deepdml/whisper-medium-mix-fr
This model is a fine-tuned version of deepdml/whisper-medium-mix-fr on the mozilla-foundation/common_voice_11_0, google/fleurs, facebook/multilingual_librispeech and facebook/voxpopuli datasets. It achieves the following results on the evaluation set:
- Loss: 0.2599
- Wer: 11.2278
Using the evalutaion script provided in the Whisper Sprint the model achieves these results on the test sets (WER):
- google/fleurs: 9.3526 %
(python run_eval_whisper_streaming.py --model_id="deepdml/whisper-medium-mix-fr" --dataset="google/fleurs" --config="fr_fr" --device=0 --language="fr") - facebook/multilingual_librispeech: 6.3468 %
(python run_eval_whisper_streaming.py --model_id="deepdml/whisper-medium-mix-fr" --dataset="facebook/multilingual_librispeech" --config="french" --device=0 --language="fr") - facebook/voxpopuli: 10.0653 %
(python run_eval_whisper_streaming.py --model_id="deepdml/whisper-medium-mix-fr" --dataset="facebook/voxpopuli" --config="fr" --device=0 --language="fr")
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
Training data used: - mozilla-foundation/common_voice_11_0: fr, train+validation - google/fleurs: fr_fr, train - facebook/multilingual_librispeech: french, train - facebook/voxpopuli: fr, train
Evaluating over test split from mozilla-foundation/common_voice_11_0 dataset.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0855 | 0.25 | 1000 | 0.2826 | 12.4230 |
0.0569 | 0.5 | 2000 | 0.2768 | 11.9577 |
0.0724 | 0.75 | 3000 | 0.2670 | 11.6106 |
0.069 | 1.0 | 4000 | 0.2599 | 11.2278 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
- Downloads last month
- 30
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train deepdml/whisper-medium-mix-fr
Space using deepdml/whisper-medium-mix-fr 1
Evaluation results
- Wer on mozilla-foundation/common_voice_11_0 frtest set self-reported11.228
- Cer on mozilla-foundation/common_voice_11_0 frtest set self-reported4.214
- WER on FLEURS ASRtest set self-reported9.353
- Cer on FLEURS ASRtest set self-reported4.144
- WER on Multilingual LibriSpeechtest set self-reported6.347
- Cer on Multilingual LibriSpeechtest set self-reported3.156
- WER on VoxPopulitest set self-reported10.065
- Cer on VoxPopulitest set self-reported6.546