born to father who were unemployed (OR = 2.99, p = 0.02). The odds were also higher for higher rank infants with a short birth interval (OR = 2.82, p = 0.00), male infants (OR = 1.49, p = 0.01), smaller than average-sized infants (OR = 2.80, p = 0.00), and infant's whose mother had a history of delivery complications (OR = 1.81, p = 0.00). Infants receiving any postnatal care were significantly protected from neonatal death (OR = 0.63, p = 0.03). CONCLUSION Public health interventions directed at reducing neonatal death should address community, household and individual level factors which significantly influence neonatal mortality in Indonesia. Low birth weight and short birth interval infants as well as perinatal health services factors, such as the availability of skilled birth attendance and postnatal care utilization should be taken into account when planning the interventions to reduce neonatal mortality in Indonesia.
1265945
Genome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohn's disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including the antigen-presenting classical human leukocyte antigen (HLA) molecules. Studies in IBD have indicated that multiple independent associations exist at HLA and non-HLA genes, but they have lacked the statistical power to define the architecture of association and causal alleles. To address this, we performed high-density SNP typing of the MHC in >32,000 individuals with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn's disease and ulcerative colitis. Noteworthy differences were observed between these diseases, including a predominant role for class II HLA variants and heterozygous advantage observed in ulcerative colitis, suggesting an important role of the adaptive immune response in the colonic environment in the pathogenesis of IBD.
1281769
Bardet-Biedl syndrome, BBS, is a rare autosomal recessive disorder with clinical presentations including polydactyly, retinopathy, hyperphagia, obesity, short stature, cognitive impairment, and developmental delays. Disruptions of BBS proteins in a variety of organisms impair cilia formation and function and the multi-organ defects of BBS have been attributed to deficiencies in various cilia-associated signaling pathways. In C. elegans, bbs genes are expressed exclusively in the sixty ciliated sensory neurons of these animals and bbs mutants exhibit sensory defects as well as body size, feeding, and metabolic abnormalities. Here we show that in contrast to many other cilia-defective mutants, C. elegans bbs mutants exhibit increased release of dense-core vesicles and organism-wide phenotypes associated with enhanced activities of insulin, neuropeptide, and biogenic amine signaling pathways. We show that the altered body size, feeding, and metabolic abnormalities of bbs mutants can be corrected to wild-type levels by abrogating the enhanced secretion of dense-core vesicles without concomitant correction of ciliary defects. These findings expand the role of BBS proteins to the regulation of dense-core-vesicle exocytosis and suggest that some features of Bardet-Biedl Syndrome may be caused by excessive neuroendocrine secretion.
1285713
Extensive evidence implicates activation of the lipid phosphatidylinositide 3-kinase (PI3K) pathway in the genesis and progression of various human cancers. PI3K inhibitors thus have considerable potential as molecular cancer therapeutics. Here, we detail the pharmacologic properties of a prototype of a new series of inhibitors of class I PI3K. PI103 is a potent inhibitor with low IC50 values against recombinant PI3K isoforms p110alpha (2 nmol/L), p110beta (3 nmol/L), p110delta (3 nmol/L), and p110gamma (15 nmol/L). PI103 also inhibited TORC1 by 83.9% at 0.5 micromol/L and exhibited an IC50 of 14 nmol/L against DNA-PK. A high degree of selectivity for the PI3K family was shown by the lack of activity of PI103 in a panel of 70 protein kinases. PI103 potently inhibited proliferation and invasion of a wide variety of human cancer cells in vitro and showed biomarker modulation consistent with inhibition of PI3K signaling. PI103 was extensively metabolized, but distributed rapidly to tissues and tumors. This resulted in tumor growth delay in eight different human cancer xenograft models with various PI3K pathway abnormalities. Decreased phosphorylation of AKT was observed in U87MG gliomas, consistent with drug levels achieved. We also showed inhibition of invasion in orthotopic breast and ovarian cancer xenograft models and obtained evidence that PI103 has antiangiogenic potential. Despite its rapid in vivo metabolism, PI103 is a valuable tool compound for exploring the biological function of class I PI3K and importantly represents a lead for further optimization of this novel class of targeted molecular cancer therapeutic.
1287809
IMPORTANCE The American College of Cardiology and the American Heart Association (ACC/AHA) cholesterol treatment guidelines have wide-scale implications for treating adults without history of atherosclerotic cardiovascular disease (ASCVD) with statins. OBJECTIVE To estimate the cost-effectiveness of various 10-year ASCVD risk thresholds that could be used in the ACC/AHA cholesterol treatment guidelines. DESIGN, SETTING, AND PARTICIPANTS Microsimulation model, including lifetime time horizon, US societal perspective, 3% discount rate for costs, and health outcomes. In the model, hypothetical individuals from a representative US population aged 40 to 75 years received statin treatment, experienced ASCVD events, and died from ASCVD-related or non-ASCVD-related causes based on ASCVD natural history and statin treatment parameters. Data sources for model parameters included National Health and Nutrition Examination Surveys, large clinical trials and meta-analyses for statin benefits and treatment, and other published sources. MAIN OUTCOMES AND MEASURES Estimated ASCVD events prevented and incremental costs per quality-adjusted life-year (QALY) gained. RESULTS In the base-case scenario, the current ASCVD threshold of 7.5% or higher, which was estimated to be associated with 48% of adults treated with statins, had an incremental cost-effectiveness ratio (ICER) of $37,000/QALY compared with a 10% or higher threshold. More lenient ASCVD thresholds of 4.0% or higher (61% of adults treated) and 3.0% or higher (67% of adults treated) had ICERs of $81,000/QALY and $140,000/QALY, respectively. Shifting from a 7.5% or higher ASCVD risk threshold to a 3.0% or higher ASCVD risk threshold was estimated to be associated with an additional 161,560 cardiovascular disease events averted. Cost-effectiveness results were sensitive to changes in the disutility associated with taking a pill daily, statin price, and the risk of statin-induced diabetes. In probabilistic sensitivity analysis, there was a higher than 93% chance that the optimal ASCVD threshold was 5.0% or lower using a cost-effectiveness threshold of $100,000/QALY. CONCLUSIONS AND RELEVANCE In this microsimulation model of US adults aged 45 to 75 years [corrected], the current 10-year ASCVD risk threshold (≥7.5% risk threshold) used in the ACC/AHA cholesterol treatment guidelines has an acceptable cost-effectiveness profile (ICER, $37,000/QALY), but more lenient ASCVD thresholds would be optimal using cost-effectiveness thresholds of $100,000/QALY (≥4.0% risk threshold) or $150,000/QALY (≥3.0% risk threshold). The optimal ASCVD threshold was sensitive to patient preferences for taking a pill daily, changes to statin price, and the risk of statin-induced diabetes.
1333643
Multicellular eukaryotes produce small RNA molecules (approximately 21–24 nucleotides) of two general types, microRNA (miRNA) and short interfering RNA (siRNA). They collectively function as sequence-specific guides to silence or regulate genes, transposons, and viruses and to modify chromatin and genome structure. Formation or activity of small RNAs requires factors belonging to gene families that encode DICER (or DICER-LIKE [DCL]) and ARGONAUTE proteins and, in the case of some siRNAs, RNA-dependent RNA polymerase (RDR) proteins. Unlike many animals, plants encode multiple DCL and RDR proteins. Using a series of insertion mutants of Arabidopsis thaliana, unique functions for three DCL proteins in miRNA (DCL1), endogenous siRNA (DCL3), and viral siRNA (DCL2) biogenesis were identified. One RDR protein (RDR2) was required for all endogenous siRNAs analyzed. The loss of endogenous siRNA in dcl3 and rdr2 mutants was associated with loss of heterochromatic marks and increased transcript accumulation at some loci. Defects in siRNA-generation activity in response to turnip crinkle virus in dcl2 mutant plants correlated with increased virus susceptibility. We conclude that proliferation and diversification of DCL and RDR genes during evolution of plants contributed to specialization of small RNA-directed pathways for development, chromatin structure, and defense.
1336292
One major role of the thymus is to provide the peripheral immune system with mature T cells, but the mechanisms involving the cellular export are not fully understood. In this study, we examined the ability of a novel immunosuppressive reagent, FTY720, to inhibit T cell export from the thymus. Daily administration of FTY720 at a dose of 1 mg / kg resulted in a marked decrease in the number of peripheral blood T lymphocytes. In the thymus, long-term daily administration of FTY720 caused a three- to fourfold increase in the proportion of mature medullary thymocytes (CD4(+)CD8(-) and CD4(-)CD8(+)) as well as a slight decrease in the double-positive cell (CD4(+)CD8(+)) ratio. Phenotypic analysis (TCRalpha beta, H-2K(d), CD44, CD69 and CD24) revealed that these increased subsets represent possible peripheral recent thymic emigrants. High level expression of L-selectin by these subsets further suggests that they were prevented from leaving the thymus. By intrathymic labeling with fluorescein isothiocyanate, only one fourth of labeled cells could be detected in the lymph nodes and in the spleen of FTY720-treated mice compared to saline-treated control mice. Taken together, these results suggest that the immunosuppressive action of FTY720, at least in part, could be due to its inhibitory effect on T cell emigration from the thymus to the periphery.
1344498
Amino acids control cell growth via activation of the highly conserved kinase TORC1. Glutamine is a particularly important amino acid in cell growth control and metabolism. However, the role of glutamine in TORC1 activation remains poorly defined. Glutamine is metabolized through glutaminolysis to produce α-ketoglutarate. We demonstrate that glutamine in combination with leucine activates mammalian TORC1 (mTORC1) by enhancing glutaminolysis and α-ketoglutarate production. Inhibition of glutaminolysis prevented GTP loading of RagB and lysosomal translocation and subsequent activation of mTORC1. Constitutively active Rag heterodimer activated mTORC1 in the absence of glutaminolysis. Conversely, enhanced glutaminolysis or a cell-permeable α-ketoglutarate analog stimulated lysosomal translocation and activation of mTORC1. Finally, cell growth and autophagy, two processes controlled by mTORC1, were regulated by glutaminolysis. Thus, mTORC1 senses and is activated by glutamine and leucine via glutaminolysis and α-ketoglutarate production upstream of Rag. This may provide an explanation for glutamine addiction in cancer cells.
1358909
To assess the age- and sex-specific prevalence of peripheral arterial disease (PAD) and intermittent claudication (IC) in an elderly population, we performed a population-based study in 7715 subjects (40% men, 60% women) aged 55 years and over. The presence of PAD and IC was determined by measuring the ankle-arm systolic blood pressure index (AAI) and by means of the World Health Organization/Rose questionnaire, respectively. PAD was considered present when the AAI was <0.90 in either leg. The prevalence of PAD was 19.1% (95% confidence interval, 18.1% to 20.0%): 16.9% in men and 20.5% in women. Symptoms of IC were reported by 1.6% (95% confidence interval, 1.3% to 1.9%) of the study population (2.2% in men, 1.2% in women). Of those with PAD, 6.3% reported symptoms of IC (8.7% in men, 4.9% in women), whereas in 68.9% of those with IC an AAI below 0.90 was found. Subjects with an AAI <0.90 were more likely to be smokers, to have hypertension, and to have symptomatic or asymptomatic cardiovascular disease compared with subjects with an AAI of 0.90 or higher. The authors conclude that the prevalence of PAD in the elderly is high whereas the prevalence of IC is rather low, although both prevalences clearly increase with advancing age. The vast majority of PAD patients reports no symptoms of IC.
