Model card for BioLingual
Model card for BioLingual: Transferable Models for bioacoustics with Human Language Supervision
An audio-text model for bioacoustics based on contrastive language-audio pretraining.
Usage
You can use this model for bioacoustic zero shot audio classification, or for fine-tuning on bioacoustic tasks.
Uses
Perform zero-shot audio classification
Using pipeline
from datasets import load_dataset
from transformers import pipeline
dataset = load_dataset("ashraq/esc50")
audio = dataset["train"]["audio"][-1]["array"]
audio_classifier = pipeline(task="zero-shot-audio-classification", model="davidrrobinson/BioLingual")
output = audio_classifier(audio, candidate_labels=["Sound of a sperm whale", "Sound of a sea lion"])
print(output)
>>> [{"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}]
Run the model:
You can also get the audio and text embeddings using ClapModel
Run the model on CPU:
from datasets import load_dataset
from transformers import ClapModel, ClapProcessor
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
audio_sample = librispeech_dummy[0]
model = ClapModel.from_pretrained("laion/clap-htsat-unfused")
processor = ClapProcessor.from_pretrained("laion/clap-htsat-unfused")
inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt")
audio_embed = model.get_audio_features(**inputs)
Run the model on GPU:
from datasets import load_dataset
from transformers import ClapModel, ClapProcessor
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
audio_sample = librispeech_dummy[0]
model = ClapModel.from_pretrained("laion/clap-htsat-unfused").to(0)
processor = ClapProcessor.from_pretrained("laion/clap-htsat-unfused")
inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt").to(0)
audio_embed = model.get_audio_features(**inputs)
- Downloads last month
- 4,185
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.