|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cord-layoutlmv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cord_100 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cord-layoutlmv3 |
|
type: cord-layoutlmv3 |
|
config: cord |
|
split: train |
|
args: cord |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9485842026825634 |
|
- name: Recall |
|
type: recall |
|
value: 0.9528443113772455 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9507094846900671 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9592529711375212 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cord_100 |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1978 |
|
- Precision: 0.9486 |
|
- Recall: 0.9528 |
|
- F1: 0.9507 |
|
- Accuracy: 0.9593 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.56 | 250 | 0.9543 | 0.7832 | 0.8166 | 0.7996 | 0.8226 | |
|
| 1.3644 | 3.12 | 500 | 0.5338 | 0.8369 | 0.8683 | 0.8523 | 0.8824 | |
|
| 1.3644 | 4.69 | 750 | 0.3658 | 0.8840 | 0.9072 | 0.8955 | 0.9232 | |
|
| 0.3802 | 6.25 | 1000 | 0.3019 | 0.9156 | 0.9251 | 0.9203 | 0.9334 | |
|
| 0.3802 | 7.81 | 1250 | 0.2833 | 0.9094 | 0.9237 | 0.9165 | 0.9346 | |
|
| 0.2061 | 9.38 | 1500 | 0.2241 | 0.9377 | 0.9469 | 0.9423 | 0.9525 | |
|
| 0.2061 | 10.94 | 1750 | 0.2282 | 0.9304 | 0.9409 | 0.9356 | 0.9474 | |
|
| 0.1416 | 12.5 | 2000 | 0.2017 | 0.9509 | 0.9566 | 0.9537 | 0.9610 | |
|
| 0.1416 | 14.06 | 2250 | 0.2006 | 0.9472 | 0.9536 | 0.9504 | 0.9614 | |
|
| 0.1056 | 15.62 | 2500 | 0.1978 | 0.9486 | 0.9528 | 0.9507 | 0.9593 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.23.1 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.13.1 |
|
|