This language model is trained using sentence_transformers (https://github.com/UKPLab/sentence-transformers) Started with bert-base-nli-stsb-mean-tokens Continue training on quora questions deduplication dataset (https://www.kaggle.com/c/quora-question-pairs) See train_script.py for script used
Below is the performance over the course of training epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman 0,1000,0.5944576426835938,0.6010801382777033,0.5942803776859142,0.5934485776801595,0.5939676679774666,0.593162725602328,0.5905591590826669,0.5921674789994058 0,2000,0.6404080440207146,0.6416811632113405,0.6384419354012121,0.6352050423100778,0.6379917744471867,0.6347884067391001,0.6410544760582826,0.6379252046791412 0,3000,0.6710168301884945,0.6676529324662036,0.6660195209784969,0.6618423144808695,0.6656461098096684,0.6615366331956389,0.6724401903484759,0.666073727723655 0,4000,0.6886373265097949,0.6808948140300153,0.67907655686838,0.6714218133850957,0.6786809551564443,0.6711577956884357,0.6926435869763303,0.68190855298609 0,5000,0.6991409753700026,0.6919630610321864,0.6991041519437052,0.6868961486499775,0.6987076032270729,0.6865385550504007,0.7035518148330993,0.6916275246101342 0,6000,0.7120367327025509,0.6975005265298305,0.7065567493967201,0.6922375503495235,0.7060005509843024,0.6916475765570651,0.7147094303373102,0.6981390706722722 0,7000,0.7254672394728687,0.7130118465900485,0.7261844956277705,0.7086213543110718,0.7257479964972307,0.7079315661881832,0.728729909455115,0.7122743793160531 0,8000,0.7402421930101399,0.7216774208330149,0.7367901914441078,0.7166256588352043,0.7362607046874481,0.7158881916281887,0.7433902441373252,0.7220998491980078 0,9000,0.7381005358120434,0.7197216844469877,0.7343228719349923,0.7139462687943793,0.7345247569255238,0.7145106206467152,0.7421843672419275,0.720686853053079 0,10000,0.7465436564646095,0.7260327107480364,0.7467524239596304,0.7230195666847953,0.7467721566237211,0.7231367593302213,0.749792199122442,0.7263143296580317 0,11000,0.7521805421706547,0.7323771570146701,0.7530672061250105,0.729223203496722,0.7530616532823367,0.7293818369675622,0.7552399002305836,0.7320808333541338 0,12000,0.7579359969644401,0.7340677616737238,0.7570017235719905,0.7305965412825544,0.7570601853520393,0.730718189957289,0.7611254136080384,0.7351501229591327 0,-1,0.7573407371218097,0.7329952035782198,0.755595312163209,0.7291445551777086,0.7557737117990928,0.7295404703700227,0.7607276219361719,0.7342415455980179 1,1000,0.7619907683805341,0.7374667949734767,0.7629820517114324,0.7330364216044966,0.7628369522755882,0.7331912674450544,0.7658583898073758,0.7381503446695727 1,2000,0.7618972640071228,0.7362151058969478,0.764582212425539,0.7335856230046062,0.7643125513700815,0.7334501607097152,0.7652852805583232,0.7369104639809163 1,3000,0.7687362955240467,0.7404674623181671,0.7708304819979073,0.7380959815601529,0.7707835692712482,0.7379796800453193,0.772074854759756,0.7414513460702766 1,4000,0.7685047787908202,0.7403088288815168,0.7703522257474043,0.7379787888808298,0.7701221475099808,0.7377898546753812,0.7713755359045312,0.7409415801952219 1,5000,0.7696438109797803,0.7410393893292365,0.773270389327895,0.7392953127251652,0.7729880866533291,0.7389853982789335,0.7726236305835863,0.7416278035580925 1,6000,0.7749538363837081,0.7436499342062207,0.774879168058157,0.7401827241766746,0.7745754601165837,0.739763415043146,0.7788801166152383,0.7446249060022169 1,7000,0.7794560817870597,0.7480970176267153,0.7803506944510302,0.7453305130502859,0.7799867949176531,0.7447100155494814,0.7828208193123926,0.7486740690324809 1,8000,0.7855844359073243,0.7496742172376921,0.7828816645965887,0.747176409009761,0.7827584875358967,0.7471037762845532,0.7879159073496309,0.7507349669102151 1,9000,0.7844110753729492,0.7507746252693759,0.7847208586489722,0.7485172180290892,0.7846408087474059,0.748491818820158,0.7872061334510225,0.7514470349769437 1,10000,0.7881311227435004,0.7530048509727403,0.7886917756879734,0.7508018068765787,0.7883332502188707,0.7505037008187275,0.7910707228932787,0.7537200382362567 1,11000,0.7883300109606874,0.7513494487126553,0.7879329130497712,0.749818368689255,0.7876525616593218,0.7494872882301785,0.7911454269743292,0.7522843165147303 1,12000,0.7853334933336618,0.7516809747712728,0.7893895316714998,0.749780492728257,0.7890075986655403,0.7494079715118533,0.7885959664070629,0.7523827940133203 1,-1,0.7887529238148887,0.7534076729932393,0.7896864404801204,0.7513080079201105,0.7894077512343298,0.7510009899066772,0.7919617393746149,0.7542173273241598 