1360607
Exercise increases plasma TNF-alpha, IL-1beta, and IL-6, yet the stimuli and sources of TNF-alpha and IL-1beta remain largely unknown. We tested the role of oxidative stress and the potential contribution of monocytes in this cytokine (especially IL-1beta) response in previously untrained individuals. Six healthy nonathletes performed two 45-min bicycle exercise sessions at 70% of Vo(2 max) before and after a combination of antioxidants (vitamins E, A, and C for 60 days; allopurinol for 15 days; and N-acetylcysteine for 3 days). Blood was drawn at baseline, end-exercise, and 30 and 120 min postexercise. Plasma cytokines were determined by ELISA and monocyte intracellular cytokine level by flow cytometry. Before antioxidants, TNF-alpha increased by 60%, IL-1beta by threefold, and IL-6 by sixfold secondary to exercise (P < 0.05). After antioxidants, plasma IL-1beta became undetectable, the TNF-alpha response to exercise was abolished, and the IL-6 response was significantly blunted (P < 0.05). Exercise did not increase the percentage of monocytes producing the cytokines or their mean fluorescence intensity. We conclude that in untrained humans oxidative stress is a major stimulus for exercise-induced cytokine production and that monocytes play no role in this process.
1386103
Tuberculosis, a major health problem in developing countries, has reemerged in recent years in many industrialized countries. The increased susceptibility of immunocompromised individuals to tuberculosis, and many experimental studies indicate that T cell-mediated immunity plays an important role in resistance. The lymphokine interferon gamma (IFN-gamma) is thought to be a principal mediator of macrophage activation and resistance to intracellular pathogens. Mice have been developed which fail to produce IFN-gamma (gko), because of a targeted disruption of the gene for IFN-gamma. Upon infection with Mycobacterium tuberculosis, although they develop granulomas, gko mice fail to produce reactive nitrogen intermediates and are unable to restrict the growth of the bacilli. In contrast to control mice, gko mice exhibit heightened tissue necrosis and succumb to a rapid and fatal course of tuberculosis that could be delayed, but not prevented, by treatment with exogenous recombinant IFN-gamma.
1387104
CONTEXT Venous thrombosis is a common complication in patients with cancer, leading to additional morbidity and compromising quality of life. OBJECTIVE To identify individuals with cancer with an increased thrombotic risk, evaluating different tumor sites, the presence of distant metastases, and carrier status of prothrombotic mutations. DESIGN, SETTING, AND PATIENTS A large population-based, case-control (Multiple Environmental and Genetic Assessment [MEGA] of risk factors for venous thrombosis) study of 3220 consecutive patients aged 18 to 70 years, with a first deep venous thrombosis of the leg or pulmonary embolism, between March 1, 1999, and May 31, 2002, at 6 anticoagulation clinics in the Netherlands, and separate 2131 control participants (partners of the patients) reported via a questionnaire on acquired risk factors for venous thrombosis. Three months after discontinuation of the anticoagulant therapy, all patients and controls were interviewed, a blood sample was taken, and DNA was isolated to ascertain the factor V Leiden and prothrombin 20210A mutations. MAIN OUTCOME MEASURE Risk of venous thrombosis. RESULTS The overall risk of venous thrombosis was increased 7-fold in patients with a malignancy (odds ratio [OR], 6.7; 95% confidence interval [CI], 5.2-8.6) vs persons without malignancy. Patients with hematological malignancies had the highest risk of venous thrombosis, adjusted for age and sex (adjusted OR, 28.0; 95% CI, 4.0-199.7), followed by lung cancer and gastrointestinal cancer. The risk of venous thrombosis was highest in the first few months after the diagnosis of malignancy (adjusted OR, 53.5; 95% CI, 8.6-334.3). Patients with cancer with distant metastases had a higher risk vs patients without distant metastases (adjusted OR, 19.8; 95% CI, 2.6-149.1). Carriers of the factor V Leiden mutation who also had cancer had a 12-fold increased risk vs individuals without cancer and factor V Leiden (adjusted OR, 12.1; 95% CI, 1.6-88.1). Similar results were indirectly calculated for the prothrombin 20210A mutation in patients with cancer. CONCLUSIONS Patients with cancer have a highly increased risk of venous thrombosis especially in the first few months after diagnosis and in the presence of distant metastases. Carriers of the factor V Leiden and prothrombin 20210A mutations appear to have an even higher risk.
1387654
Although a developmental role for Hippo signaling in organ size control is well appreciated, how this pathway functions in tissue regeneration is largely unknown. Here we address this issue using a dextran sodium sulfate (DSS)-induced colonic regeneration model. We find that regenerating crypts express elevated Yes-associated protein (YAP) levels. Inactivation of YAP causes no obvious intestinal defects under normal homeostasis, but severely impairs DSS-induced intestinal regeneration. Conversely, hyperactivation of YAP results in widespread early-onset polyp formation following DSS treatment. Thus, the YAP oncoprotein must be exquisitely controlled in tissue regeneration to allow compensatory proliferation and prevent the intrinsic oncogenic potential of a tissue regeneration program.
1388704
Single nucleotide polymorphisms (SNPs) are an abundant form of genome variation, distinguished from rare variations by a requirement for the least abundant allele to have a frequency of 1% or more. A wide range of genetics disciplines stand to benefit greatly from the study and use of SNPs. The recent surge of interest in SNPs stems from, and continues to depend upon, the merging and coincident maturation of several research areas, i.e. (i) large-scale genome analysis and related technologies, (ii) bio-informatics and computing, (iii) genetic analysis of simple and complex disease states, and (iv) global human population genetics. These fields will now be propelled forward, often into uncharted territories, by ongoing discovery efforts that promise to yield hundreds of thousands of human SNPs in the next few years. Major questions are now being asked, experimentally, theoretically and ethically, about the most effective ways to unlock the full potential of the upcoming SNP revolution.
1389264
Brain metastases represent the greatest clinical challenge in treating HER2-positive breast cancer. We report the development of orthotopic patient-derived xenografts (PDXs) of HER2-expressing breast cancer brain metastases (BCBM), and their use for the identification of targeted combination therapies. Combined inhibition of PI3K and mTOR resulted in durable tumor regressions in three of five PDXs, and therapeutic response was correlated with a reduction in the phosphorylation of 4EBP1, an mTORC1 effector. The two nonresponding PDXs showed hypermutated genomes with enrichment of mutations in DNA-repair genes, which suggests an association of genomic instability with therapeutic resistance. These findings suggest that a biomarker-driven clinical trial of PI3K inhibitor in combination with an mTOR inhibitor should be conducted for patients with HER2-positive BCBM.
1391126
Primates often rely on vocal communication to mediate social interactions. Although much is known about the acoustic structure of primate vocalizations and the social context in which they are usually uttered, our knowledge about the neocortical control of audio-vocal interactions in primates is still incipient, being mostly derived from lesion studies in squirrel monkeys and macaques. To map the neocortical areas related to vocal control in a New World primate species, the common marmoset, we employed a method previously used with success in other vertebrate species: Analysis of the expression of the immediate early gene Egr-1 in freely behaving animals. The neocortical distribution of Egr-1 immunoreactive cells in three marmosets that were exposed to the playback of conspecific vocalizations and vocalized spontaneously (H/V group) was compared to data from three other marmosets that also heard the playback but did not vocalize (H/n group). The anterior cingulate cortex, the dorsomedial prefrontal cortex and the ventrolateral prefrontal cortex presented a higher number of Egr-1 immunoreactive cells in the H/V group than in H/n animals. Our results provide direct evidence that the ventrolateral prefrontal cortex, the region that comprises Broca's area in humans and has been associated with auditory processing of species-specific vocalizations and orofacial control in macaques, is engaged during vocal output in marmosets. Altogether, our results support the notion that the network of neocortical areas related to vocal communication in marmosets is quite similar to that of Old world primates. The vocal production role played by these areas and their importance for the evolution of speech in primates are discussed.
1398021
BACKGROUND Familial hiatal hernia has only rarely been documented. AIMS To describe the pattern of inheritance of familial hiatal hernia within an affected family. SUBJECTS Thirty eight members of a family pedigree across five generations. METHODS All family members were interviewed and investigated by barium meal for evidence of a hiatal hernia. RESULTS Twenty three of 38 family members had radiological evidence of a hiatal hernia. No individual with a hiatal hernia was born to unaffected parents. In one case direct male to male transmission was shown. CONCLUSIONS Familial inheritance of hiatal hernia does occur. Evidence of direct male to male transmission points to an autosomal dominant mode of inheritance.
1428830
Atypical antipsychotics such as olanzapine often induce excessive weight gain and type 2 diabetes. However, the mechanisms underlying these drug-induced metabolic perturbations remain poorly understood. Here, we used an experimental model that reproduces olanzapine-induced hyperphagia and obesity in female C57BL/6 mice. We found that olanzapine treatment acutely increased food intake, impaired glucose tolerance, and altered physical activity and energy expenditure in mice. Furthermore, olanzapine-induced hyperphagia and weight gain were blunted in mice lacking the serotonin 2C receptor (HTR2C). Finally, we showed that treatment with the HTR2C-specific agonist lorcaserin suppressed olanzapine-induced hyperphagia and weight gain. Lorcaserin treatment also improved glucose tolerance in olanzapine-fed mice. Collectively, our studies suggest that olanzapine exerts some of its untoward metabolic effects via antagonism of HTR2C.
1428840
BACKGROUND It has been suggested that identified risk factors for endometrial cancer operate through a single etiologic pathway, i.e., exposure to relatively high levels of unopposed estrogen (estrogen in the absence of progestins). Only a few studies, however, have addressed this issue directly. PURPOSE We assessed the risk of developing endometrial cancer among both premenopausal and postmenopausal women in relation to the circulating levels of steroid hormones and sex hormone-binding globulin (SHBG). The independent effect of hormones was assessed after adjustment for other known risk factors. METHODS The data used in the analysis are from a case-control study conducted in five geographic regions in the United States. Incident cases were newly diagnosed during the period from June 1, 1987, through May 15, 1990. The case patients, aged 20-74 years, were matched to control subjects by age, race, and geographic region. The community control subjects were obtained by random-digit-dialing procedures (for subjects 20-64 years old) and from files of the Health Care Financing Administration (for subjects > or = 65 years old). Additional control subjects who were having a hysterectomy performed for benign conditions were obtained from the participating centers. Women reporting use of exogenous estrogens or oral contraceptives within 6 months of interview were excluded, resulting in 68 case patients and 107 control subjects among premenopausal women and 208 case patients and 209 control subjects among postmenopausal women. The hormone analyses were performed on blood samples obtained from case patients or from hysterectomy control subjects before surgery. The odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by use of an unconditional logistic regression analysis after we controlled for matching variables and potential confounders. All P values were two-sided. RESULTS High circulating levels of androstenedione were associated with 3.6-fold and 2.8-fold increased risks among premenopausal and postmenopausal women, respectively, after adjustment for other factors (P for trend = .01 and < .001, respectively). Risks related to other hormone fractions varied by menopausal status. Among postmenopausal women, a reduced risk was associated with high SHBG levels and persisted after adjustment was made for obesity and other factors (OR = 0.51; 95% CI = 0.27-0.95). High estrone levels were associated with increased risk (OR = 3.8; 95% CI = 2.2-6.6), although adjustment for other risk factors (particularly body mass index) diminished the effect (OR = 2.2; 95% CI = 1.2-4.4). Albumin-bound estradiol (E2), a marker of the bioavailable fraction, also remained an important risk factor after adjustment was made for other factors (OR = 2.0; 95% CI = 1.0-3.9). In contrast, high concentrations of total, free, and albumin-bound E2 were unrelated to increased risk in premenopausal women. In both premenopausal and postmenopausal groups, risks associated with obesity and fat distribution were not affected by adjustment for hormones. CONCLUSION High endogenous levels of unopposed estrogen are related to increased risk of endometrial cancer, but their independence from other risk factors is inconsistent with being a common underlying biologic pathway through which all risk factors for endometrial cancer operate. IMPLICATIONS Further research should focus on alternative endocrinologic mechanisms for risk associated with obesity and body fat distribution and for the biologic relevance of the increased risk associated with androstenedione in both premenopausal and postmenopausal disease.
