|
--- |
|
license: other |
|
license_name: deepseek |
|
license_link: https://github.com/deepseek-ai/DeepSeek-Math/blob/main/LICENSE-MODEL |
|
--- |
|
|
|
|
|
<p align="center"> |
|
<img width="500px" alt="DeepSeek Chat" src="https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/images/logo.png?raw=true"> |
|
</p> |
|
<p align="center"><a href="https://www.deepseek.com/">[🏠Homepage]</a> | <a href="https://chat.deepseek.com/">[🤖 Chat with DeepSeek LLM]</a> | <a href="https://discord.gg/Tc7c45Zzu5">[Discord]</a> | <a href="https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/images/qr.jpeg">[Wechat(微信)]</a> </p> |
|
|
|
<p align="center"> |
|
<a href="https://arxiv.org/pdf/2402.03300.pdf"><b>Paper Link</b>👁️</a> |
|
</p> |
|
|
|
<hr> |
|
|
|
|
|
|
|
|
|
|
|
### 1. Introduction to DeepSeekMath |
|
See the [Introduction](https://github.com/deepseek-ai/DeepSeek-Math) for more details. |
|
|
|
### 2. How to Use |
|
Here give some examples of how to use our model. |
|
|
|
**Chat Completion** |
|
|
|
❗❗❗ Please use chain-of-thought prompt to test DeepSeekMath-Instruct and DeepSeekMath-RL: |
|
* English questions: `{question}\nPlease reason step by step, and put your final answer within \\boxed{}.` |
|
* Chinese questions: `{question}\n请通过逐步推理来解答问题,并把最终答案放置于\\boxed{}中。` |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig |
|
|
|
model_name = "deepseek-ai/deepseek-math-7b-instruct" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") |
|
model.generation_config = GenerationConfig.from_pretrained(model_name) |
|
model.generation_config.pad_token_id = model.generation_config.eos_token_id |
|
|
|
messages = [ |
|
{"role": "user", "content": "what is the integral of x^2 from 0 to 2?\nPlease reason step by step, and put your final answer within \\boxed{}."} |
|
] |
|
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") |
|
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100) |
|
|
|
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) |
|
print(result) |
|
``` |
|
|
|
Avoiding the use of the provided function `apply_chat_template`, you can also interact with our model following the sample template. Note that `messages` should be replaced by your input. |
|
|
|
``` |
|
User: {messages[0]['content']} |
|
|
|
Assistant: {messages[1]['content']}<|end▁of▁sentence|>User: {messages[2]['content']} |
|
|
|
Assistant: |
|
``` |
|
|
|
**Note:** By default (`add_special_tokens=True`), our tokenizer automatically adds a `bos_token` (`<|begin▁of▁sentence|>`) before the input text. Additionally, since the system prompt is not compatible with this version of our models, we DO NOT RECOMMEND including the system prompt in your input. |
|
|
|
### 3. License |
|
This code repository is licensed under the MIT License. The use of DeepSeekMath models is subject to the Model License. DeepSeekMath supports commercial use. |
|
|
|
See the [LICENSE-MODEL](https://github.com/deepseek-ai/DeepSeek-Math/blob/main/LICENSE-MODEL) for more details. |
|
|
|
### 4. Contact |
|
|
|
If you have any questions, please raise an issue or contact us at [service@deepseek.com](mailto:service@deepseek.com). |
|
|
|
|