|
--- |
|
license: other |
|
license_name: deepseek |
|
license_link: LICENSE |
|
--- |
|
|
|
<p align="center"> |
|
<img width="500px" alt="DeepSeek Chat" src="https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/images/logo.png?raw=true"> |
|
</p> |
|
<p align="center"><a href="https://www.deepseek.com/">[🏠Homepage]</a> | <a href="https://chat.deepseek.com/">[🤖 Chat with DeepSeek LLM]</a> | <a href="https://discord.gg/Tc7c45Zzu5">[Discord]</a> | <a href="https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/images/qr.jpeg">[Wechat(微信)]</a> </p> |
|
<hr> |
|
|
|
|
|
|
|
|
|
### 1. Introduction of Deepseek LLM |
|
|
|
Introducing DeepSeek LLM, an advanced language model comprising 7 billion parameters. It has been trained from scratch on a vast dataset of 2 trillion tokens in both English and Chinese. In order to foster research, we have made DeepSeek LLM 7B/67B Base and DeepSeek LLM 7B/67B Chat open source for the research community. |
|
|
|
|
|
### 2. Model Summary |
|
`deepseek-llm-7b-base` is a 7B parameter model with Multi-Head Attention trained on 2 trillion tokens from scratch. |
|
- **Home Page:** [DeepSeek](https://deepseek.com/) |
|
- **Repository:** [deepseek-ai/deepseek-LLM](https://github.com/deepseek-ai/deepseek-LLM) |
|
- **Chat With DeepSeek LLM:** [DeepSeek-LLM](https://chat.deepseek.com/) |
|
|
|
|
|
### 3. How to Use |
|
Here give some examples of how to use our model. |
|
#### Text Completion |
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig |
|
|
|
model_name = "deepseek-ai/deepseek-llm-7b-base" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") |
|
model.generation_config = GenerationConfig.from_pretrained(model_name) |
|
model.generation_config.pad_token_id = model.generation_config.eos_token_id |
|
|
|
text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is" |
|
inputs = tokenizer(text, return_tensors="pt") |
|
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100) |
|
|
|
result = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(result) |
|
``` |
|
|
|
### 4. License |
|
This code repository is licensed under the MIT License. The use of DeepSeek LLM models is subject to the Model License. DeepSeek LLM supports commercial use. |
|
|
|
See the [LICENSE-MODEL](https://github.com/deepseek-ai/deepseek-LLM/blob/main/LICENSE-MODEL) for more details. |
|
|
|
### 5. Contact |
|
|
|
If you have any questions, please raise an issue or contact us at [service@deepseek.com](mailto:service@deepseek.com). |
|
|
|
|