1454773
The programmed death-1 (PD-1) receptor serves as an immunologic checkpoint, limiting bystander tissue damage and preventing the development of autoimmunity during inflammatory responses. PD-1 is expressed by activated T cells and downmodulates T-cell effector functions upon binding to its ligands, PD-L1 and PD-L2, on antigen-presenting cells. In patients with cancer, the expression of PD-1 on tumor-infiltrating lymphocytes and its interaction with the ligands on tumor and immune cells in the tumor microenvironment undermine antitumor immunity and support its rationale for PD-1 blockade in cancer immunotherapy. This report details the development and characterization of nivolumab, a fully human IgG4 (S228P) anti-PD-1 receptor-blocking monoclonal antibody. Nivolumab binds to PD-1 with high affinity and specificity, and effectively inhibits the interaction between PD-1 and its ligands. In vitro assays demonstrated the ability of nivolumab to potently enhance T-cell responses and cytokine production in the mixed lymphocyte reaction and superantigen or cytomegalovirus stimulation assays. No in vitro antibody-dependent cell-mediated or complement-dependent cytotoxicity was observed with the use of nivolumab and activated T cells as targets. Nivolumab treatment did not induce adverse immune-related events when given to cynomolgus macaques at high concentrations, independent of circulating anti-nivolumab antibodies where observed. These data provide a comprehensive preclinical characterization of nivolumab, for which antitumor activity and safety have been demonstrated in human clinical trials in various solid tumors.
1456068
BACKGROUND Although cigarette smoking, excessive alcohol drinking, obesity, and several other well-studied unhealthy lifestyle-related factors each have been linked to the risk of multiple chronic diseases and premature death, little is known about the combined impact on mortality outcomes, in particular among Chinese and other non-Western populations. The objective of this study was to quantify the overall impact of lifestyle-related factors beyond that of active cigarette smoking and alcohol consumption on all-cause and cause-specific mortality in Chinese women. METHODS AND FINDINGS We used data from the Shanghai Women's Health Study, an ongoing population-based prospective cohort study in China. Participants included 71,243 women aged 40 to 70 years enrolled during 1996-2000 who never smoked or drank alcohol regularly. A healthy lifestyle score was created on the basis of five lifestyle-related factors shown to be independently associated with mortality outcomes (normal weight, lower waist-hip ratio, daily exercise, never exposed to spouse's smoking, higher daily fruit and vegetable intake). The score ranged from zero (least healthy) to five (most healthy) points. During an average follow-up of 9 years, 2,860 deaths occurred, including 775 from cardiovascular disease (CVD) and 1,351 from cancer. Adjusted hazard ratios for mortality decreased progressively with an increasing number of healthy lifestyle factors. Compared to women with a score of zero, hazard ratios (95% confidence intervals) for women with four to five factors were 0.57 (0.44-0.74) for total mortality, 0.29 (0.16-0.54) for CVD mortality, and 0.76 (0.54-1.06) for cancer mortality. The inverse association between the healthy lifestyle score and mortality was seen consistently regardless of chronic disease status at baseline. The population attributable risks for not having 4-5 healthy lifestyle factors were 33% for total deaths, 59% for CVD deaths, and 19% for cancer deaths. CONCLUSIONS In this first study, to our knowledge, to quantify the combined impact of lifestyle-related factors on mortality outcomes in Chinese women, a healthier lifestyle pattern-including being of normal weight, lower central adiposity, participation in physical activity, nonexposure to spousal smoking, and higher fruit and vegetable intake-was associated with reductions in total and cause-specific mortality among lifetime nonsmoking and nondrinking women, supporting the importance of overall lifestyle modification in disease prevention. Please see later in the article for the Editors' Summary.
1469751
Currently, major concerns about the safety and efficacy of RNA interference (RNAi)-based bone anabolic strategies still exist because of the lack of direct osteoblast-specific delivery systems for osteogenic siRNAs. Here we screened the aptamer CH6 by cell-SELEX, specifically targeting both rat and human osteoblasts, and then we developed CH6 aptamer–functionalized lipid nanoparticles (LNPs) encapsulating osteogenic pleckstrin homology domain-containing family O member 1 (Plekho1) siRNA (CH6-LNPs-siRNA). Our results showed that CH6 facilitated in vitro osteoblast-selective uptake of Plekho1 siRNA, mainly via macropinocytosis, and boosted in vivo osteoblast-specific Plekho1 gene silencing, which promoted bone formation, improved bone microarchitecture, increased bone mass and enhanced mechanical properties in both osteopenic and healthy rodents. These results indicate that osteoblast-specific aptamer-functionalized LNPs could act as a new RNAi-based bone anabolic strategy, advancing the targeted delivery selectivity of osteogenic siRNAs from the tissue level to the cellular level.
1499964
NF-κB was discovered 30 years ago as a rapidly inducible transcription factor. Since that time, it has been found to have a broad role in gene induction in diverse cellular responses, particularly throughout the immune system. Here, we summarize elaborate regulatory pathways involving this transcription factor and use recent discoveries in human genetic diseases to place specific proteins within their relevant medical and biological contexts.
1507222
Weight loss in cancer cachexia is attributable to decreased food intake and/or enhanced energy expenditure. We investigated the roles of the uncoupling proteins (UCPs) UCPI, -2, and -3 in a murine model of cachexia, the MAC16 adenocarcinoma. Weight fell to 24% below that of non-tumor-bearing controls (P < 0.01) 18 days after MAC16 inoculation, with significant reductions in fat-pad mass (-67%; P < 0.01) and muscle mass (-20%; P < 0.01). Food intake was 26-60% lower (P < 0.01) than in controls on days 17-18. Non-tumor-bearing mice, pair-fed to match MAC16-induced hypophagia, showed less weight loss (10% below controls, P < 0.01; 16% above MAC-16, P < 0.01) and smaller decreases in fat-pad mass (21% below controls, P < 0.01). Core temperature in MAC16 mice was significantly lower (-2.4 degrees C, P < 0.01) than in controls, and pair-feeding had no effect. MAC16 mice showed significantly higher UCP1 mRNA levels in brown adipose tissue (BAT) than in controls (+63%, P < 0.01), and pair-feeding had no effect. UCP2 and -3 expression in BAT did not differ significantly between groups. By contrast, UCP2 mRNA levels in skeletal muscle were comparably increased in both MAC16 and pair-fed groups (respectively, 183 and 163% above controls; both, P < 0.05), with no significant difference between these two groups. Similarly, UCP3 mRNA was significantly higher than controls in both MAC16 (+163%, P < 0.05) and pair-fed (+253%, P < 0.01) groups, with no significant difference between the two experimental groups. Overexpression of UCP1 in BAT in MAC16-bearing mice may be an adaptive response to hypothermia, which is apparently induced by tumor products; increased thermogenesis in BAT could increase total energy expenditure and, thus, contribute to tissue wasting. Increased UCP2 and -3 expression in muscle are both attributable to reduced food intake and may be involved in lipid utilization during lipolysis in MAC16-induced cachexia.
1522336
BACKGROUND Statins are commonly used against arteriosclerotic disease, but recent retrospective analyses have suggested that statins also prevent cancer. The aim of this systematic review is to verify the vitro anti-tumor effects of statins on head and neck squamous cell carcinoma. METHODS Studies were gathered by searching Cochrane, MEDLINE, EMBASE, LILACS, and PubMed, up until May 9, 2015, with no time or language restrictions. Only in vitro studies that discuss the effect of statins on head and neck carcinoma were selected. RESULTS Of 153 identified papers, 14 studies met the inclusion criteria. These studies demonstrated that statins had a significant effect on head and neck squamous cell carcinoma cell lines and influenced cell viability, cell cycle, cell death, and protein expression levels involved in pathways of carcinogenesis, which corroborates with the potential in vitro anti-tumor effects. It provides highlights about the biological mechanisms of statins used alone or associated with traditional therapy for cancer. CONCLUSIONS Though there are few studies on the topic, currently available evidence suggests that statins shows that preclinical experiments supports the potentiality of statin as an adjuvant agent in chemotherapy and/or radiotherapy approaches routinely used in the management of HNSCC and should undergo further clinical assessment.
1522647
BACKGROUND Mitochondrial DNA (mtDNA) is a critical activator of inflammation and the innate immune system. However, mtDNA level has not been tested for its role as a biomarker in the intensive care unit (ICU). We hypothesized that circulating cell-free mtDNA levels would be associated with mortality and improve risk prediction in ICU patients. METHODS AND FINDINGS Analyses of mtDNA levels were performed on blood samples obtained from two prospective observational cohort studies of ICU patients (the Brigham and Women's Hospital Registry of Critical Illness [BWH RoCI, n = 200] and Molecular Epidemiology of Acute Respiratory Distress Syndrome [ME ARDS, n = 243]). mtDNA levels in plasma were assessed by measuring the copy number of the NADH dehydrogenase 1 gene using quantitative real-time PCR. Medical ICU patients with an elevated mtDNA level (≥3,200 copies/µl plasma) had increased odds of dying within 28 d of ICU admission in both the BWH RoCI (odds ratio [OR] 7.5, 95% CI 3.6-15.8, p = 1×10(-7)) and ME ARDS (OR 8.4, 95% CI 2.9-24.2, p = 9×10(-5)) cohorts, while no evidence for association was noted in non-medical ICU patients. The addition of an elevated mtDNA level improved the net reclassification index (NRI) of 28-d mortality among medical ICU patients when added to clinical models in both the BWH RoCI (NRI 79%, standard error 14%, p<1×10(-4)) and ME ARDS (NRI 55%, standard error 20%, p = 0.007) cohorts. In the BWH RoCI cohort, those with an elevated mtDNA level had an increased risk of death, even in analyses limited to patients with sepsis or acute respiratory distress syndrome. Study limitations include the lack of data elucidating the concise pathological roles of mtDNA in the patients, and the limited numbers of measurements for some of biomarkers. CONCLUSIONS Increased mtDNA levels are associated with ICU mortality, and inclusion of mtDNA level improves risk prediction in medical ICU patients. Our data suggest that mtDNA could serve as a viable plasma biomarker in medical ICU patients.
1550937
Lymphocytes provide optimal responses against pathogens with minimal inflammatory pathology. However, the intrinsic mechanisms regulating these responses are unknown. Here, we report that deletion of both transcription factors Egr2 and Egr3 in lymphocytes resulted in a lethal autoimmune syndrome with excessive serum proinflammatory cytokines but also impaired antigen receptor-induced proliferation of B and T cells. Egr2- and Egr3-defective B and T cells had hyperactive signal transducer and activator of transcription-1 (STAT1) and STAT3 while antigen receptor-induced activation of transcription factor AP-1 was severely impaired. We discovered that Egr2 and/or Egr3 directly induced expression of suppressor of cytokine signaling-1 (SOCS1) and SOCS3, inhibitors of STAT1 and STAT3, and also blocked the function of Batf, an AP-1 inhibitor, in B and T cells. Thus, Egr2 and Egr3 regulate B and T cell function in adaptive immune responses and homeostasis by promoting antigen receptor signaling and controlling inflammation.
1568684
The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans.
1574014
Open reading frame 74 (ORF74) encoded by human herpesvirus 8 is a highly constitutively active seven transmembrane (7TM) receptor stimulated by angiogenic chemokines, e.g. growth-related oncogene-alpha, and inhibited by angiostatic chemokines e.g. interferon-gamma-inducible protein. Transgenic mice expressing ORF74 under control of the CD2 promoter develop highly vascularized Kaposi's sarcoma-like tumors. Through targeted mutagenesis we here create three distinct phenotypes of ORF74: a receptor with normal, high constitutive signaling through the phospholipase C pathway but deprived of binding and action of chemokines obtained through deletion of 22 amino acids from the N-terminal extension; an ORF74 with high constitutive activity but with selective elimination of stimulatory regulation by angiogenic chemokines obtained through substitution of basic residues at the extracellular ends of TM-V or TM-VI; and an ORF74 lacking constitutive activity but with preserved ability to be stimulated by agonist chemokines obtained through introduction of an Asp residue on the hydrophobic, presumed membrane-exposed face of TM-II. It is concluded that careful molecular dissection can selectively eliminate either agonist or inverse agonist modulation as well as high constitutive activity of the virally encoded oncogene ORF74 and that these mutant forms presumably can be used in transgenic animals to identify the molecular mechanism of its transforming activity.