2,1000,0.7919209063905188,0.7550167329363414,0.7917464066515253,0.7523043685293455,0.7914371703225378,0.7520285423781206,0.7950297421784158,0.7562599556207076 2,2000,0.7924507768792486,0.7542908512484463,0.7934519001953887,0.7517491515010692,0.7931885648751081,0.751521004535999,0.7951637852162545,0.7551495215642072 2,3000,0.7937606244038364,0.755599577136169,0.7933633347508111,0.7527922999916203,0.7931581019714242,0.7527132061436363,0.797275652800117,0.7569827180764233 2,4000,0.7938389298721445,0.7578716892320315,0.7963783770097079,0.7555928931784702,0.796150381773947,0.7555438771581088,0.7972911620482322,0.759178632650707 2,5000,0.7935330563129844,0.7551129824372304,0.7970775059297484,0.7527285792572385,0.7967359830546507,0.7524478515463257,0.7966395126138969,0.756319220359678 2,6000,0.7929852776759999,0.7525490026774382,0.7952484474454824,0.7503695753216607,0.7950784132079611,0.7503677929234961,0.7956152082976395,0.7535275392698093 2,7000,0.794956504054517,0.756119591765251,0.7982025041673655,0.7532521587180684,0.7980261618830962,0.7532107179960499,0.7983222918908033,0.7571226363678287 2,8000,0.7934568432535339,0.7538336661192452,0.797015698241178,0.7514773358161916,0.7968076980315735,0.7513458838811067,0.7960694134685949,0.754143803399873 2,9000,0.7970040626682157,0.7576497805894974,0.7987855332059015,0.7550996144509958,0.7984693921009676,0.7548260162973456,0.7999509314900626,0.758347143906916 2,10000,0.7979442987735523,0.7585338500791028,0.8018677081664496,0.7557412777548302,0.8015397301245205,0.7552916678886369,0.8007921348414564,0.7589772216225288 2,11000,0.7985519561040211,0.7579986850302035,0.8021236875460913,0.7555826443181872,0.8019861620475348,0.7553763317660516,0.8009230128897853,0.7586541619907702 2,12000,0.7986842143860736,0.7599570950134775,0.8029131054823838,0.7577678644678973,0.8027922603736795,0.7575152095990927,0.8020896747930555,0.7608540869254408 2,-1,0.7994135319568432,0.7596286881516635,0.8022087183675333,0.7570593611974978,0.8020218401019292,0.7567291719729909,0.8026346812258125,0.7603928913647044 3,1000,0.7985505039929134,0.7592588405681144,0.8023296699449267,0.7569345933969436,0.8023622066009718,0.7570237132696928,0.8013054275981851,0.759643838536062 3,2000,0.7995482191699455,0.759205368623176,0.8026859405513612,0.7565709841358819,0.8024845263367439,0.7562920388231202,0.8021318586127523,0.7596496313300967 3,3000,0.7991070423195897,0.7582027696555826,0.8016352550470427,0.7555585819429662,0.8014268261947898,0.7551838327642736,0.8013136081494014,0.7584429477727118 3,4000,0.7999188836884763,0.7586764419322649,0.802987646214278,0.7561111254802977,0.8026549791861386,0.7556463650525692,0.8024068858366156,0.7591238238715613 3,5000,0.7988075932525881,0.7583533823004922,0.8019498750207454,0.755792967372457,0.8016459824731964,0.7553834613587099,0.8015528810821693,0.7589527136833425 3,6000,0.8003341798460688,0.7585432077405799,0.8032464035902267,0.7563722467405277,0.8028695045742804,0.7557626665682309,0.8027937010871594,0.7590404967573696 3,7000,0.799187592384933,0.7579358555659604,0.8028413548398412,0.7555875459131398,0.8025187078191003,0.7551196665011402,0.8018680475193432,0.7585565756912578 3,8000,0.797725037202641,0.757439012042047,0.802048241301358,0.7548888458326453,0.8017608103042271,0.7544606246736175,0.8005479449399782,0.758037452190282 3,9000,0.7990232649360067,0.7573703896772077,0.8021375332910405,0.754873027155089,0.8018733796679427,0.7545680141630304,0.8016400687760605,0.7579461042843499 3,10000,0.7994934439260372,0.758368978248884,0.8035693504115055,0.75619400688862,0.8032990505007025,0.7559016935896375,0.8022819185772518,0.7589558328445544 3,11000,0.8002954591825011,0.758710753096932,0.8043310859792212,0.7566387152306694,0.8040865016706966,0.7564221538891368,0.8030873114870971,0.7592722085543488 3,12000,0.8003726616196549,0.7588056657991931,0.8044000317617518,0.7566146528909147,0.8041705213966136,0.7563419459362758,0.8031760015719815,0.7593194421057111 3,-1,0.8004926728141455,0.7587192194882135,0.8043340929890026,0.756546030526114,0.8041028559910275,0.7563103085106637,0.8032542493776693,0.7592325501951863
About us
deepset is the company behind the production-ready open-source AI framework Haystack.
Some of our other work:
- Distilled roberta-base-squad2 (aka "tinyroberta-squad2")
- German BERT, GermanQuAD and GermanDPR, German embedding model
- deepset Cloud, deepset Studio
Get in touch and join the Haystack community
For more info on Haystack, visit our GitHub repo and Documentation.
We also have a Discord community open to everyone!
Twitter | LinkedIn | Discord | GitHub Discussions | Website | YouTube
By the way: we're hiring!
- Downloads last month
- 18