Edit model card

DeepSeek Coder

[🏠Homepage] | [🤖 Chat with DeepSeek Coder] | [Discord] | [Wechat(微信)]


1. Introduction of Deepseek Coder

Deepseek Coder is composed of a series of code language models, each trained from scratch on 2T tokens, with a composition of 87% code and 13% natural language in both English and Chinese. We provide various sizes of the code model, ranging from 1B to 33B versions. Each model is pre-trained on project-level code corpus by employing a window size of 16K and a extra fill-in-the-blank task, to support project-level code completion and infilling. For coding capabilities, Deepseek Coder achieves state-of-the-art performance among open-source code models on multiple programming languages and various benchmarks.

  • Massive Training Data: Trained from scratch on 2T tokens, including 87% code and 13% linguistic data in both English and Chinese languages.

  • Highly Flexible & Scalable: Offered in model sizes of 1.3B, 5.7B, 6.7B, and 33B, enabling users to choose the setup most suitable for their requirements.

  • Superior Model Performance: State-of-the-art performance among publicly available code models on HumanEval, MultiPL-E, MBPP, DS-1000, and APPS benchmarks.

  • Advanced Code Completion Capabilities: A window size of 16K and a fill-in-the-blank task, supporting project-level code completion and infilling tasks.

2. Model Summary

deepseek-coder-5.7bmqa-base is a 5.7B parameter model with Multi Query Attention trained on 2 trillion tokens.

3. How to Use

Here give some examples of how to use our model.

1)Code Completion

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-5.7bmqa-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-5.7bmqa-base", trust_remote_code=True).cuda()
input_text = "#write a quick sort algorithm"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

2)Code Insertion

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-5.7bmqa-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-5.7bmqa-base", trust_remote_code=True).cuda()
input_text = """<|fim▁begin|>def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[0]
    left = []
    right = []
<|fim▁hole|>
        if arr[i] < pivot:
            left.append(arr[i])
        else:
            right.append(arr[i])
    return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>"""
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])

3)Repository Level Code Completion

from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-5.7bmqa-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-5.7bmqa-base", trust_remote_code=True).cuda()

input_text = """#utils.py
import torch
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score

def load_data():
    iris = datasets.load_iris()
    X = iris.data
    y = iris.target

    # Standardize the data
    scaler = StandardScaler()
    X = scaler.fit_transform(X)

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

    # Convert numpy data to PyTorch tensors
    X_train = torch.tensor(X_train, dtype=torch.float32)
    X_test = torch.tensor(X_test, dtype=torch.float32)
    y_train = torch.tensor(y_train, dtype=torch.int64)
    y_test = torch.tensor(y_test, dtype=torch.int64)
    
    return X_train, X_test, y_train, y_test

def evaluate_predictions(y_test, y_pred):
    return accuracy_score(y_test, y_pred)
#model.py
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset

class IrisClassifier(nn.Module):
    def __init__(self):
        super(IrisClassifier, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(4, 16),
            nn.ReLU(),
            nn.Linear(16, 3)
        )

    def forward(self, x):
        return self.fc(x)

    def train_model(self, X_train, y_train, epochs, lr, batch_size):
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(self.parameters(), lr=lr)
        
        # Create DataLoader for batches
        dataset = TensorDataset(X_train, y_train)
        dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

        for epoch in range(epochs):
            for batch_X, batch_y in dataloader:
                optimizer.zero_grad()
                outputs = self(batch_X)
                loss = criterion(outputs, batch_y)
                loss.backward()
                optimizer.step()

    def predict(self, X_test):
        with torch.no_grad():
            outputs = self(X_test)
            _, predicted = outputs.max(1)
        return predicted.numpy()
#main.py
from utils import load_data, evaluate_predictions
from model import IrisClassifier as Classifier

def main():
    # Model training and evaluation
"""
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=140)
print(tokenizer.decode(outputs[0]))

4. License

This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use.

See the LICENSE-MODEL for more details.

5. Contact

If you have any questions, please raise an issue or contact us at agi_code@deepseek.com.

Downloads last month
883
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for deepseek-ai/deepseek-coder-5.7bmqa-base

Adapters
1 model
Quantizations
3 models