wav2vec2-xls-r-1b-italian-robust
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the Common Voice 7 & Libri Speech datasets. It achieves the following results on the evaluation set:
- Loss: 0.2428
- Wer: 0.2960
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 0.07 | 400 | 1.0053 | 0.8058 |
1.5087 | 0.13 | 800 | 0.9127 | 0.8104 |
0.9552 | 0.2 | 1200 | 1.0360 | 0.8836 |
0.9555 | 0.27 | 1600 | 0.9980 | 0.8577 |
1.0259 | 0.34 | 2000 | 1.0103 | 0.8842 |
1.0259 | 0.4 | 2400 | 0.9119 | 0.8466 |
1.0365 | 0.47 | 2800 | 0.9000 | 0.8281 |
1.0069 | 0.54 | 3200 | 0.7976 | 0.7875 |
0.9688 | 0.61 | 3600 | 0.8126 | 0.8051 |
0.9638 | 0.67 | 4000 | 0.7921 | 0.7903 |
0.9638 | 0.74 | 4400 | 0.7703 | 0.7783 |
0.9327 | 0.81 | 4800 | 0.7253 | 0.7463 |
0.8992 | 0.88 | 5200 | 0.6841 | 0.7171 |
0.8693 | 0.94 | 5600 | 0.6867 | 0.7250 |
0.8433 | 1.01 | 6000 | 0.7077 | 0.7302 |
0.8433 | 1.08 | 6400 | 0.6685 | 0.7091 |
0.8499 | 1.14 | 6800 | 0.6355 | 0.6825 |
0.8159 | 1.21 | 7200 | 0.6283 | 0.6800 |
0.8001 | 1.28 | 7600 | 0.6288 | 0.6743 |
0.7883 | 1.35 | 8000 | 0.5995 | 0.6633 |
0.7883 | 1.41 | 8400 | 0.6195 | 0.6726 |
0.7863 | 1.48 | 8800 | 0.6039 | 0.6588 |
0.7713 | 1.55 | 9200 | 0.5842 | 0.6490 |
0.7572 | 1.62 | 9600 | 0.5975 | 0.6533 |
0.7442 | 1.68 | 10000 | 0.5508 | 0.6233 |
0.7442 | 1.75 | 10400 | 0.5521 | 0.6209 |
0.7296 | 1.82 | 10800 | 0.5760 | 0.6245 |
0.7205 | 1.89 | 11200 | 0.5593 | 0.6144 |
0.7106 | 1.95 | 11600 | 0.5672 | 0.6220 |
0.7146 | 2.02 | 12000 | 0.5134 | 0.5911 |
0.7146 | 2.09 | 12400 | 0.5069 | 0.5811 |
0.6944 | 2.15 | 12800 | 0.5022 | 0.5962 |
0.6817 | 2.22 | 13200 | 0.4989 | 0.5813 |
0.6721 | 2.29 | 13600 | 0.4941 | 0.5742 |
0.6774 | 2.36 | 14000 | 0.4775 | 0.5676 |
0.6774 | 2.42 | 14400 | 0.4694 | 0.5525 |
0.6621 | 2.49 | 14800 | 0.4720 | 0.5514 |
0.6599 | 2.56 | 15200 | 0.4714 | 0.5553 |
0.6591 | 2.63 | 15600 | 0.4578 | 0.5397 |
0.645 | 2.69 | 16000 | 0.4619 | 0.5452 |
0.645 | 2.76 | 16400 | 0.4578 | 0.5343 |
0.6431 | 2.83 | 16800 | 0.4514 | 0.5328 |
0.636 | 2.9 | 17200 | 0.4526 | 0.5325 |
0.6433 | 2.96 | 17600 | 0.4561 | 0.5325 |
0.6356 | 3.03 | 18000 | 0.4386 | 0.5191 |
0.6356 | 3.1 | 18400 | 0.4291 | 0.5065 |
0.6175 | 3.16 | 18800 | 0.4306 | 0.5170 |
0.6187 | 3.23 | 19200 | 0.4256 | 0.5036 |
0.607 | 3.3 | 19600 | 0.4198 | 0.5027 |
0.6004 | 3.37 | 20000 | 0.4149 | 0.4906 |
0.6004 | 3.43 | 20400 | 0.4114 | 0.4902 |
0.6002 | 3.5 | 20800 | 0.4116 | 0.4967 |
