dennisjooo's picture
End of training
a7028ed
|
raw
history blame
4.55 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: emo-vit-base-patch16-224-in21k
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6

emo-vit-base-patch16-224-in21k

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1350
  • Accuracy: 0.6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 250

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0786 1.0 10 2.0448 0.2875
2.0107 2.0 20 1.9673 0.3125
1.8902 3.0 30 1.8561 0.4125
1.7355 4.0 40 1.6772 0.475
1.5861 5.0 50 1.5472 0.5
1.4665 6.0 60 1.4588 0.5375
1.3571 7.0 70 1.3812 0.5188
1.2465 8.0 80 1.3115 0.5312
1.1512 9.0 90 1.2910 0.525
1.0691 10.0 100 1.2342 0.5125
0.9837 11.0 110 1.2130 0.5437
0.9008 12.0 120 1.2073 0.5563
0.8315 13.0 130 1.1994 0.55
0.7634 14.0 140 1.1707 0.5563
0.709 15.0 150 1.1815 0.5563
0.6516 16.0 160 1.1622 0.5938
0.5933 17.0 170 1.2124 0.5312
0.5902 18.0 180 1.1782 0.5625
0.5122 19.0 190 1.2203 0.5625
0.4661 20.0 200 1.1928 0.5563
0.4797 21.0 210 1.1350 0.6
0.4459 22.0 220 1.2052 0.5563
0.4308 23.0 230 1.1729 0.5875
0.4121 24.0 240 1.2045 0.5375
0.3571 25.0 250 1.1906 0.6
0.3294 26.0 260 1.2311 0.5563
0.3661 27.0 270 1.2366 0.5375
0.328 28.0 280 1.2087 0.6
0.3352 29.0 290 1.2005 0.575
0.2923 30.0 300 1.2005 0.5813
0.2607 31.0 310 1.2309 0.5563
0.277 32.0 320 1.2385 0.5813
0.2678 33.0 330 1.2511 0.5563
0.2611 34.0 340 1.2675 0.575
0.2559 35.0 350 1.2869 0.575
0.2813 36.0 360 1.3965 0.55
0.2527 37.0 370 1.2851 0.6
0.2466 38.0 380 1.3265 0.55
0.2648 39.0 390 1.3024 0.575
0.2607 40.0 400 1.3884 0.5375
0.222 41.0 410 1.2922 0.5625
0.2095 42.0 420 1.3410 0.5437
0.197 43.0 430 1.3482 0.575
0.1964 44.0 440 1.3416 0.5687
0.2133 45.0 450 1.4440 0.5687
0.2095 46.0 460 1.3465 0.5437

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3