|
--- |
|
language: en |
|
license: cc-by-4.0 |
|
datasets: |
|
- squad_v2 |
|
model-index: |
|
- name: deepset/roberta-base-squad2 |
|
results: |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad_v2 |
|
type: squad_v2 |
|
config: squad_v2 |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 79.9309 |
|
name: Exact Match |
|
verified: true |
|
verifyToken: >- |
|
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDhhNjg5YzNiZGQ1YTIyYTAwZGUwOWEzZTRiYzdjM2QzYjA3ZTUxNDM1NjE1MTUyMjE1MGY1YzEzMjRjYzVjYiIsInZlcnNpb24iOjF9.EH5JJo8EEFwU7osPz3s7qanw_tigeCFhCXjSfyN0Y1nWVnSfulSxIk_DbAEI5iE80V4EKLyp5-mYFodWvL2KDA |
|
- type: f1 |
|
value: 82.9501 |
|
name: F1 |
|
verified: true |
|
verifyToken: >- |
|
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjk5ZDYwOGQyNjNkMWI0OTE4YzRmOTlkY2JjNjQ0YTZkNTMzMzNkYTA0MDFmNmI3NjA3NjNlMjhiMDQ2ZjJjNSIsInZlcnNpb24iOjF9.DDm0LNTkdLbGsue58bg1aH_s67KfbcmkvL-6ZiI2s8IoxhHJMSf29H_uV2YLyevwx900t-MwTVOW3qfFnMMEAQ |
|
- type: total |
|
value: 11869 |
|
name: total |
|
verified: true |
|
verifyToken: >- |
|
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGFkMmI2ODM0NmY5NGNkNmUxYWViOWYxZDNkY2EzYWFmOWI4N2VhYzY5MGEzMTVhOTU4Zjc4YWViOGNjOWJjMCIsInZlcnNpb24iOjF9.fexrU1icJK5_MiifBtZWkeUvpmFISqBLDXSQJ8E6UnrRof-7cU0s4tX_dIsauHWtUpIHMPZCf5dlMWQKXZuAAA |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad |
|
type: squad |
|
config: plain_text |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 85.289 |
|
name: Exact Match |
|
- type: f1 |
|
value: 91.841 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: adversarial_qa |
|
type: adversarial_qa |
|
config: adversarialQA |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 29.5 |
|
name: Exact Match |
|
- type: f1 |
|
value: 40.367 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad_adversarial |
|
type: squad_adversarial |
|
config: AddOneSent |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 78.567 |
|
name: Exact Match |
|
- type: f1 |
|
value: 84.469 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts amazon |
|
type: squadshifts |
|
config: amazon |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 69.924 |
|
name: Exact Match |
|
- type: f1 |
|
value: 83.284 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts new_wiki |
|
type: squadshifts |
|
config: new_wiki |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 81.204 |
|
name: Exact Match |
|
- type: f1 |
|
value: 90.595 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts nyt |
|
type: squadshifts |
|
config: nyt |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 82.931 |
|
name: Exact Match |
|
- type: f1 |
|
value: 90.756 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts reddit |
|
type: squadshifts |
|
config: reddit |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 71.55 |
|
name: Exact Match |
|
- type: f1 |
|
value: 82.939 |
|
name: F1 |
|
base_model: |
|
- FacebookAI/roberta-base |
|
--- |
|
|
|
# roberta-base for Extractive QA |
|
|
|
This is the [roberta-base](https://huggingface.co/roberta-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering. |
|
We have also released a distilled version of this model called [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2). It has a comparable prediction quality and runs at twice the speed of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2). |
|
|
|
|
|
## Overview |
|
**Language model:** roberta-base |
|
**Language:** English |
|
**Downstream-task:** Extractive QA |
|
**Training data:** SQuAD 2.0 |
|
**Eval data:** SQuAD 2.0 |
|
**Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline) |
|
**Infrastructure**: 4x Tesla v100 |
|
|
|
## Hyperparameters |
|
|
|
``` |
|
batch_size = 96 |
|
n_epochs = 2 |
|
base_LM_model = "roberta-base" |
|
max_seq_len = 386 |
|
learning_rate = 3e-5 |
|
lr_schedule = LinearWarmup |
|
warmup_proportion = 0.2 |
|
doc_stride=128 |
|
max_query_length=64 |
|
``` |
|
|
|
## Usage |
|
|
|
### In Haystack |
|
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. |
|
To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/): |
|
```python |
|
# After running pip install haystack-ai "transformers[torch,sentencepiece]" |
|
|
|
from haystack import Document |
|
from haystack.components.readers import ExtractiveReader |
|
|
|
docs = [ |
|
Document(content="Python is a popular programming language"), |
|
Document(content="python ist eine beliebte Programmiersprache"), |
|
] |
|
|
|
reader = ExtractiveReader(model="deepset/roberta-base-squad2") |
|
reader.warm_up() |
|
|
|
question = "What is a popular programming language?" |
|
result = reader.run(query=question, documents=docs) |
|
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]} |
|
``` |
|
For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline). |
|
|
|
### In Transformers |
|
```python |
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline |
|
|
|
model_name = "deepset/roberta-base-squad2" |
|
|
|
# a) Get predictions |
|
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) |
|
QA_input = { |
|
'question': 'Why is model conversion important?', |
|
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' |
|
} |
|
res = nlp(QA_input) |
|
|
|
# b) Load model & tokenizer |
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
``` |
|
|
|
## Performance |
|
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/). |
|
|
|
``` |
|
"exact": 79.87029394424324, |
|
"f1": 82.91251169582613, |
|
|
|
"total": 11873, |
|
"HasAns_exact": 77.93522267206478, |
|
"HasAns_f1": 84.02838248389763, |
|
"HasAns_total": 5928, |
|
"NoAns_exact": 81.79983179142137, |
|
"NoAns_f1": 81.79983179142137, |
|
"NoAns_total": 5945 |
|
``` |
|
|
|
## Authors |
|
**Branden Chan:** branden.chan@deepset.ai |
|
**Timo M枚ller:** timo.moeller@deepset.ai |
|
**Malte Pietsch:** malte.pietsch@deepset.ai |
|
**Tanay Soni:** tanay.soni@deepset.ai |
|
|
|
## About us |
|
|
|
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> |
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> |
|
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/> |
|
</div> |
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> |
|
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/> |
|
</div> |
|
</div> |
|
|
|
[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/). |
|
|
|
Some of our other work: |
|
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2) |
|
- [German BERT](https://deepset.ai/german-bert), [GermanQuAD and GermanDPR](https://deepset.ai/germanquad), [German embedding model](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1) |
|
- [deepset Cloud](https://www.deepset.ai/deepset-cloud-product) |
|
- [deepset Studio](https://www.deepset.ai/deepset-studio) |
|
|
|
## Get in touch and join the Haystack community |
|
|
|
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>. |
|
|
|
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p> |
|
|
|
[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai) |
|
|
|
By the way: [we're hiring!](http://www.deepset.ai/jobs) |