1576955
Mutations in daf-2 and age-1 cause a dramatic increase in longevity as well as developmental arrest at the dauer diapause stage in Caenorhabditis elegans. daf-2 and age-1 encode components of an insulin-like signaling pathway. Both daf-2 and age-1 act at a similar point in the genetic epistasis pathway for dauer arrest and longevity and regulate the activity of the daf-16 gene. Mutations in daf-16 cause a dauer-defective phenotype and are epistatic to the diapause arrest and life span extension phenotypes of daf-2 and age-1 mutants. Here we show that mutations in this pathway also affect fertility and embryonic development. Weak daf-2 alleles, and maternally rescued age-1 alleles that cause life span extension but do not arrest at the dauer stage, also reduce fertility and viability. We find that age-1(hx546) has reduced both maternal and zygotic age-1 activity. daf-16 mutations suppress all of the daf-2 and age-1 phenotypes, including dauer arrest, life span extension, reduced fertility, and viability defects. These data show that insulin signaling, mediated by DAF-2 through the AGE-1 phosphatidylinositol-3-OH kinase, regulates reproduction and embryonic development, as well as dauer diapause and life span, and that DAF-16 transduces these signals. The regulation of fertility, life span, and metabolism by an insulin-like signaling pathway is similar to the endocrine regulation of metabolism and fertility by mammalian insulin signaling.
1590744
The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last 2 decades, it has become apparent that AMPK regulates several other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function, as well as promoting anticontractile, anti-inflammatory, and antiatherogenic actions in blood vessels. In this review, we discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions.
1595617
Genome endoreduplication during mammalian development is a rare event for which the mechanism is unknown. It first appears when fibroblast growth factor 4 (FGF4) deprivation induces differentiation of trophoblast stem (TS) cells into the nonproliferating trophoblast giant (TG) cells required for embryo implantation. Here we show that RO3306 inhibition of cyclin-dependent protein kinase 1 (CDK1), the enzyme required to enter mitosis, induced differentiation of TS cells into TG cells. In contrast, RO3306 induced abortive endoreduplication and apoptosis in embryonic stem cells, revealing that inactivation of CDK1 triggers endoreduplication only in cells programmed to differentiate into polyploid cells. Similarly, FGF4 deprivation resulted in CDK1 inhibition by overexpressing two CDK-specific inhibitors, p57/KIP2 and p21/CIP1. TS cell mutants revealed that p57 was required to trigger endoreduplication by inhibiting CDK1, while p21 suppressed expression of the checkpoint protein kinase CHK1, thereby preventing induction of apoptosis. Furthermore, Cdk2(-/-) TS cells revealed that CDK2 is required for endoreduplication when CDK1 is inhibited. Expression of p57 in TG cells was restricted to G-phase nuclei to allow CDK activation of S phase. Thus, endoreduplication in TS cells is triggered by p57 inhibition of CDK1 with concomitant suppression of the DNA damage response by p21.
1605196
Successful generation of induced pluripotent stem cells entails a major metabolic switch from mitochondrial oxidative phosphorylation to glycolysis during the reprogramming process. The mechanism of this metabolic reprogramming, however, remains elusive. Here, our results suggest that an Atg5-independent autophagic process mediates mitochondrial clearance, a characteristic event involved in the metabolic switch. We found that blocking such autophagy, but not canonical autophagy, inhibits mitochondrial clearance, in turn, preventing iPSC induction. Furthermore, AMPK seems to be upstream of this autophagic pathway and can be targeted by small molecules to modulate mitochondrial clearance during metabolic reprogramming. Our work not only reveals that the Atg5-independent autophagy is crucial for establishing pluripotency, but it also suggests that iPSC generation and tumorigenesis share a similar metabolic switch.
1605392
Antigen stimulation of immune cells triggers Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC) channels, promoting the immune response to pathogens by activating the transcription factor NFAT. We have previously shown that cells from patients with one form of hereditary severe combined immune deficiency (SCID) syndrome are defective in store-operated Ca2+ entry and CRAC channel function. Here we identify the genetic defect in these patients, using a combination of two unbiased genome-wide approaches: a modified linkage analysis with single-nucleotide polymorphism arrays, and a Drosophila RNA interference screen designed to identify regulators of store-operated Ca2+ entry and NFAT nuclear import. Both approaches converged on a novel protein that we call Orai1, which contains four putative transmembrane segments. The SCID patients are homozygous for a single missense mutation in ORAI1, and expression of wild-type Orai1 in SCID T cells restores store-operated Ca2+ influx and the CRAC current (ICRAC). We propose that Orai1 is an essential component or regulator of the CRAC channel complex.
1606628
CONTEXT One key target of the United Nations Millennium Development goals is to reduce the prevalence of underweight among children younger than 5 years by half between 1990 and 2015. OBJECTIVE To estimate trends in childhood underweight by geographic regions of the world. DESIGN, SETTING, AND PARTICIPANTS Time series study of prevalence of underweight, defined as weight 2 SDs below the mean weight for age of the National Center for Health Statistics and World Health Organization (WHO) reference population. National prevalence rates derived from the WHO Global Database on Child Growth and Malnutrition, which includes data on approximately 31 million children younger than 5 years who participated in 419 national nutritional surveys in 139 countries from 1965 through 2002. MAIN OUTCOME MEASURES Linear mixed-effects modeling was used to estimate prevalence rates and numbers of underweight children by region in 1990 and 2015 and to calculate the changes (ie, increase or decrease) to these values between 1990 and 2015. RESULTS Worldwide, underweight prevalence was projected to decline from 26.5% in 1990 to 17.6% in 2015, a change of -34% (95% confidence interval [CI], -43% to -23%). In developed countries, the prevalence was estimated to decrease from 1.6% to 0.9%, a change of -41% (95% CI, -92% to 343%). In developing regions, the prevalence was forecasted to decline from 30.2% to 19.3%, a change of -36% (95% CI, -45% to -26%). In Africa, the prevalence of underweight was forecasted to increase from 24.0% to 26.8%, a change of 12% (95% CI, 8%-16%). In Asia, the prevalence was estimated to decrease from 35.1% to 18.5%, a change of -47% (95% CI, -58% to -34%). Worldwide, the number of underweight children was projected to decline from 163.8 million in 1990 to 113.4 million in 2015, a change of -31% (95% CI, -40% to -20%). Numbers are projected to decrease in all subregions except the subregions of sub-Saharan, Eastern, Middle, and Western Africa, which are expected to experience substantial increases in the number of underweight children. CONCLUSIONS An overall improvement in the global situation is anticipated; however, neither the world as a whole, nor the developing regions, are expected to achieve the Millennium Development goals. This is largely due to the deteriorating situation in Africa where all subregions, except Northern Africa, are expected to fail to meet the goal.
1616661
Every organ depends on blood vessels for oxygen and nutrients, but the vasculature associated with individual organs can be structurally and molecularly diverse. The central nervous system (CNS) vasculature consists of a tightly sealed endothelium that forms the blood-brain barrier, whereas blood vessels of other organs are more porous. Wnt7a and Wnt7b encode two Wnt ligands produced by the neuroepithelium of the developing CNS coincident with vascular invasion. Using genetic mouse models, we found that these ligands directly target the vascular endothelium and that the CNS uses the canonical Wnt signaling pathway to promote formation and CNS-specific differentiation of the organ's vasculature.
1631583
Publisher Summary The yeast Saccharomyces cerevisiae is now recognized as a model system representing a simple eukaryote whose genome can be easily manipulated. Yeast has only a slightly greater genetic complexity than bacteria and shares many of the technical advantages that permitted rapid progress in the molecular genetics of prokaryotes and their viruses. Some of the properties that make yeast particularly suitable for biological studies include rapid growth, dispersed cells, the ease of replica plating and mutant isolation, a well-defined genetic system, and most important, a highly versatile DNA transformation system. Being nonpathogenic, yeast can be handled with little precautions. Large quantities of normal baker's yeast are commercially available and can provide a cheap source for biochemical studies. The development of DNA transformation has made yeast particularly accessible to gene cloning and genetic engineering techniques. Structural genes corresponding to virtually any genetic trait can be identified by complementation from plasmid libraries. Plasmids can be introduced into yeast cells either as replicating molecules or by integration into the genome. In contrast to most other organisms, integrative recombination of transforming DNA in yeast proceeds exclusively via homologous recombination. Cloned yeast sequences, accompanied by foreign sequences on plasmids, can therefore be directed at will to specific locations in the genome.
1676568
Turnover of integrin-based focal adhesions (FAs) with the extracellular matrix (ECM) is essential for coordinated cell movement. In collectively migrating human keratinocytes, FAs assemble near the leading edge, grow and mature as a result of contractile forces and disassemble underneath the advancing cell body. We report that clustering of microtubule-associated CLASP1 and CLASP2 proteins around FAs temporally correlates with FA turnover. CLASPs and LL5β (also known as PHLDB2), which recruits CLASPs to FAs, facilitate FA disassembly. CLASPs are further required for FA-associated ECM degradation, and matrix metalloprotease inhibition slows FA disassembly similarly to CLASP or PHLDB2 (LL5β) depletion. Finally, CLASP-mediated microtubule tethering at FAs establishes an FA-directed transport pathway for delivery, docking and localized fusion of exocytic vesicles near FAs. We propose that CLASPs couple microtubule organization, vesicle transport and cell interactions with the ECM, establishing a local secretion pathway that facilitates FA turnover by severing cell-matrix connections.
1686997
The oxidative pentose phosphate pathway (PPP) contributes to tumour growth, but the precise contribution of 6-phosphogluconate dehydrogenase (6PGD), the third enzyme in this pathway, to tumorigenesis remains unclear. We found that suppression of 6PGD decreased lipogenesis and RNA biosynthesis and elevated ROS levels in cancer cells, attenuating cell proliferation and tumour growth. 6PGD-mediated production of ribulose-5-phosphate (Ru-5-P) inhibits AMPK activation by disrupting the active LKB1 complex, thereby activating acetyl-CoA carboxylase 1 and lipogenesis. Ru-5-P and NADPH are thought to be precursors in RNA biosynthesis and lipogenesis, respectively; thus, our findings provide an additional link between the oxidative PPP and lipogenesis through Ru-5-P-dependent inhibition of LKB1-AMPK signalling. Moreover, we identified and developed 6PGD inhibitors, physcion and its derivative S3, that effectively inhibited 6PGD, cancer cell proliferation and tumour growth in nude mice xenografts without obvious toxicity, suggesting that 6PGD could be an anticancer target.
1695604
All eukaryotes have three nuclear DNA-dependent RNA polymerases, namely, Pol I, II, and III. Interestingly, plants have catalytic subunits for a fourth nuclear polymerase, Pol IV. Genetic and biochemical evidence indicates that Pol IV does not functionally overlap with Pol I, II, or III and is nonessential for viability. However, disruption of the Pol IV catalytic subunit genes NRPD1 or NRPD2 inhibits heterochromatin association into chromocenters, coincident with losses in cytosine methylation at pericentromeric 5S gene clusters and AtSN1 retroelements. Loss of CG, CNG, and CNN methylation in Pol IV mutants implicates a partnership between Pol IV and the methyltransferase responsible for RNA-directed de novo methylation. Consistent with this hypothesis, 5S gene and AtSN1 siRNAs are essentially eliminated in Pol IV mutants. The data suggest that Pol IV helps produce siRNAs that target de novo cytosine methylation events required for facultative heterochromatin formation and higher-order heterochromatin associations.
