File size: 56,481 Bytes
f909292 3958b77 73c8fde 3958b77 f909292 3958b77 f909292 3958b77 73c8fde 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 73c8fde 3958b77 f909292 3958b77 f909292 3958b77 f909292 73c8fde f909292 3958b77 f909292 3958b77 f909292 3958b77 f909292 3958b77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
widget:
structuredData:
attribute_0:
- material_7
- material_7
- material_7
attribute_1:
- material_6
- material_5
- material_6
attribute_2:
- 6
- 6
- 6
attribute_3:
- 9
- 6
- 9
loading:
- 101.52
- 91.34
- 167.03
measurement_0:
- 9
- 10
- 11
measurement_1:
- 11
- 11
- 5
measurement_10:
- 14.926
- 15.162
- 16.398
measurement_11:
- 20.394
- 19.46
- 20.613
measurement_12:
- 11.829
- 9.114
- 11.007
measurement_13:
- 16.195
- 16.024
- 16.061
measurement_14:
- 16.517
- 17.132
- 15.18
measurement_15:
- 13.826
- 12.257
- 15.758
measurement_16:
- 14.206
- 15.094
- .nan
measurement_17:
- 723.712
- 896.835
- 893.454
measurement_2:
- 2
- 10
- 6
measurement_3:
- 17.492
- 18.114
- 18.42
measurement_4:
- 13.962
- 10.185
- 13.565
measurement_5:
- 15.716
- 18.06
- 16.916
measurement_6:
- 17.104
- 18.283
- 17.917
measurement_7:
- 12.377
- 10.957
- 10.394
measurement_8:
- 19.221
- 20.638
- 19.805
measurement_9:
- 11.613
- 11.804
- 12.012
product_code:
- E
- D
- E
---
# Model description
This is a DecisionTreeClassifier model built for Kaggle Tabular Playground Series August 2022, trained on supersoaker production failures dataset.
## Intended uses & limitations
This model is not ready to be used in production.
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| memory | |
| steps | [('transformation', ColumnTransformer(transformers=[('loading_missing_value_imputer',
SimpleImputer(), ['loading']),
('numerical_missing_value_imputer',
SimpleImputer(),
['loading', 'measurement_3', 'measurement_4',
'measurement_5', 'measurement_6',
'measurement_7', 'measurement_8',
'measurement_9', 'measurement_10',
'measurement_11', 'measurement_12',
'measurement_13', 'measurement_14',
'measurement_15', 'measurement_16',
'measurement_17']),
('attribute_0_encoder', OneHotEncoder(),
['attribute_0']),
('attribute_1_encoder', OneHotEncoder(),
['attribute_1']),
('product_code_encoder', OneHotEncoder(),
['product_code'])])), ('model', DecisionTreeClassifier(max_depth=4))] |
| verbose | False |
| transformation | ColumnTransformer(transformers=[('loading_missing_value_imputer',
SimpleImputer(), ['loading']),
('numerical_missing_value_imputer',
SimpleImputer(),
['loading', 'measurement_3', 'measurement_4',
'measurement_5', 'measurement_6',
'measurement_7', 'measurement_8',
'measurement_9', 'measurement_10',
'measurement_11', 'measurement_12',
'measurement_13', 'measurement_14',
'measurement_15', 'measurement_16',
'measurement_17']),
('attribute_0_encoder', OneHotEncoder(),
['attribute_0']),
('attribute_1_encoder', OneHotEncoder(),
['attribute_1']),
('product_code_encoder', OneHotEncoder(),
['product_code'])]) |
| model | DecisionTreeClassifier(max_depth=4) |
| transformation__n_jobs | |
| transformation__remainder | drop |
| transformation__sparse_threshold | 0.3 |
| transformation__transformer_weights | |
| transformation__transformers | [('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])] |
| transformation__verbose | False |
| transformation__verbose_feature_names_out | True |
| transformation__loading_missing_value_imputer | SimpleImputer() |
| transformation__numerical_missing_value_imputer | SimpleImputer() |
| transformation__attribute_0_encoder | OneHotEncoder() |
| transformation__attribute_1_encoder | OneHotEncoder() |
| transformation__product_code_encoder | OneHotEncoder() |
| transformation__loading_missing_value_imputer__add_indicator | False |
| transformation__loading_missing_value_imputer__copy | True |
| transformation__loading_missing_value_imputer__fill_value | |
| transformation__loading_missing_value_imputer__missing_values | nan |
| transformation__loading_missing_value_imputer__strategy | mean |
| transformation__loading_missing_value_imputer__verbose | 0 |
| transformation__numerical_missing_value_imputer__add_indicator | False |
| transformation__numerical_missing_value_imputer__copy | True |
| transformation__numerical_missing_value_imputer__fill_value | |
| transformation__numerical_missing_value_imputer__missing_values | nan |
| transformation__numerical_missing_value_imputer__strategy | mean |
| transformation__numerical_missing_value_imputer__verbose | 0 |
| transformation__attribute_0_encoder__categories | auto |
| transformation__attribute_0_encoder__drop | |
| transformation__attribute_0_encoder__dtype | <class 'numpy.float64'> |
| transformation__attribute_0_encoder__handle_unknown | error |
| transformation__attribute_0_encoder__sparse | True |
| transformation__attribute_1_encoder__categories | auto |
| transformation__attribute_1_encoder__drop | |
| transformation__attribute_1_encoder__dtype | <class 'numpy.float64'> |
| transformation__attribute_1_encoder__handle_unknown | error |
| transformation__attribute_1_encoder__sparse | True |
| transformation__product_code_encoder__categories | auto |
| transformation__product_code_encoder__drop | |
| transformation__product_code_encoder__dtype | <class 'numpy.float64'> |
| transformation__product_code_encoder__handle_unknown | error |
| transformation__product_code_encoder__sparse | True |
| model__ccp_alpha | 0.0 |
| model__class_weight | |
| model__criterion | gini |
| model__max_depth | 4 |
| model__max_features | |
| model__max_leaf_nodes | |
| model__min_impurity_decrease | 0.0 |
| model__min_samples_leaf | 1 |
| model__min_samples_split | 2 |
| model__min_weight_fraction_leaf | 0.0 |
| model__random_state | |
| model__splitter | best |
</details>
### Model Plot
The model plot is below.
