metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: emo-vit-base-patch16-224-in21k
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6
emo-vit-base-patch16-224-in21k
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.1350
- Accuracy: 0.6
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 250
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.0786 | 1.0 | 10 | 2.0448 | 0.2875 |
2.0107 | 2.0 | 20 | 1.9673 | 0.3125 |
1.8902 | 3.0 | 30 | 1.8561 | 0.4125 |
1.7355 | 4.0 | 40 | 1.6772 | 0.475 |
1.5861 | 5.0 | 50 | 1.5472 | 0.5 |
1.4665 | 6.0 | 60 | 1.4588 | 0.5375 |
1.3571 | 7.0 | 70 | 1.3812 | 0.5188 |
1.2465 | 8.0 | 80 | 1.3115 | 0.5312 |
1.1512 | 9.0 | 90 | 1.2910 | 0.525 |
1.0691 | 10.0 | 100 | 1.2342 | 0.5125 |
0.9837 | 11.0 | 110 | 1.2130 | 0.5437 |
0.9008 | 12.0 | 120 | 1.2073 | 0.5563 |
0.8315 | 13.0 | 130 | 1.1994 | 0.55 |
0.7634 | 14.0 | 140 | 1.1707 | 0.5563 |
0.709 | 15.0 | 150 | 1.1815 | 0.5563 |
0.6516 | 16.0 | 160 | 1.1622 | 0.5938 |
0.5933 | 17.0 | 170 | 1.2124 | 0.5312 |
0.5902 | 18.0 | 180 | 1.1782 | 0.5625 |
0.5122 | 19.0 | 190 | 1.2203 | 0.5625 |
0.4661 | 20.0 | 200 | 1.1928 | 0.5563 |
0.4797 | 21.0 | 210 | 1.1350 | 0.6 |
0.4459 | 22.0 | 220 | 1.2052 | 0.5563 |
0.4308 | 23.0 | 230 | 1.1729 | 0.5875 |
0.4121 | 24.0 | 240 | 1.2045 | 0.5375 |
0.3571 | 25.0 | 250 | 1.1906 | 0.6 |
0.3294 | 26.0 | 260 | 1.2311 | 0.5563 |
0.3661 | 27.0 | 270 | 1.2366 | 0.5375 |
0.328 | 28.0 | 280 | 1.2087 | 0.6 |
0.3352 | 29.0 | 290 | 1.2005 | 0.575 |
0.2923 | 30.0 | 300 | 1.2005 | 0.5813 |
0.2607 | 31.0 | 310 | 1.2309 | 0.5563 |
0.277 | 32.0 | 320 | 1.2385 | 0.5813 |
0.2678 | 33.0 | 330 | 1.2511 | 0.5563 |
0.2611 | 34.0 | 340 | 1.2675 | 0.575 |
0.2559 | 35.0 | 350 | 1.2869 | 0.575 |
0.2813 | 36.0 | 360 | 1.3965 | 0.55 |
0.2527 | 37.0 | 370 | 1.2851 | 0.6 |
0.2466 | 38.0 | 380 | 1.3265 | 0.55 |
0.2648 | 39.0 | 390 | 1.3024 | 0.575 |
0.2607 | 40.0 | 400 | 1.3884 | 0.5375 |
0.222 | 41.0 | 410 | 1.2922 | 0.5625 |
0.2095 | 42.0 | 420 | 1.3410 | 0.5437 |
0.197 | 43.0 | 430 | 1.3482 | 0.575 |
0.1964 | 44.0 | 440 | 1.3416 | 0.5687 |
0.2133 | 45.0 | 450 | 1.4440 | 0.5687 |
0.2095 | 46.0 | 460 | 1.3465 | 0.5437 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3