1701063
Semaphorin 3A (Sema3A) is a diffusible axonal chemorepellent that has an important role in axon guidance. Previous studies have demonstrated that Sema3a−/− mice have multiple developmental defects due to abnormal neuronal innervations. Here we show in mice that Sema3A is abundantly expressed in bone, and cell-based assays showed that Sema3A affected osteoblast differentiation in a cell-autonomous fashion. Accordingly, Sema3a−/− mice had a low bone mass due to decreased bone formation. However, osteoblast-specific Sema3A-deficient mice (Sema3acol1−/− and Sema3aosx−/− mice) had normal bone mass, even though the expression of Sema3A in bone was substantially decreased. In contrast, mice lacking Sema3A in neurons (Sema3asynapsin−/− and Sema3anestin−/− mice) had low bone mass, similar to Sema3a−/− mice, indicating that neuron-derived Sema3A is responsible for the observed bone abnormalities independent of the local effect of Sema3A in bone. Indeed, the number of sensory innervations of trabecular bone was significantly decreased in Sema3asynapsin−/− mice, whereas sympathetic innervations of trabecular bone were unchanged. Moreover, ablating sensory nerves decreased bone mass in wild-type mice, whereas it did not reduce the low bone mass in Sema3anestin−/− mice further, supporting the essential role of the sensory nervous system in normal bone homeostasis. Finally, neuronal abnormalities in Sema3a−/− mice, such as olfactory development, were identified in Sema3asynasin−/− mice, demonstrating that neuron-derived Sema3A contributes to the abnormal neural development seen in Sema3a−/− mice, and indicating that Sema3A produced in neurons regulates neural development in an autocrine manner. This study demonstrates that Sema3A regulates bone remodelling indirectly by modulating sensory nerve development, but not directly by acting on osteoblasts.
1733337
Two separate in vitro assays were used to examine the biosynthesis of the broad spectrum excitatory amino acid receptor antagonist kynurenic acid (KYNA) during the life span of the adult rat. Assessment of KYNA's anabolic enzyme kynurenine aminotransferase revealed steady increases between 3 and 24 months of age in all five brain regions examined. No changes were observed in the liver. The changes were particularly pronounced in the cortex and in the striatum where enzyme activity increased three-fold during the period studied. KYNA production from its bioprecursor L-kynurenine was also investigated in tissue slices and was found to be significantly enhanced in the cortex and hippocampus of old animals. The effect of depolarizing agents or sodium replacement was virtually identical in tissues from young and old rats. These data, which are in excellent agreement with reports on an age-dependent increase of KYNA concentration in brain tissue, suggest an enhanced KYNA tone in the aged brain. Together with the reported decline in cerebral excitatory amino acid receptor densities with age, increased production of KYNA may play a role in cognitive and memory dysfunction in old animals.
1748921
Translational fidelity, essential for protein and cell function, requires accurate transfer RNA (tRNA) aminoacylation. Purified aminoacyl-tRNA synthetases exhibit a fidelity of one error per 10,000 to 100,000 couplings. The accuracy of tRNA aminoacylation in vivo is uncertain, however, and might be considerably lower. Here we show that in mammalian cells, approximately 1% of methionine (Met) residues used in protein synthesis are aminoacylated to non-methionyl-tRNAs. Remarkably, Met-misacylation increases up to tenfold upon exposing cells to live or non-infectious viruses, toll-like receptor ligands or chemically induced oxidative stress. Met is misacylated to specific non-methionyl-tRNA families, and these Met-misacylated tRNAs are used in translation. Met-misacylation is blocked by an inhibitor of cellular oxidases, implicating reactive oxygen species (ROS) as the misacylation trigger. Among six amino acids tested, tRNA misacylation occurs exclusively with Met. As Met residues are known to protect proteins against ROS-mediated damage, we propose that Met-misacylation functions adaptively to increase Met incorporation into proteins to protect cells against oxidative stress. In demonstrating an unexpected conditional aspect of decoding mRNA, our findings illustrate the importance of considering alternative iterations of the genetic code.
1754001
The sirtuins are a phylogenetically conserved family of NAD(+) -dependent protein deacetylases that consume one molecule of NAD(+) for every deacetylated lysine side chain. Their requirement for NAD(+) potentially makes them prone to regulation by fluctuations in NAD(+) or biosynthesis intermediates, thus linking them to cellular metabolism. The Sir2 protein from Saccharomyces cerevisiae is the founding sirtuin family member and has been well characterized as a histone deacetylase that functions in transcriptional silencing of heterochromatin domains and as a pro-longevity factor for replicative life span (RLS), defined as the number of times a mother cell divides (buds) before senescing. Deleting SIR2 shortens RLS, while increased gene dosage causes extension. Furthermore, Sir2 has been implicated in mediating the beneficial effects of caloric restriction (CR) on life span, not only in yeast, but also in higher eukaryotes. While this paradigm has had its share of disagreements and debate, it has also helped rapidly drive the aging research field forward. S. cerevisiae has four additional sirtuins, Hst1, Hst2, Hst3, and Hst4. This review discusses the function of Sir2 and the Hst homologs in replicative aging and chronological aging, and also addresses how the sirtuins are regulated in response to environmental stresses such as CR.
1780819
BACKGROUND Endometrial cancer incidence is continuing to rise in the wake of the current ageing and obesity epidemics. Much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Accumulating evidence suggests that the epigenome serves as the interface between the genome and the environment and that hypermethylation of stem cell polycomb group target genes is an epigenetic hallmark of cancer. The objective of this study was to determine the functional role of epigenetic factors in endometrial cancer development. METHODS AND FINDINGS Epigenome-wide methylation analysis of >27,000 CpG sites in endometrial cancer tissue samples (n = 64) and control samples (n = 23) revealed that HAND2 (a gene encoding a transcription factor expressed in the endometrial stroma) is one of the most commonly hypermethylated and silenced genes in endometrial cancer. A novel integrative epigenome-transcriptome-interactome analysis further revealed that HAND2 is the hub of the most highly ranked differential methylation hotspot in endometrial cancer. These findings were validated using candidate gene methylation analysis in multiple clinical sample sets of tissue samples from a total of 272 additional women. Increased HAND2 methylation was a feature of premalignant endometrial lesions and was seen to parallel a decrease in RNA and protein levels. Furthermore, women with high endometrial HAND2 methylation in their premalignant lesions were less likely to respond to progesterone treatment. HAND2 methylation analysis of endometrial secretions collected using high vaginal swabs taken from women with postmenopausal bleeding specifically identified those patients with early stage endometrial cancer with both high sensitivity and high specificity (receiver operating characteristics area under the curve = 0.91 for stage 1A and 0.97 for higher than stage 1A). Finally, mice harbouring a Hand2 knock-out specifically in their endometrium were shown to develop precancerous endometrial lesions with increasing age, and these lesions also demonstrated a lack of PTEN expression. CONCLUSIONS HAND2 methylation is a common and crucial molecular alteration in endometrial cancer that could potentially be employed as a biomarker for early detection of endometrial cancer and as a predictor of treatment response. The true clinical utility of HAND2 DNA methylation, however, requires further validation in prospective studies. Please see later in the article for the Editors' Summary.
1791637
In embryonic stem (ES) cells, bivalent chromatin domains with overlapping repressive (H3 lysine 27 tri-methylation) and activating (H3 lysine 4 tri-methylation) histone modifications mark the promoters of more than 2,000 genes. To gain insight into the structure and function of bivalent domains, we mapped key histone modifications and subunits of Polycomb-repressive complexes 1 and 2 (PRC1 and PRC2) genomewide in human and mouse ES cells by chromatin immunoprecipitation, followed by ultra high-throughput sequencing. We find that bivalent domains can be segregated into two classes -- the first occupied by both PRC2 and PRC1 (PRC1-positive) and the second specifically bound by PRC2 (PRC2-only). PRC1-positive bivalent domains appear functionally distinct as they more efficiently retain lysine 27 tri-methylation upon differentiation, show stringent conservation of chromatin state, and associate with an overwhelming number of developmental regulator gene promoters. We also used computational genomics to search for sequence determinants of Polycomb binding. This analysis revealed that the genomewide locations of PRC2 and PRC1 can be largely predicted from the locations, sizes, and underlying motif contents of CpG islands. We propose that large CpG islands depleted of activating motifs confer epigenetic memory by recruiting the full repertoire of Polycomb complexes in pluripotent cells.
1797622
Asymmetric cell division and apoptosis (programmed cell death) are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well.
1800734
Upon activation, neutrophils release DNA fibers decorated with antimicrobial proteins, forming neutrophil extracellular traps (NETs). Although NETs are bactericidal and contribute to innate host defense, excessive NET formation has been linked to the pathogenesis of autoinflammatory diseases. However, the mechanisms regulating NET formation, particularly during chronic inflammation, are poorly understood. Here we show that the G protein–coupled receptor (GPCR) CXCR2 mediates NET formation. Downstream analyses showed that CXCR2-mediated NET formation was independent of NADPH oxidase and involved Src family kinases. We show the pathophysiological relevance of this mechanism in cystic fibrosis lung disease, characterized by chronic neutrophilic inflammation. We found abundant NETs in airway fluids of individuals with cystic fibrosis and mouse cystic fibrosis lung disease, and NET amounts correlated with impaired obstructive lung function. Pulmonary blockade of CXCR2 by intra-airway delivery of small-molecule antagonists inhibited NET formation and improved lung function in vivo without affecting neutrophil recruitment, proteolytic activity or antibacterial host defense. These studies establish CXCR2 as a receptor mediating NADPH oxidase–independent NET formation and provide evidence that this GPCR pathway is operative and druggable in cystic fibrosis lung disease.
1805641
BACKGROUND Artemisinin derivatives used in recently introduced combination therapies (ACTs) for Plasmodium falciparum malaria significantly lower patient infectiousness and have the potential to reduce population-level transmission of the parasite. With the increased interest in malaria elimination, understanding the impact on transmission of ACT and other antimalarial drugs with different pharmacodynamics becomes a key issue. This study estimates the reduction in transmission that may be achieved by introducing different types of treatment for symptomatic P. falciparum malaria in endemic areas. METHODS AND FINDINGS We developed a mathematical model to predict the potential impact on transmission outcomes of introducing ACT as first-line treatment for uncomplicated malaria in six areas of varying transmission intensity in Tanzania. We also estimated the impact that could be achieved by antimalarials with different efficacy, prophylactic time, and gametocytocidal effects. Rates of treatment, asymptomatic infection, and symptomatic infection in the six study areas were estimated using the model together with data from a cross-sectional survey of 5,667 individuals conducted prior to policy change from sulfadoxine-pyrimethamine to ACT. The effects of ACT and other drug types on gametocytaemia and infectiousness to mosquitoes were independently estimated from clinical trial data. Predicted percentage reductions in prevalence of infection and incidence of clinical episodes achieved by ACT were highest in the areas with low initial transmission. A 53% reduction in prevalence of infection was seen if 100% of current treatment was switched to ACT in the area where baseline slide-prevalence of parasitaemia was lowest (3.7%), compared to an 11% reduction in the highest-transmission setting (baseline slide prevalence = 57.1%). Estimated percentage reductions in incidence of clinical episodes were similar. The absolute size of the public health impact, however, was greater in the highest-transmission area, with 54 clinical episodes per 100 persons per year averted compared to five per 100 persons per year in the lowest-transmission area. High coverage was important. Reducing presumptive treatment through improved diagnosis substantially reduced the number of treatment courses required per clinical episode averted in the lower-transmission settings although there was some loss of overall impact on transmission. An efficacious antimalarial regimen with no specific gametocytocidal properties but a long prophylactic time was estimated to be more effective at reducing transmission than a short-acting ACT in the highest-transmission setting. CONCLUSIONS Our results suggest that ACTs have the potential for transmission reductions approaching those achieved by insecticide-treated nets in lower-transmission settings. ACT partner drugs and nonartemisinin regimens with longer prophylactic times could result in a larger impact in higher-transmission settings, although their long term benefit must be evaluated in relation to the risk of development of parasite resistance.
