metadata
license: other
license_name: deepseek
license_link: LICENSE
model-index:
- name: deepseek-coder-7b-instruct-v1.5
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 48.55
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-coder-7b-instruct-v1.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 72.35
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-coder-7b-instruct-v1.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.45
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-coder-7b-instruct-v1.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 46.73
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-coder-7b-instruct-v1.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.85
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-coder-7b-instruct-v1.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 20.39
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-coder-7b-instruct-v1.5
name: Open LLM Leaderboard
[🏠Homepage] | [🤖 Chat with DeepSeek Coder] | [Discord] | [Wechat(微信)]
1. Introduction of Deepseek-Coder-7B-Instruct v1.5
Deepseek-Coder-7B-Instruct-v1.5 is continue pre-trained from Deepseek-LLM 7B on 2T tokens by employing a window size of 4K and next token prediction objective, and then fine-tuned on 2B tokens of instruction data.
- Home Page: DeepSeek
- Repository: deepseek-ai/deepseek-coder
- Chat With DeepSeek Coder: DeepSeek-Coder
2. Evaluation Results
![DeepSeek Coder](https://cdn-uploads.huggingface.co/production/uploads/6538815d1bdb3c40db94fbfa/xOtCTW5xdoLCKY4FR6tri.png)
3. How to Use
Here give some examples of how to use our model.
Chat Model Inference
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5", trust_remote_code=True).cuda()
messages=[
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
4. License
This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use.
See the LICENSE-MODEL for more details.
5. Contact
If you have any questions, please raise an issue or contact us at service@deepseek.com.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 50.89 |
AI2 Reasoning Challenge (25-Shot) | 48.55 |
HellaSwag (10-Shot) | 72.35 |
MMLU (5-Shot) | 50.45 |
TruthfulQA (0-shot) | 46.73 |
Winogrande (5-shot) | 66.85 |
GSM8k (5-shot) | 20.39 |