0.5926 | 3.57 | 21200 | 0.4066 | 0.4843 |
0.5836 | 3.64 | 21600 | 0.3956 | 0.4791 |
0.588 | 3.7 | 22000 | 0.3941 | 0.4729 |
0.588 | 3.77 | 22400 | 0.3972 | 0.4799 |
0.5739 | 3.84 | 22800 | 0.4018 | 0.4790 |
0.5778 | 3.91 | 23200 | 0.3936 | 0.4750 |
0.5768 | 3.97 | 23600 | 0.3936 | 0.4751 |
0.5651 | 4.04 | 24000 | 0.3953 | 0.4706 |
0.5651 | 4.11 | 24400 | 0.3906 | 0.4659 |
0.5704 | 4.17 | 24800 | 0.3807 | 0.4557 |
0.5594 | 4.24 | 25200 | 0.3817 | 0.4610 |
0.5509 | 4.31 | 25600 | 0.3755 | 0.4553 |
0.5439 | 4.38 | 26000 | 0.3705 | 0.4471 |
0.5439 | 4.44 | 26400 | 0.3744 | 0.4487 |
0.5426 | 4.51 | 26800 | 0.3716 | 0.4483 |
0.5393 | 4.58 | 27200 | 0.3600 | 0.4356 |
0.5408 | 4.65 | 27600 | 0.3573 | 0.4307 |
0.5327 | 4.71 | 28000 | 0.3638 | 0.4382 |
0.5327 | 4.78 | 28400 | 0.3587 | 0.4316 |
0.5324 | 4.85 | 28800 | 0.3598 | 0.4290 |
0.5378 | 4.91 | 29200 | 0.3508 | 0.4243 |
0.5246 | 4.98 | 29600 | 0.3522 | 0.4260 |
0.5284 | 5.05 | 30000 | 0.3520 | 0.4268 |
0.5284 | 5.12 | 30400 | 0.3506 | 0.4224 |
0.5154 | 5.18 | 30800 | 0.3556 | 0.4223 |
0.5138 | 5.25 | 31200 | 0.3526 | 0.4276 |
0.51 | 5.32 | 31600 | 0.3440 | 0.4220 |
0.5065 | 5.39 | 32000 | 0.3367 | 0.4120 |
0.5065 | 5.45 | 32400 | 0.3406 | 0.4136 |
0.5087 | 5.52 | 32800 | 0.3370 | 0.4125 |
0.503 | 5.59 | 33200 | 0.3387 | 0.4134 |
0.5085 | 5.66 | 33600 | 0.3346 | 0.4068 |
0.5044 | 5.72 | 34000 | 0.3325 | 0.4057 |
0.5044 | 5.79 | 34400 | 0.3304 | 0.4026 |
0.4879 | 5.86 | 34800 | 0.3274 | 0.4002 |
0.4924 | 5.92 | 35200 | 0.3286 | 0.3980 |
0.4991 | 5.99 | 35600 | 0.3231 | 0.3952 |
0.487 | 6.06 | 36000 | 0.3324 | 0.4005 |
0.487 | 6.13 | 36400 | 0.3264 | 0.3952 |
0.4754 | 6.19 | 36800 | 0.3234 | 0.3905 |
0.4683 | 6.26 | 37200 | 0.3149 | 0.3840 |
0.4653 | 6.33 | 37600 | 0.3122 | 0.3824 |
0.4667 | 6.4 | 38000 | 0.3151 | 0.3855 |
0.4667 | 6.46 | 38400 | 0.3217 | 0.3859 |
0.4628 | 6.53 | 38800 | 0.3085 | 0.3831 |
0.4644 | 6.6 | 39200 | 0.3121 | 0.3791 |
0.4612 | 6.67 | 39600 | 0.3093 | 0.3790 |
0.4552 | 6.73 | 40000 | 0.3087 | 0.3749 |
0.4552 | 6.8 | 40400 | 0.3027 | 0.3679 |
0.4544 | 6.87 | 40800 | 0.3048 | 0.3672 |
0.4507 | 6.93 | 41200 | 0.2963 | 0.3614 |
0.4489 | 7.0 | 41600 | 0.3086 | 0.3718 |
0.4367 | 7.07 | 42000 | 0.3100 | 0.3754 |
0.4367 | 7.14 | 42400 | 0.3057 | 0.3701 |
0.4376 | 7.2 | 42800 | 0.2930 | 0.3614 |
0.428 | 7.27 | 43200 | 0.2907 | 0.3516 |
0.4241 | 7.34 | 43600 | 0.2916 | 0.3590 |