1834762
Research on the human microbiome has established that commensal and pathogenic bacteria can influence obesity, cancer, and autoimmunity through mechanisms mostly unknown. We found that a component of bacterial biofilms, the amyloid protein curli, irreversibly formed fibers with bacterial DNA during biofilm formation. This interaction accelerated amyloid polymerization and created potent immunogenic complexes that activated immune cells, including dendritic cells, to produce cytokines such as type I interferons, which are pathogenic in systemic lupus erythematosus (SLE). When given systemically, curli-DNA composites triggered immune activation and production of autoantibodies in lupus-prone and wild-type mice. We also found that the infection of lupus-prone mice with curli-producing bacteria triggered higher autoantibody titers compared to curli-deficient bacteria. These data provide a mechanism by which the microbiome and biofilm-producing enteric infections may contribute to the progression of SLE and point to a potential molecular target for treatment of autoimmunity.
1848452
Stem cell decline is an important cellular driver of aging-associated pathophysiology in multiple tissues. Epigenetic regulation is central to establishing and maintaining stem cell function, and emerging evidence indicates that epigenetic dysregulation contributes to the altered potential of stem cells during aging. Unlike terminally differentiated cells, the impact of epigenetic dysregulation in stem cells is propagated beyond self; alterations can be heritably transmitted to differentiated progeny, in addition to being perpetuated and amplified within the stem cell pool through self-renewal divisions. This Review focuses on recent studies examining epigenetic regulation of tissue-specific stem cells in homeostasis, aging, and aging-related disease.
1871230
Neutrophil recruitment, lymphocyte recirculation and monocyte trafficking all require adhesion and transmigration through blood-vessel walls. The traditional three steps of rolling, activation and firm adhesion have recently been augmented and refined. Slow rolling, adhesion strengthening, intraluminal crawling and paracellular and transcellular migration are now recognized as separate, additional steps. In neutrophils, a second activation pathway has been discovered that does not require signalling through G-protein-coupled receptors and the signalling steps leading to integrin activation are beginning to emerge. This Review focuses on new aspects of one of the central paradigms of inflammation and immunity — the leukocyte adhesion cascade.
1871499
5-Hydroxymethylcytosine (5-hmC) may represent a new epigenetic modification of cytosine. While the dynamics of 5-hmC during neurodevelopment have recently been reported, little is known about its genomic distribution and function(s) in neurodegenerative diseases such as Huntington's disease (HD). We here observed a marked reduction of the 5-hmC signal in YAC128 (yeast artificial chromosome transgene with 128 CAG repeats) HD mouse brain tissues when compared with age-matched wild-type (WT) mice, suggesting a deficiency of 5-hmC reconstruction in HD brains during postnatal development. Genome-wide distribution analysis of 5-hmC further confirmed the diminishment of the 5-hmC signal in striatum and cortex in YAC128 HD mice. General genomic features of 5-hmC are highly conserved, not being affected by either disease or brain regions. Intriguingly, we have identified disease-specific (YAC128 versus WT) differentially hydroxymethylated regions (DhMRs), and found that acquisition of DhmRs in gene body is a positive epigenetic regulator for gene expression. Ingenuity pathway analysis (IPA) of genotype-specific DhMR-annotated genes revealed that alternation of a number of canonical pathways involving neuronal development/differentiation (Wnt/β-catenin/Sox pathway, axonal guidance signaling pathway) and neuronal function/survival (glutamate receptor/calcium/CREB, GABA receptor signaling, dopamine-DARPP32 feedback pathway, etc.) could be important for the onset of HD. Our results indicate that loss of the 5-hmC marker is a novel epigenetic feature in HD, and that this aberrant epigenetic regulation may impair the neurogenesis, neuronal function and survival in HD brain. Our study also opens a new avenue for HD treatment; re-establishing the native 5-hmC landscape may have the potential to slow/halt the progression of HD.
1889358
We cloned a new member of the murine brain kinesin superfamily, KIF3B, and found that its amino acid sequence is highly homologous but not identical to KIF3A, which we previously cloned and named KIF3 (47% identical). KIF3B is localized in various organ tissues and developing neurons of mice and accumulates with anterogradely moving membranous organelles after ligation of nerve axons. Immunoprecipitation assay of the brain revealed that KIF3B forms a complex with KIF3A and three other high molecular weight (approximately 100 kD)-associated polypeptides, called the kinesin superfamily-associated protein 3 (KAP3). In vitro reconstruction using baculovirus expression systems showed that KIF3A and KIF3B directly bind with each other in the absence of KAP3. The recombinant KIF3A/B complex (approximately 50-nm rod with two globular heads and a single globular tail) demonstrated plus end-directed microtubule sliding activity in vitro. In addition, we showed that KIF3B itself has motor activity in vitro, by making a complex of wild-type KIF3B and a chimeric motor protein (KIF3B head and KIF3A rod tail). Subcellular fractionation of mouse brain homogenates showed a considerable amount of the native KIF3 complex to be associated with membrane fractions other than synaptic vesicles. Immunoprecipitation by anti-KIF3B antibody-conjugated beads and its electron microscopic study also revealed that KIF3 is associated with membranous organelles. Moreover, we found that the composition of KAP3 is different in the brain and testis. Our findings suggest that KIF3B forms a heterodimer with KIF3A and functions as a new microtubule-based anterograde translocator for membranous organelles, and that KAP3 may determine functional diversity of the KIF3 complex in various kinds of cells in vivo.
1900152
Immune checkpoint inhibitors have been identified as breakthrough treatment in melanoma given its dramatic response to PD-1/PD-L1 blockade. This is likely to extend to many other cancers as hundreds of clinical trials are being conducted or proposed using this exciting modality of therapy in a variety of malignancies. While immune checkpoint inhibitors have been extensively studied in melanoma and more recently in lung cancer, little is known regarding immune checkpoint blockade in other cancers. This review will focus on the tumor immune microenvironment, the expression of PD-1/PD-L1 and the effect of immune modulation using PD-1 or PD-L1 inhibitors in patients with head and neck, prostate, urothelial, renal, breast, gastrointestinal and lung cancers.
1904291
The allocation of hypoglycaemic symptoms to autonomie or neuroglycopenic groups tends to occur on an a priori basis. In view of the practical need for clear symptom markers of hypoglycaemia more scientific approaches must be pursued. Substantial evidence is presented from two large scale studies we performed which support a three factor model of hypoglycaemic symptomatology, based on the statistical associations discovered among symptoms reported by diabetic patients. Study 1 involved 295 insulin-treated outpatients and found that 11 key hypoglycaemic symptoms segregated into three clear factors: autonomie (sweating, palpitation, shaking and hunger) neuroglycopenic (confusion, drowsiness, odd behaviour, speech difficulty and incoordination), and malaise (nausea and headache). The three factors were validated on a separate group of 303 insulin-treated diabetic out-patients. Confirmatory factor analyses showed that the three factor model was the optimal model for explaining symptom covariance in each group. A multi-sample confirmatory factor analysis tested the rigorous assumptions that the relative loadings of symptoms on factors across groups were equal, and that the residual variance for each symptom was identical across groups. These assumptions were successful, indicating that the three factor model was replicated in detail across these two large samples. It is suggested that the results indicate valid groupings of symptoms that may be used in future research and in clinical practice.
1907601
Adipose tissue hypoxia and inflammation have been causally implicated in obesity-induced insulin resistance. Here, we report that, early in the course of high-fat diet (HFD) feeding and obesity, adipocyte respiration becomes uncoupled, leading to increased oxygen consumption and a state of relative adipocyte hypoxia. These events are sufficient to trigger HIF-1α induction, setting off the chronic adipose tissue inflammatory response characteristic of obesity. At the molecular level, these events involve saturated fatty acid stimulation of the adenine nucleotide translocase 2 (ANT2), an inner mitochondrial membrane protein, which leads to the uncoupled respiratory state. Genetic or pharmacologic inhibition of either ANT2 or HIF-1α can prevent or reverse these pathophysiologic events, restoring a state of insulin sensitivity and glucose tolerance. These results reveal the sequential series of events in obesity-induced inflammation and insulin resistance.
1921218
Tumor recurrence represents a major clinical challenge. Our data show that emergent recurrent tumors acquire a phenotype radically different from that of their originating primary tumors. This phenotype allows them to evade a host-derived innate immune response elicited by the progression from minimal residual disease (MRD) to actively growing recurrence. Screening for this innate response predicted accurately in which mice recurrence would occur. Premature induction of recurrence resensitized MRD to the primary therapy, suggesting a possible paradigm shift for clinical treatment of dormant disease in which the current expectant approach is replaced with active attempts to uncover MRD before evolution of the escape phenotype is complete. By combining screening with second-line treatments targeting innate insensitivity, up to 100% of mice that would have otherwise relapsed were cured. These data may open new avenues for early detection and appropriately timed, highly targeted treatment of tumor recurrence irrespective of tumor type or frontline treatment.
1922901
During development, mechanical forces cause changes in size, shape, number, position, and gene expression of cells. They are therefore integral to any morphogenetic processes. Force generation by actin-myosin networks and force transmission through adhesive complexes are two self-organizing phenomena driving tissue morphogenesis. Coordination and integration of forces by long-range force transmission and mechanosensing of cells within tissues produce large-scale tissue shape changes. Extrinsic mechanical forces also control tissue patterning by modulating cell fate specification and differentiation. Thus, the interplay between tissue mechanics and biochemical signaling orchestrates tissue morphogenesis and patterning in development.
1933281
Invariant natural killer T cells (iNKT cells) are involved in the host defense against microbial infection. Although it is known that iNKT cells recognize glycolipids presented by CD1d, how and where they encounter antigen in vivo remains unclear. Here we used multiphoton microscopy to visualize the dynamics and activation of iNKT cells in lymph nodes. After antigen administration, iNKT cells became confined in a CD1d-dependent manner in close proximity to subcapsular sinus CD169(+) macrophages. These macrophages retained, internalized and presented lipid antigen and were required for iNKT cell activation, cytokine production and population expansion. Thus, CD169(+) macrophages can act as true antigen-presenting cells controlling early iNKT cell activation and favoring the fast initiation of immune responses.
1941721
Cells deficient in a major DNA double-strand break repair pathway (nonhomologous DNA end joining [NHEJ]) have increased spontaneous chromosome breaks; however, the source of these chromosome breaks has remained undefined. Here, we show that the observed spontaneous chromosome breaks are partially suppressed by reducing the cellular oxygen tension. Conversely, elevating the level of reactive oxygen species by overexpressing the antioxidant enzyme superoxide dismutase 1 (SOD1), in a transgenic mouse, increases chromosome breakage. The effect of SOD1 can also be modulated by cellular oxygen tension. The elevated chromosome breakage correlates histologically with a significant increase in the amount of neuronal cell death in Ku86(-/-) SOD1 transgenic embryos over that seen in Ku86(-/-) embryos. Therefore, oxygen metabolism is a major source of the genomic instability observed in NHEJ-deficient cells and, presumably, in all cells.
