metadata
base_model: vinai/phobert-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: vlsp-comom
results: []
vlsp-comom
This model is a fine-tuned version of vinai/phobert-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8117
- Precision: 0.2668
- Recall: 0.2994
- F1: 0.2821
- Accuracy: 0.7347
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 78 | 0.9170 | 0.1953 | 0.1690 | 0.1812 | 0.7105 |
No log | 2.0 | 156 | 0.8117 | 0.2668 | 0.2994 | 0.2821 | 0.7347 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1