<style>#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 {color: black;background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 pre{padding: 0;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-toggleable {background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator:hover {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-item {z-index: 1;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item:only-child::after {width: 0;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-text-repr-fallback {display: none;}</style><div id="sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="48fbfeb0-e954-46f7-9a36-8dfe86284fca" type="checkbox" ><label for="48fbfeb0-e954-46f7-9a36-8dfe86284fca" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="157828b7-30d1-4b5b-b25e-971143379fff" type="checkbox" ><label for="157828b7-30d1-4b5b-b25e-971143379fff" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(), ['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),['attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="3bde7e44-3687-4b99-a3b7-b4e87023ec85" type="checkbox" ><label for="3bde7e44-3687-4b99-a3b7-b4e87023ec85" class="sk-toggleable__label sk-toggleable__label-arrow">loading_missing_value_imputer</label><div class="sk-toggleable__content"><pre>['loading']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ef9279cb-7d77-4ef1-aafe-26e433e2a615" type="checkbox" ><label for="ef9279cb-7d77-4ef1-aafe-26e433e2a615" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b079e8d7-f789-4622-ad66-197193ef0061" type="checkbox" ><label for="b079e8d7-f789-4622-ad66-197193ef0061" class="sk-toggleable__label sk-toggleable__label-arrow">numerical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="969f6026-8077-468a-b332-8ceb69bac4e9" type="checkbox" ><label for="969f6026-8077-468a-b332-8ceb69bac4e9" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="5bb6cc8f-c971-47b8-a1bc-fe8053602d5c" type="checkbox" ><label for="5bb6cc8f-c971-47b8-a1bc-fe8053602d5c" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_0_encoder</label><div class="sk-toggleable__content"><pre>['attribute_0']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="8a841657-38e1-41bb-b8f9-5ad2cc25f7d3" type="checkbox" ><label for="8a841657-38e1-41bb-b8f9-5ad2cc25f7d3" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="be08add7-98fc-40b5-a259-d462d738780a" type="checkbox" ><label for="be08add7-98fc-40b5-a259-d462d738780a" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_1_encoder</label><div class="sk-toggleable__content"><pre>['attribute_1']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="cf07a6c2-b92e-40b1-9862-2c1ca3baab47" type="checkbox" ><label for="cf07a6c2-b92e-40b1-9862-2c1ca3baab47" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="244735dc-f1e1-458c-a1c6-60ef847b9cae" type="checkbox" ><label for="244735dc-f1e1-458c-a1c6-60ef847b9cae" class="sk-toggleable__label sk-toggleable__label-arrow">product_code_encoder</label><div class="sk-toggleable__content"><pre>['product_code']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="2f1a1c41-e1c4-40ce-afd9-9658030b3423" type="checkbox" ><label for="2f1a1c41-e1c4-40ce-afd9-9658030b3423" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="25044b48-b814-45f9-a75b-9ee472bdc79c" type="checkbox" ><label for="25044b48-b814-45f9-a75b-9ee472bdc79c" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(max_depth=4)</pre></div></div></div></div></div></div></div>
## Evaluation Results
You can find the details about evaluation process and the evaluation results.
| Metric | Value |
|----------|----------|
| accuracy | 0.791961 |
| f1 score | 0.791961 |
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
```python
import pickle
with open(decision-tree-playground-kaggle/model.pkl, 'rb') as file:
clf = pickle.load(file)
```
</details>
# Model Card Authors
This model card is written by following authors:
huggingface
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
Below you can find information related to citation.
**BibTeX:**
```
[More Information Needed]
```
# Additional Content
## Tree Plot
![Tree Plot](decision-tree-playground-kaggle/tree.png)
## Confusion Matrix
![Confusion Matrix](decision-tree-playground-kaggle/confusion_matrix.png) |