1944452
PURPOSE OF REVIEW Recent preclinical and clinical studies revealed that the semirandom insertion of transgenes into chromosomal DNA of hematopoietic cells may induce clonal competition, which potentially may even trigger leukemia or sarcoma. Insertional mutagenesis caused by gene vectors has thus led to major uncertainty among those developing advanced hematopoietic cell therapies. This review summarizes novel studies of underlying mechanisms; these studies have demonstrated the possibility of improved gene vector biosafety and generated new insights into stem cell biology. RECENT FINDINGS The characteristic insertion pattern of various retroviral gene vector systems may be explained by properties of the viral integrase and associated cellular cofactors. Cell culture assays and animal models, including disease-specific and cancer-prone mouse models, are emerging that reveal the contributions of vector features and systemic factors to induction of clonal imbalance. Databases summarizing vector insertion sites in dominant hematopoietic clones are evolving as new tools to identify genes that regulate clonal homeostasis. SUMMARY Mechanistic studies of insertional mutagenesis by random gene vector insertion will lead to improved tools for advanced hematopoietic cell therapy. Simultaneously, fascinating insights into gene networks that regulate cell fitness will be generated, with important consequences for the fields of hematology, oncology and regenerative medicine.
1946610
BACKGROUND Tanzania has a well-developed network of commercial ITN retailers. In 2004, the government introduced a voucher subsidy for pregnant women and, in mid 2005, helped distribute free nets to under-fives in small number of districts, including Rufiji on the southern coast, during a child health campaign. Contributions of these multiple insecticide-treated net delivery strategies existing at the same time and place to coverage in a poor rural community were assessed. METHODS Cross-sectional household survey in 6,331 members of randomly selected 1,752 households of 31 rural villages of Demographic Surveillance System in Rufiji district, Southern Tanzania was conducted in 2006. A questionnaire was administered to every consenting respondent about net use, treatment status and delivery mechanism. FINDINGS Net use was 62.7% overall, 87.2% amongst infants (0 to 1 year), 81.8% amongst young children (>1 to 5 years), 54.5% amongst older children (6 to 15 years) and 59.6% amongst adults (>15 years). 30.2% of all nets had been treated six months prior to interview. The biggest source of nets used by infants was purchase from the private sector with a voucher subsidy (41.8%). Half of nets used by young children (50.0%) and over a third of those used by older children (37.2%) were obtained free of charge through the vaccination campaign. The largest source of nets amongst the population overall was commercial purchase (45.1% use) and was the primary means for protecting adults (60.2% use). All delivery mechanisms, especially sale of nets at full market price, under-served the poorest but no difference in equity was observed between voucher-subsidized and freely distributed nets. CONCLUSION All three delivery strategies enabled a poor rural community to achieve net coverage high enough to yield both personal and community level protection for the entire population. Each of them reached their relevant target group and free nets only temporarily suppressed the net market, illustrating that in this setting that these are complementary rather than mutually exclusive approaches.
1967017
Correction for: Kurreeman FAS, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, et al. (2007) A Candidate Gene Approach Identifies the TRAF1/C5 Region as a Risk Factor for Rheumatoid Arthritis. PLoS Med 4(9): e278. doi:10.1371/journal.pmed.0040278 In Table 1, the allele ratio in column eight (Allele Ratiosb: Cases, Controls) refers to allele A: allele B and not allele1:allele2 as described in footnote b, with Allele A being the Susceptibility Allele as denoted in column seven. The footnote should read: bNumber of alleles were compared in cases versus controls: allele A: allele B cases, allele A: allele B controls. Allele A refers to the susceptibility alleles as given in column seven.
1967410
Although significant progress has occurred in the past 20 years regarding our understanding of Alzheimer disease pathogenesis, we have yet to identify disease-modifying therapeutics capable of substantially altering the clinical course of this prevalent neurodegenerative disease. In this short review, we discuss 2 approaches that are currently being tested clinically (γ-secretase inhibition and γ-secretase modulation) and emphasize the significant differences between these 2 therapeutic approaches. We also discuss certain genetic- and biomarker-based translational and clinical trial paradigms that may assist in developing a useful therapeutic agent.
1970884
Viruses that replicate in the cytoplasm cannot access the host nuclear capping machinery. These viruses have evolved viral methyltransferase(s) to methylate N-7 and 2'-O cap of their RNA; alternatively, they "snatch" host mRNA cap to form the 5' end of viral RNA. The function of 2'-O methylation of viral RNA cap is to mimic cellular mRNA and to evade host innate immune restriction. A cytoplasmic virus defective in 2'-O methylation is replicative, but its viral RNA lacks 2'-O methylation and is recognized and eliminated by the host immune response. Such a mutant virus could be rationally designed as a live attenuated vaccine. Here, we use Japanese encephalitis virus (JEV), an important mosquito-borne flavivirus, to prove this novel vaccine concept. We show that JEV methyltransferase is responsible for both N-7 and 2'-O cap methylations as well as evasion of host innate immune response. Recombinant virus completely defective in 2'-O methylation was stable in cell culture after being passaged for >30 days. The mutant virus was attenuated in mice, elicited robust humoral and cellular immune responses, and retained the engineered mutation in vivo. A single dose of immunization induced full protection against lethal challenge with JEV strains in mice. Mechanistically, the attenuation phenotype was attributed to the enhanced sensitivity of the mutant virus to the antiviral effects of interferon and IFIT proteins. Collectively, the results demonstrate the feasibility of using 2'-O methylation-defective virus as a vaccine approach; this vaccine approach should be applicable to other flaviviruses and nonflaviviruses that encode their own viral 2'-O methyltransferases.
1974176
OBJECTIVE To determine whether individual fruits are differentially associated with risk of type 2 diabetes. DESIGN Prospective longitudinal cohort study. SETTING Health professionals in the United States. PARTICIPANTS 66,105 women from the Nurses' Health Study (1984-2008), 85,104 women from the Nurses' Health Study II (1991-2009), and 36,173 men from the Health Professionals Follow-up Study (1986-2008) who were free of major chronic diseases at baseline in these studies. MAIN OUTCOME MEASURE Incident cases of type 2 diabetes, identified through self report and confirmed by supplementary questionnaires. RESULTS During 3,464,641 person years of follow-up, 12,198 participants developed type 2 diabetes. After adjustment for personal, lifestyle, and dietary risk factors of diabetes, the pooled hazard ratio of type 2 diabetes for every three servings/week of total whole fruit consumption was 0.98 (95% confidence interval 0.97 [corrected] to 0.99). With mutual adjustment of individual fruits, the pooled hazard ratios of type 2 diabetes for every three servings/week were 0.74 (0.66 to 0.83) for blueberries, 0.88 (0.83 to 0.93) for grapes and raisins, 0.89 (0.79 to 1.01) for prunes, 0.93 (0.90 to 0.96) for apples and pears, 0.95 (0.91 to 0.98) for bananas, 0.95 (0.91 to 0.99) for grapefruit, 0.97 (0.92 to 1.02) for peaches, plums, and apricots, 0.99 (0.95 to 1.03) for oranges, 1.03 (0.96 to 1.10) for strawberries, and 1.10 (1.02 to 1.18) for cantaloupe. The pooled hazard ratio for the same increment in fruit juice consumption was 1.08 (1.05 to 1.11). The associations with risk of type 2 diabetes differed significantly among individual fruits (P<0.001 in all cohorts). CONCLUSION Our findings suggest the presence of heterogeneity in the associations between individual fruit consumption and risk of type 2 diabetes. Greater consumption of specific whole fruits, particularly blueberries, grapes, and apples, is significantly associated with a lower risk of type 2 diabetes, whereas greater consumption of fruit juice is associated with a higher risk.
1982286
The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL.
1986482
BACKGROUND Since November 2009, WHO recommends that adults infected with HIV should initiate antiretroviral therapy (ART) at CD4+ cell counts of ≤350 cells/µl rather than ≤200 cells/µl. South Africa decided to adopt this strategy for pregnant and TB co-infected patients only. We estimated the impact of fully adopting the new WHO guidelines on HIV epidemic dynamics and associated costs. METHODS AND FINDING We used an established model of the transmission and control of HIV in specified sexual networks and healthcare settings. We quantified the model to represent Hlabisa subdistrict, KwaZulu-Natal, South Africa. We predicted the HIV epidemic dynamics, number on ART and program costs under the new guidelines relative to treating patients at ≤200 cells/µl for the next 30 years. During the first five years, the new WHO treatment guidelines require about 7% extra annual investments, whereas 28% more patients receive treatment. Furthermore, there will be a more profound impact on HIV incidence, leading to relatively less annual costs after seven years. The resulting cumulative net costs reach a break-even point after on average 16 years. CONCLUSIONS Our study strengthens the WHO recommendation of starting ART at ≤350 cells/µl for all HIV-infected patients. Apart from the benefits associated with many life-years saved, a modest frontloading appears to lead to net savings within a limited time-horizon. This finding is robust to alternative assumptions and foreseeable changes in ART prices and effectiveness. Therefore, South Africa should aim at rapidly expanding its healthcare infrastructure to fully embrace the new WHO guidelines.
1996292
BMI-1 is overexpressed in a variety of cancers, which can elicit an immune response leading to the induction of autoantibodies. However, BMI-1 autoantibody as a biomarker has seldom been studied with the exception of nasopharyngeal carcinoma. Whether BMI-1 autoantibodies can be used as a biomarker for cervical carcinoma is unclear. In this study,BMI-1 proteins were isolated by screening of a T7 phage cDNA library from mixed cervical carcinoma tissues. We analyzed BMI-1 autoantibody levels in serum samples from 67 patients with cervical carcinoma and 65 controls using ELISA and immunoblot. BMI-1 mRNA or protein levels were over-expressed in cervical carcinoma cell lines. Immunoblot results exhibited increased BMI-1 autoantibody levels in patient sera compared to normal sera. Additionally, the results for antibody affinity assay showed that there was no difference between cervical polyps and normal sera of BMI-1 autoantibody levels, but it was significantly greater in patient sera than that in normal controls (patient 0.827±0.043 and normal 0.445±0.023; P<0.001). What's more, the levels of BMI-1 autoantibody increased significantly at stage I (0.672±0.019) compared to normal sera (P<0.001), and levels of BMI-1 autoantibodies were increased gradually during the tumor progression (stage I 0.672±0.019; stage II 0.775 ±0.019; stage III 0.890 ±0.027; stage IV 1.043±0.041), which were significantly correlated with disease progression of cervical cancer (P<0.001). Statistical analyses using logistic regression and receiver operating characteristics (ROC) curves indicated that the BMI-1 autoantibody level can be used as a biomarker for cervical carcinoma (sensitivity 0.78 and specificity 0.76; AUC = 0.922). In conclusion, measuring BMI-1 autoantibody levels of patients with cervical cancer could have clinical prognostic value as well as a non-tissue specific biomarker for neoplasms expressing BMI-1.
2014909
Myeloid-derived suppressor cells (MDSCs) play critical roles in primary and metastatic cancer progression. MDSC regulation is widely variable even among patients harbouring the same type of malignancy, and the mechanisms governing such heterogeneity are largely unknown. Here, integrating human tumour genomics and syngeneic mammary tumour models, we demonstrate that mTOR signalling in cancer cells dictates a mammary tumour's ability to stimulate MDSC accumulation through regulating G-CSF. Inhibiting this pathway or its activators (for example, FGFR) impairs tumour progression, which is partially rescued by restoring MDSCs or G-CSF. Tumour-initiating cells (TICs) exhibit elevated G-CSF. MDSCs reciprocally increase TIC frequency through activating Notch in tumour cells, forming a feedforward loop. Analyses of primary breast cancers and patient-derived xenografts corroborate these mechanisms in patients. These findings establish a non-canonical oncogenic role of mTOR signalling in recruiting pro-tumorigenic MDSCs and show how defined cancer subsets may evolve to promote and depend on a distinct immune microenvironment.
