deepdml's picture
Update README.md
f2f67ed verified
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
base_model: openai/whisper-medium
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Medium en
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: en
          split: test
          args: en
        metrics:
          - type: wer
            value: 10.73957614336477
            name: Wer
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: en_us
          split: test
        metrics:
          - type: wer
            value: 7.47
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: facebook/voxpopuli
          type: facebook/voxpopuli
          config: en
          split: test
        metrics:
          - type: wer
            value: 9.06
            name: WER
pipeline_tag: automatic-speech-recognition

Whisper Medium en

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3150
  • Wer: 10.7396

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.2714 0.2 1000 0.3230 11.4694
0.1778 1.195 2000 0.3191 11.2809
0.1435 2.19 3000 0.3188 11.1639
0.0461 3.185 4000 0.3441 11.1333
0.1327 4.18 5000 0.3150 10.7396

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1