0.4312 | 7.41 | 44000 | 0.2904 | 0.3523 |
0.4312 | 7.47 | 44400 | 0.2908 | 0.3476 |
0.4292 | 7.54 | 44800 | 0.2858 | 0.3467 |
0.426 | 7.61 | 45200 | 0.2864 | 0.3484 |
0.4225 | 7.68 | 45600 | 0.2820 | 0.3441 |
0.422 | 7.74 | 46000 | 0.2834 | 0.3441 |
0.422 | 7.81 | 46400 | 0.2784 | 0.3420 |
0.4158 | 7.88 | 46800 | 0.2814 | 0.3390 |
0.4139 | 7.94 | 47200 | 0.2777 | 0.3384 |
0.4076 | 8.01 | 47600 | 0.2741 | 0.3381 |
0.3997 | 8.08 | 48000 | 0.2738 | 0.3320 |
0.3997 | 8.15 | 48400 | 0.2720 | 0.3303 |
0.4009 | 8.21 | 48800 | 0.2705 | 0.3357 |
0.3928 | 8.28 | 49200 | 0.2708 | 0.3265 |
0.3923 | 8.35 | 49600 | 0.2678 | 0.3283 |
0.3897 | 8.42 | 50000 | 0.2649 | 0.3241 |
0.3897 | 8.48 | 50400 | 0.2640 | 0.3218 |
0.3879 | 8.55 | 50800 | 0.2616 | 0.3197 |
0.3805 | 8.62 | 51200 | 0.2599 | 0.3170 |
0.3874 | 8.69 | 51600 | 0.2592 | 0.3168 |
0.3799 | 8.75 | 52000 | 0.2589 | 0.3157 |
0.3799 | 8.82 | 52400 | 0.2566 | 0.3137 |
0.3834 | 8.89 | 52800 | 0.2552 | 0.3141 |
0.3811 | 8.95 | 53200 | 0.2523 | 0.3108 |
0.3821 | 9.02 | 53600 | 0.2539 | 0.3112 |
0.3636 | 9.09 | 54000 | 0.2529 | 0.3070 |
0.3636 | 9.16 | 54400 | 0.2500 | 0.3078 |
0.3706 | 9.22 | 54800 | 0.2510 | 0.3067 |
0.367 | 9.29 | 55200 | 0.2497 | 0.3069 |
0.3618 | 9.36 | 55600 | 0.2493 | 0.3043 |
0.3624 | 9.43 | 56000 | 0.2491 | 0.3040 |
0.3624 | 9.49 | 56400 | 0.2466 | 0.3016 |
0.3557 | 9.56 | 56800 | 0.2460 | 0.3014 |
0.3536 | 9.63 | 57200 | 0.2470 | 0.2997 |
0.3584 | 9.7 | 57600 | 0.2441 | 0.2989 |
0.3563 | 9.76 | 58000 | 0.2442 | 0.2970 |
0.3563 | 9.83 | 58400 | 0.2436 | 0.2966 |
0.3492 | 9.9 | 58800 | 0.2431 | 0.2967 |
0.3483 | 9.96 | 59200 | 0.2428 | 0.2960 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
- Downloads last month
- 31
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train dbdmg/wav2vec2-xls-r-1b-italian-robust
Space using dbdmg/wav2vec2-xls-r-1b-italian-robust 1
Evaluation results
- Test WER on Common Voice 7self-reported32.740
- Test CER on Common Voice 7self-reported7.830
- Test WER (+LM) on Common Voice 7self-reported19.550
- Test CER (+LM) on Common Voice 7self-reported5.590
- Test WER on Robust Speech Event - Dev Dataself-reported43.230
- Test CER on Robust Speech Event - Dev Dataself-reported13.370
- Test WER (+LM) on Robust Speech Event - Dev Dataself-reported27.510
- Test CER (+LM) on Robust Speech Event - Dev Dataself-reported10.690
- Test WER on Robust Speech Event - Test Dataself-reported51.120