max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
unittest_reinvent/running_modes/transfer_learning_tests/test_link_invent_transfer_learning.py
lilleswing/Reinvent-1
183
12799943
<gh_stars>100-1000 import shutil import unittest import os from running_modes.configurations import TransferLearningLoggerConfig, GeneralConfigurationEnvelope from running_modes.configurations.transfer_learning.link_invent_learning_rate_configuration import \ LinkInventLearningRateConfiguration from running_modes.configurations.transfer_learning.link_invent_transfer_learning_configuration import \ LinkInventTransferLearningConfiguration from running_modes.constructors.transfer_learning_mode_constructor import TransferLearningModeConstructor from running_modes.utils import set_default_device_cuda from running_modes.enums.logging_mode_enum import LoggingModeEnum from running_modes.enums.running_mode_enum import RunningModeEnum from reinvent_models.model_factory.enums.model_type_enum import ModelTypeEnum from unittest_reinvent.fixtures.paths import MAIN_TEST_PATH, SMILES_SET_LINK_INVENT_PATH, LINK_INVENT_PRIOR_PATH from unittest_reinvent.fixtures.utils import count_empty_files class TestLinkInventTransferLearning(unittest.TestCase): def setUp(self): set_default_device_cuda() lm_enum = LoggingModeEnum() rm_enum = RunningModeEnum() mt_enum = ModelTypeEnum() self.workfolder = os.path.join(MAIN_TEST_PATH, mt_enum.LINK_INVENT + rm_enum.TRANSFER_LEARNING) if not os.path.isdir(self.workfolder): os.makedirs(self.workfolder) self.log_dir = os.path.join(self.workfolder, "test_log") log_config = TransferLearningLoggerConfig(logging_path=self.log_dir, recipient=lm_enum.LOCAL, job_name="test_job") self.lr_config = LinkInventLearningRateConfiguration() self.parameters = LinkInventTransferLearningConfiguration(empty_model=LINK_INVENT_PRIOR_PATH, output_path=self.workfolder, input_smiles_path=SMILES_SET_LINK_INVENT_PATH, validation_smiles_path=None, num_epochs=2, sample_size=10, learning_rate=self.lr_config) self.general_config = GeneralConfigurationEnvelope(model_type=mt_enum.LINK_INVENT, logging=vars(log_config), run_type=rm_enum.TRANSFER_LEARNING, version="3.0", parameters=vars(self.parameters)) self.runner = TransferLearningModeConstructor(self.general_config) def tearDown(self): if os.path.isdir(self.workfolder): shutil.rmtree(self.workfolder) def _model_saved_and_logs_exist(self): self.assertTrue(os.path.isfile(os.path.join(self.workfolder, self.parameters.model_file_name))) self.assertTrue(os.path.isdir(self.log_dir)) self.assertEqual(count_empty_files(self.log_dir), 0) def test_no_validation(self): self.parameters.validation_smiles_path = None self.runner.run() self._model_saved_and_logs_exist() def test_with_validation(self): self.parameters.validation_smiles_path = SMILES_SET_LINK_INVENT_PATH self.runner.run() self._model_saved_and_logs_exist()
src/schemathesis/runner/impl/__init__.py
gluhar2006/schemathesis
659
12799970
<gh_stars>100-1000 from .core import BaseRunner from .solo import SingleThreadASGIRunner, SingleThreadRunner, SingleThreadWSGIRunner from .threadpool import ThreadPoolASGIRunner, ThreadPoolRunner, ThreadPoolWSGIRunner
tfx/orchestration/portable/execution_watcher.py
avelez93/tfx
1,813
12799989
<filename>tfx/orchestration/portable/execution_watcher.py # Copyright 2021 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module provides a gRPC service for updating remote job info to MLMD.""" from concurrent import futures from typing import Optional from absl import logging import grpc from tfx.orchestration import metadata from tfx.proto.orchestration import execution_watcher_pb2 from tfx.proto.orchestration import execution_watcher_pb2_grpc from ml_metadata.proto import metadata_store_pb2 def generate_service_stub( address: str, creds: Optional[grpc.ChannelCredentials] = None, ) -> execution_watcher_pb2_grpc.ExecutionWatcherServiceStub: """Generates a gRPC service stub for a given server address.""" channel = grpc.secure_channel( address, creds) if creds else grpc.insecure_channel(address) return execution_watcher_pb2_grpc.ExecutionWatcherServiceStub(channel) class ExecutionWatcher( execution_watcher_pb2_grpc.ExecutionWatcherServiceServicer): """A gRPC service server for updating remote job info to MLMD. Attributes: local_address: Local network address to the server. address: Remote network address to the server, same as local_address if not configured. """ def __init__(self, port: int, mlmd_connection: metadata.Metadata, execution: metadata_store_pb2.Execution, address: Optional[str] = None, creds: Optional[grpc.ServerCredentials] = None): """Initializes the gRPC server. Args: port: Which port the service will be using. mlmd_connection: ML metadata connection. execution: The MLMD Execution to keep track of. address: Remote address used to contact the server. Should be formatted as an ipv4 or ipv6 address in the format `address:port`. If left as None, server will use local address. creds: gRPC server credentials. If left as None, server will use an insecure port. """ super().__init__() self._port = port self._address = address self._creds = creds self._mlmd_connection = mlmd_connection self._server = self._create_server() if not execution.HasField('id'): raise ValueError( 'execution id must be set to be tracked by ExecutionWatcher.') self._execution = execution def UpdateExecutionInfo( self, request: execution_watcher_pb2.UpdateExecutionInfoRequest, context: grpc.ServicerContext ) -> execution_watcher_pb2.UpdateExecutionInfoResponse: """Updates the `custom_properties` field of Execution object in MLMD.""" logging.info('Received request to update execution info: updates %s, ' 'execution_id %s', request.updates, request.execution_id) if request.execution_id != self._execution.id: context.set_code(grpc.StatusCode.NOT_FOUND) context.set_details( 'Execution with given execution_id not tracked by server: ' f'{request.execution_id}') return execution_watcher_pb2.UpdateExecutionInfoResponse() for key, value in request.updates.items(): self._execution.custom_properties[key].CopyFrom( value) # Only the execution is needed with self._mlmd_connection as m: m.store.put_executions((self._execution,)) return execution_watcher_pb2.UpdateExecutionInfoResponse() def _create_server(self): """Creates a gRPC server and add `self` on to it.""" result = grpc.server(futures.ThreadPoolExecutor()) execution_watcher_pb2_grpc.add_ExecutionWatcherServiceServicer_to_server( self, result) if self._creds is None: result.add_insecure_port(self.local_address) else: result.add_secure_port(self.local_address, self._creds) return result @property def local_address(self) -> str: # Local network address to the server. return f'localhost:{self._port}' @property def address(self) -> str: return self._address or self.local_address def start(self): """Starts the server.""" self._server.start() def stop(self): """Stops the server.""" self._server.stop(grace=None)