2015126
The management of women who have a genetic predisposition for breast cancer requires careful planning. Women who have BRCA 1 and BRCA 2 mutations are at increased risk for breast cancer and for other cancers as well, particularly ovarian cancer. Screening, prophlyactic surgery, and chemoprevention are commonly utilized strategies in the management of these patients, and women may choose more than one of these strategies. No randomized prospective trials have assessed the impact of these strategies specifically in mutation carriers. All patients should be informed that screening, prophylactic surgery, and chemoprevention have the potential for harm as well as benefit.
2015929
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease, with astrocytes implicated as contributing substantially to motor neuron death in familial (F)ALS. However, the proposed role of astrocytes in the pathology of ALS derives in part from rodent models of FALS based upon dominant mutations within the superoxide dismutase 1 (SOD1) gene, which account for <2% of all ALS cases. Their role in sporadic (S)ALS, which affects >90% of ALS patients, remains to be established. Using astrocytes generated from postmortem tissue from both FALS and SALS patients, we show that astrocytes derived from both patient groups are similarly toxic to motor neurons. We also demonstrate that SOD1 is a viable target for SALS, as its knockdown significantly attenuates astrocyte-mediated toxicity toward motor neurons. Our data highlight astrocytes as a non-cell autonomous component in SALS and provide an in vitro model system to investigate common disease mechanisms and evaluate potential therapies for SALS and FALS.
2028532
The aims of this randomised controlled trial were to determine if a high-intensity functional exercise program improves balance, gait ability, and lower-limb strength in older persons dependent in activities of daily living and if an intake of protein-enriched energy supplement immediately after the exercises increases the effects of the training. One hundred and ninety-one older persons dependent in activities of daily living, living in residential care facilities, and with a Mini-Mental State Examination (MMSE) score of ? 10 participated. They were randomised to a high-intensity functional exercise program or a control activity, which included 29 sessions over 3 months, as well as to protein-enriched energy supplement or placebo. Berg Balance Scale, self-paced and maximum gait speed, and one-repetition maximum in lower-limb strength were followed-up at three and six months and analysed by 2 x 2 factorial ANCOVA, using the intention-to-treat principle. At three months, the exercise group had improved significantly in self-paced gait speed compared with the control group (mean difference 0.04 m/s, p = 0.02). At six months, there were significant improvements favouring the exercise group for Berg Balance Scale (1.9 points, p = 0.05), self-paced gait speed (0.05 m/s, p = 0.009), and lower-limb strength (10.8 kg, p = 0.03). No interaction effects were seen between the exercise and nutrition interventions. In conclusion, a high-intensity functional exercise program has positive long-term effects in balance, gait ability, and lower-limb strength for older persons dependent in activities of daily living. An intake of protein-enriched energy supplement immediately after the exercises does not appear to increase the effects of the training.
2030623
Myeloid-derived suppressor cells (MDSC) promote tumor growth by inhibiting T-cell immunity and promoting malignant cell proliferation and migration. The therapeutic potential of blocking MDSC in tumors has been limited by their heterogeneity, plasticity, and resistance to various chemotherapy agents. Recent studies have highlighted the role of energy metabolic pathways in the differentiation and function of immune cells; however, the metabolic characteristics regulating MDSC remain unclear. We aimed to determine the energy metabolic pathway(s) used by MDSC, establish its impact on their immunosuppressive function, and test whether its inhibition blocks MDSC and enhances antitumor therapies. Using several murine tumor models, we found that tumor-infiltrating MDSC (T-MDSC) increased fatty acid uptake and activated fatty acid oxidation (FAO). This was accompanied by an increased mitochondrial mass, upregulation of key FAO enzymes, and increased oxygen consumption rate. Pharmacologic inhibition of FAO blocked immune inhibitory pathways and functions in T-MDSC and decreased their production of inhibitory cytokines. FAO inhibition alone significantly delayed tumor growth in a T-cell-dependent manner and enhanced the antitumor effect of adoptive T-cell therapy. Furthermore, FAO inhibition combined with low-dose chemotherapy completely inhibited T-MDSC immunosuppressive effects and induced a significant antitumor effect. Interestingly, a similar increase in fatty acid uptake and expression of FAO-related enzymes was found in human MDSC in peripheral blood and tumors. These results support the possibility of testing FAO inhibition as a novel approach to block MDSC and enhance various cancer therapies.
2042250
Interleukin-33 (IL-33), a newly described member of the IL-1 family, is expressed by many cell types following pro-inflammatory stimulation and is thought to be released on cell lysis. The IL-33 receptor, consisting of ST2 and IL-1 receptor accessory protein, is also widely expressed, particularly by T helper 2 (TH2) cells and mast cells. IL-33 is host-protective against helminth infection and reduces atherosclerosis by promoting TH2-type immune responses. However, IL-33 can also promote the pathogenesis of asthma by expanding TH2 cells and mediate joint inflammation, atopic dermatitis and anaphylaxis by mast cell activation. Thus IL-33 could be a new target for therapeutic intervention across a range of diseases.
2048139
BackgroundIndividuals with substance use disorders (SUDs) are at increased risk for hepatitis C viral infection (HCV), and few studies have explored their treatment responses empirically. The objective of this study was to assess interferon alpha therapy (IFN) completion and response rates among patients with HCV who had a history of comorbid SUDs. More data is needed to inform treatment strategies and guidelines for these patients. Using a medical record database, information was retrospectively collected on 307,437 veterans seen in the Veterans Integrated Service Network 20 (VISN 20) of the Veterans Healthcare Administration (VHA) between 1998 and 2003. For patients treated with any type of IFN (including regular or pegylated IFN) or combination therapy (IFN and ribavirin) who had a known HCV genotype, IFN completion and response rates were compared among patients with a history of SUD (SUD+ Group) and patients without a history of SUD (SUD- Group).ResultsOdds ratio analyses revealed that compared with the SUD- Group, the SUD+ Group was equally likely to complete IFN therapy if they had genotypes 2 and 3 (73.1% vs. 68.0%), and if they had genotypes 1 and 4 (39.5% vs. 39.9%). Within the sample of all patients who began IFN therapy, the SUD- and SUD+ groups were similarly likely to achieve an end of treatment response (genotypes 2 and 3, 52.8% vs. 54.3%; genotypes 1 and 4, 24.5% vs. 24.8%) and a sustained viral response (genotypes 2 and 3, 42.6% vs. 41.1%; genotypes 1 and 4: 16.0% vs. 22.3%).ConclusionIndividuals with and without a history of SUD responded to antiviral therapy for HCV at similar rates. Collectively, these findings suggest that patients who have co-morbid SUD and HCV diagnoses can successfully complete a course of antiviral therapy.
2052720
OBJECTIVE To investigate the association between gastric cancer and prior infection with Helicobacter pylori. DESIGN Case-control comparison of prevalence of IgG antibodies to H pylori in blood samples collected prospectively, before diagnosis of gastric cancer in the cases. Presence of H pylori antibody (greater than 10 micrograms IgG/ml) determined by enzyme linked immunosorbent assay (ELISA). SUBJECTS 29 men with a subsequent diagnosis of gastric cancer and 116 aged matched controls selected from over 22,000 middle aged men participating in two ongoing cohort studies (the British United Provident Association study and the Caerphilly collaborative heart disease study), who had provided blood samples during 1975-1982. RESULTS 20 of the 29 cases (69%) and 54 of the 116 controls (47%) were positive for H pylori specific antibody. The median specific IgG concentration was significantly higher in the cases than controls (90 micrograms/ml v 3.6 micrograms/ml, p less than 0.01). The estimated odds ratio for the risk of gastric cancer in those with a history of infection with H pylori was 2.77 (95% confidence interval 1.04 to 7.97, 2p = 0.039). CONCLUSIONS H pylori infection may be an important cause of gastric cancer; between 35% and 55% of all cases may be associated with such an infection.
2053540
Oncostatin M (OSM) and leukemia inhibitory factor (LIF) are members of the interleukin-6 (IL-6) subfamily of cytokines that use a common signal transducer gp130. Human OSM (hOSM) and LIF share a functional high-affinity receptor that is composed of gp130 and LIF receptor beta subunit (LIFRbeta). A second high-affinity receptor for hOSM was recently found to be formed by gp130 and the hOSM receptor beta subunit. However, the nature of murine OSM (mOSM) and its receptors has remained unknown. Using the recently cloned mOSM cDNA, we produced recombinant mOSM and studied its biological activity and receptor structure. Murine hematopoietic cell lines M1 and DA1.a, an embryonic stem cell line CCE, and Ba/F3 transfectants expressing gp130 and LIFRbeta responded to murine LIF (mLIF) and hOSM equally well, while these cells responded to mOSM only at a 30-fold to 100-fold higher concentration than those of mLIF and hOSM. In contrast, NIH3T3 cells responded to mOSM, but not to mLIF and hOSM. Scatchard plot analyses showed that mOSM bound to gp130 with low-affinity (kd = 2.8 to 4.2 nmol/L) and that the binding affinity did not increase in the presence of LIFRbeta. However, mOSM bound to NIH3T3 cells with high-affinity (kd = 660 pmol/L), whereas mLIF did not bind to NIH3T3 cells at all. These results indicate that unlike hOSM, mOSM and mLIF do not share the same functional receptor, and mOSM delivers signals only through its specific receptor complex. Further studies in mice will define the physiological roles of OSM.
2058909
UNLABELLED The objective of this study was to examine differences in cancer survival between socioeconomic groups in England, with particular attention to survival in the short term of follow-up. PATIENTS AND METHODS Individuals diagnosed with colorectal cancer between 1996 and 2004 in England were identified from cancer registry records. Five-year cumulative relative survival and excess death rates were computed. RESULTS For colon cancer there was a very high excess death rate in the first month of follow-up, and the excess death rate was highest in the socioeconomically deprived groups. In subsequent periods, excess mortality rates were much lower and there was less socioeconomic variation. The pattern of variation in excess death rates was generally similar in rectal cancer but the socioeconomic difference in death rates persisted several years longer. If the excess death rates in the entire colorectal cancer patient population were the same as those observed in the most affluent socioeconomic quintile, the annual reduction would be 360 deaths in colon cancer and 336 deaths in rectal cancer patients. These deaths occurred almost entirely in the first month and the first year after diagnosis. CONCLUSION Recent developments in the national cancer control agenda have included an increasing emphasis on outcome measures, with short-term cancer survival an operational measure of variation and progress in cancer control. In providing clues to the nature of the survival differences between socioeconomic groups, the results presented here give strong support for this strategy.
2060137
Cell-to-cell adhesions are crucial in maintaining the structural and functional integrity of cardiac cells. Little is known about the mechanosensitivity and mechanotransduction of cell-to-cell interactions. Most studies of cardiac mechanotransduction and myofibrillogenesis have focused on cell-extracellular matrix (ECM)-specific interactions. This study assesses the direct role of intercellular adhesion, specifically that of N-cadherin-mediated mechanotransduction, on the morphology and internal organization of neonatal ventricular cardiac myocytes. The results show that cadherin-mediated cell attachments are capable of eliciting a cytoskeletal network response similar to that of integrin-mediated force response and transmission, affecting myofibrillar organization, myocyte shape, and cortical stiffness. Traction forces mediated by N-cadherin were shown to be comparable to those sustained by ECM. The directional changes in predicted traction forces as a function of imposed loads (gel stiffness) provide the added evidence that N-cadherin is a mechanoresponsive adhesion receptor. Strikingly, the mechanical sensitivity response (gain) in terms of the measured cell-spread area as a function of imposed load (adhesive substrate rigidity) was consistently higher for N-cadherin-coated surfaces compared with ECM protein-coated surfaces. In addition, the cytoskeletal architecture of myocytes on an N-cadherin adhesive microenvironment was characteristically different from that on an ECM environment, suggesting that the two mechanotransductive cell adhesion systems may play both independent and complementary roles in myocyte cytoskeletal spatial organization. These results indicate that cell-to-cell-mediated force perception and transmission are involved in the organization and development of cardiac structure and function.