metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- image_folder
metrics:
- accuracy
- precision
- f1
model-index:
- name: emotion_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: image_folder
type: image_folder
config: FastJobs--Visual_Emotional_Analysis
split: train
args: FastJobs--Visual_Emotional_Analysis
metrics:
- name: Accuracy
type: accuracy
value: 0.64375
- name: Precision
type: precision
value: 0.6639732142857142
- name: F1
type: f1
value: 0.640682001352849
emotion_classification
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the image_folder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0750
- Accuracy: 0.6438
- Precision: 0.6640
- F1: 0.6407
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 50
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | F1 |
---|---|---|---|---|---|---|
2.0755 | 1.0 | 10 | 2.0787 | 0.1437 | 0.1529 | 0.1414 |
2.0711 | 2.0 | 20 | 2.0698 | 0.1875 | 0.1926 | 0.1832 |
2.0533 | 3.0 | 30 | 2.0520 | 0.2 | 0.2127 | 0.1961 |
2.0225 | 4.0 | 40 | 2.0173 | 0.225 | 0.2228 | 0.2054 |
1.9569 | 5.0 | 50 | 1.9289 | 0.2812 | 0.3345 | 0.2544 |
1.8501 | 6.0 | 60 | 1.7792 | 0.3688 | 0.4904 | 0.3225 |
1.7072 | 7.0 | 70 | 1.6236 | 0.4313 | 0.4131 | 0.3883 |
1.6065 | 8.0 | 80 | 1.5276 | 0.45 | 0.4533 | 0.3920 |
1.539 | 9.0 | 90 | 1.4747 | 0.4938 | 0.4748 | 0.4563 |
1.5086 | 10.0 | 100 | 1.4393 | 0.4938 | 0.4557 | 0.4466 |
1.4479 | 11.0 | 110 | 1.3893 | 0.5188 | 0.4563 | 0.4696 |
1.3683 | 12.0 | 120 | 1.3534 | 0.5437 | 0.5081 | 0.5149 |
1.3288 | 13.0 | 130 | 1.3392 | 0.5563 | 0.5569 | 0.5323 |
1.2514 | 14.0 | 140 | 1.2723 | 0.5625 | 0.5467 | 0.5246 |
1.2116 | 15.0 | 150 | 1.2526 | 0.5875 | 0.5554 | 0.5601 |
1.1824 | 16.0 | 160 | 1.2047 | 0.5938 | 0.6100 | 0.5697 |
1.1323 | 17.0 | 170 | 1.1950 | 0.5813 | 0.5331 | 0.5472 |
1.0782 | 18.0 | 180 | 1.1802 | 0.5875 | 0.5911 | 0.5807 |
1.0304 | 19.0 | 190 | 1.1534 | 0.6125 | 0.6133 | 0.6012 |
0.982 | 20.0 | 200 | 1.1302 | 0.6 | 0.5923 | 0.5806 |
0.9309 | 21.0 | 210 | 1.1849 | 0.5938 | 0.6157 | 0.5723 |
0.9205 | 22.0 | 220 | 1.1483 | 0.6 | 0.6137 | 0.5882 |
0.8275 | 23.0 | 230 | 1.1332 | 0.5938 | 0.6192 | 0.5894 |
0.8472 | 24.0 | 240 | 1.1195 | 0.625 | 0.6444 | 0.6242 |
0.7974 | 25.0 | 250 | 1.1444 | 0.6062 | 0.6277 | 0.6035 |
0.7532 | 26.0 | 260 | 1.1312 | 0.5875 | 0.6036 | 0.5832 |
0.7596 | 27.0 | 270 | 1.1217 | 0.6062 | 0.6412 | 0.6098 |
0.6818 | 28.0 | 280 | 1.1736 | 0.5625 | 0.6180 | 0.5473 |
0.6484 | 29.0 | 290 | 1.1630 | 0.5563 | 0.5887 | 0.5367 |
0.6578 | 30.0 | 300 | 1.0750 | 0.6438 | 0.6640 | 0.6407 |
0.6235 | 31.0 | 310 | 1.0676 | 0.6438 | 0.6556 | 0.6422 |
0.5966 | 32.0 | 320 | 1.0531 | 0.6438 | 0.6421 | 0.6385 |
0.5819 | 33.0 | 330 | 1.1244 | 0.6188 | 0.6315 | 0.6176 |
0.5585 | 34.0 | 340 | 1.1466 | 0.5813 | 0.6136 | 0.5790 |
0.5696 | 35.0 | 350 | 1.0703 | 0.6438 | 0.6614 | 0.6481 |
0.5476 | 36.0 | 360 | 1.1136 | 0.6438 | 0.6764 | 0.6466 |
0.475 | 37.0 | 370 | 1.1122 | 0.6375 | 0.6612 | 0.6340 |
0.5381 | 38.0 | 380 | 1.1547 | 0.6188 | 0.6570 | 0.6122 |
0.5161 | 39.0 | 390 | 1.2268 | 0.5875 | 0.6161 | 0.5704 |
0.4528 | 40.0 | 400 | 1.1065 | 0.6188 | 0.6314 | 0.6122 |
0.401 | 41.0 | 410 | 1.1209 | 0.6438 | 0.6550 | 0.6440 |
0.4067 | 42.0 | 420 | 1.1440 | 0.6312 | 0.6345 | 0.6251 |
0.3831 | 43.0 | 430 | 1.1972 | 0.6188 | 0.6480 | 0.6075 |
0.4073 | 44.0 | 440 | 1.2422 | 0.6062 | 0.6644 | 0.6028 |
0.371 | 45.0 | 450 | 1.2152 | 0.5875 | 0.6087 | 0.5848 |
0.396 | 46.0 | 460 | 1.1972 | 0.6125 | 0.6306 | 0.6106 |
0.3322 | 47.0 | 470 | 1.2979 | 0.5813 | 0.6158 | 0.5811 |
0.3691 | 48.0 | 480 | 1.1657 | 0.625 | 0.6371 | 0.6162 |
0.3219 | 49.0 | 490 | 1.1786 | 0.6 | 0.6417 | 0.5997 |
0.3371 | 50.0 | 500 | 1.2126 | 0.6188 | 0.6396 | 0.6149 |
0.3781 | 51.0 | 510 | 1.2246 | 0.6 | 0.6244 | 0.5972 |
0.3629 | 52.0 | 520 | 1.1820 | 0.6188 | 0.6437 | 0.6122 |
0.3025 | 53.0 | 530 | 1.1795 | 0.6062 | 0.6326 | 0.6063 |
0.309 | 54.0 | 540 | 1.1647 | 0.625 | 0.6510 | 0.6252 |
0.2999 | 55.0 | 550 | 1.2023 | 0.6375 | 0.6449 | 0.6373 |
Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3