language:
- en
tags:
- pytorch
- causal-lm
- pythia
license: apache-2.0
datasets:
- EleutherAI/pile
Model Card for Model ID
The Pythia 160m model is part of a collection of models developed to facilitate interpretability research (see repository) trained on the Pile. We have evalutated it on hellaswag using the Eleuther evaluation harness.
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
---|---|---|---|---|---|---|---|---|
hellaswag | 1 | none | 0 | acc | ↑ | 0.2872 | ± | 0.0045 |
none | 0 | acc_norm | ↑ | 0.3082 | ± | 0.0046 |
Model Details
- Developed by: EleutherAI
- Model type: Transformer-based Language Model
- Language: English
- Learn more: Pythia's GitHub repository for training procedure, config files, and details on how to use. See paper for more evals and implementation details.
- Library: GPT-NeoX
- License: Apache 2.0
- Contact: to ask questions about this model, join the EleutherAI
Discord, and post them in
#release-discussion
. Please read the existing Pythia documentation before asking about it in the EleutherAI Discord. For general correspondence: contact@eleuther. ai.
Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models |
---|---|---|---|---|---|---|---|
160M | 85,056,000 | 12 | 768 | 12 | 2M | 6.0 x 10-4 | GPT-Neo 125M, OPT-125M |
Model Description
This is the model card of Pythia 160m evaluated on the Eleuther evaluation harness.
- Developed by: EleutherAI
- Model type: Pythia 160m
- Language(s) (NLP): EN
- License: Apache 2.0
Model Sources
Uses and Limitations
Intended Use
The primary intended use of Pythia is research on the behavior, functionality,
and limitations of large language models. This suite is intended to provide
a controlled setting for performing scientific experiments. We also provide
154 checkpoints per model: initial step0
, 10 log-spaced checkpoints
step{1,2,4...512}
, and 143 evenly-spaced checkpoints from step1000
to
step143000
. These checkpoints are hosted on Hugging Face as branches. Note
that branch 143000
corresponds exactly to the model checkpoint on the main
branch of each model.
You may also further fine-tune and adapt Pythia-160M for deployment, as long as your use is in accordance with the Apache 2.0 license. Pythia models work with the Hugging Face Transformers Library. If you decide to use pre-trained Pythia-160M as a basis for your fine-tuned model, please conduct your own risk and bias assessment.
Out-of-scope use
The Pythia Suite is not intended for deployment. It is not a in itself a product and cannot be used for human-facing interactions. For example, the model may generate harmful or offensive text. Please evaluate the risks associated with your particular use case.
Pythia models are English-language only, and are not suitable for translation or generating text in other languages.
Pythia-160M has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means Pythia-160M will not respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better “follow” human instructions.
Limitations and biases
The core functionality of a large language model is to take a string of text and predict the next token. The token used by the model need not produce the most “accurate” text. Never rely on Pythia-160M to produce factually accurate output.
This model was trained on the Pile, a dataset known to contain profanity and texts that are lewd or otherwise offensive. See Section 6 of the Pile paper for a discussion of documented biases with regards to gender, religion, and race. Pythia-160M may produce socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive.
If you plan on using text generated through, for example, the Hosted Inference API, we recommend having a human curate the outputs of this language model before presenting it to other people. Please inform your audience that the text was generated by Pythia-160M.
Training
Training data
The Pile is a 825GiB general-purpose dataset in
English. It was created by EleutherAI specifically for training large language
models. It contains texts from 22 diverse sources, roughly broken down into
five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl),
prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and
miscellaneous (e.g. GitHub, Enron Emails). See the Pile
paper for a breakdown of all data sources,
methodology, and a discussion of ethical implications. Consult the
datasheet for more detailed documentation
about the Pile and its component datasets. The Pile can be downloaded from
the official website, or from a community
mirror.
The Pile was not deduplicated before being used to train Pythia-160M.
Training procedure
All models were trained on the exact same data, in the exact same order. Each
model saw 299,892,736,000 tokens during training, and 143 checkpoints for each
model are saved every 2,097,152,000 tokens, spaced evenly throughout training,
from step1000
to step143000
(which is the same as main
). In addition, we
also provide frequent early checkpoints: step0
and step{1,2,4...512}
.
This corresponds to training for just under 1 epoch on the Pile for
non-deduplicated models, and about 1.5 epochs on the deduplicated Pile.
All Pythia models trained for 143000 steps at a batch size
of 2M (2,097,152 tokens).
See GitHub for more details on training
procedure, including how to reproduce
it.
Pythia uses the same tokenizer as GPT-NeoX-
20B.
Evaluation
This model has been evaluated on hellaswag using the Eleuther evaluation harness.
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
---|---|---|---|---|---|---|---|---|
hellaswag | 1 | none | 0 | acc | ↑ | 0.2872 | ± | 0.0045 |
none | 0 | acc_norm | ↑ | 0.3082 | ± | 0.0046 |