mnist_basic / README.md
dennishauser's picture
End of training
2bf8b17 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - mnist
metrics:
  - accuracy
model-index:
  - name: my_awesome_food_model
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: mnist
          type: mnist
          config: mnist
          split: test
          args: mnist
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8809

my_awesome_food_model

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the mnist dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5370
  • Accuracy: 0.8809

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5443 0.9979 234 0.5314 0.8862

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1