dennisjooo's picture
Update README.md
613be2f
|
raw
history blame
6.01 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - FastJobs/Visual_Emotional_Analysis
metrics:
  - accuracy
  - precision
  - f1
model-index:
  - name: emo-vit-base-patch16-224-in21k
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: FastJobs/Visual_Emotional_Analysis
          type: FastJobs/Visual_Emotional_Analysis
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.61875
          - name: Precision
            type: precision
            value: 0.6229001976284585
          - name: F1
            type: f1
            value: 0.6163114517061885

emo-vit-base-patch16-224-in21k

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the FastJobs/Visual_Emotional_Analysis dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2392
  • Accuracy: 0.6188
  • Precision: 0.6229
  • F1: 0.6163

Training and evaluation data

Data Split

Used a 4:1 ratio for training and development sets and a seed of 42.

Pre-processing Augmentation

The main pre-processing phase for both training and evaluation includes:

  • Resizing to (224, 224, 3)
  • Normalizing images using a mean and standard deviation of [0.5, 0.5, 0.5]

Other than the aforementioned pre-processing, the training set was augmented using:

  • Random horizontal & vertical flip
  • Color jitter
  • Random resized crop

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision F1
2.0652 1.0 10 1.9712 0.35 0.3441 0.3294
1.9006 2.0 20 1.6055 0.425 0.3497 0.3578
1.6274 3.0 30 1.4991 0.4875 0.5747 0.4621
1.4742 4.0 40 1.4417 0.4313 0.4744 0.4037
1.3546 5.0 50 1.3699 0.4125 0.3896 0.3387
1.2574 6.0 60 1.2200 0.5125 0.5072 0.4783
1.183 7.0 70 1.1368 0.5375 0.5802 0.5341
1.0869 8.0 80 1.1332 0.5687 0.6024 0.5622
1.002 9.0 90 1.1178 0.55 0.5663 0.5423
0.9453 10.0 100 1.1601 0.5563 0.5994 0.5515
0.9495 11.0 110 1.1202 0.525 0.5695 0.5266
0.7805 12.0 120 1.1620 0.5375 0.5577 0.5323
0.7487 13.0 130 1.2094 0.5687 0.6218 0.5716
0.6805 14.0 140 1.2662 0.5437 0.5875 0.5345
0.6491 15.0 150 1.1673 0.5625 0.5707 0.5511
0.6168 16.0 160 1.2981 0.475 0.5388 0.4846
0.5512 17.0 170 1.2624 0.575 0.6110 0.5726
0.5532 18.0 180 1.2392 0.6188 0.6229 0.6163
0.4931 19.0 190 1.4012 0.5375 0.5542 0.5277
0.4919 20.0 200 1.2323 0.5813 0.5825 0.5758
0.4243 21.0 210 1.3046 0.5875 0.5967 0.5750
0.3971 22.0 220 1.3169 0.5687 0.5812 0.5610
0.3534 23.0 230 1.4052 0.5625 0.6240 0.5527
0.3456 24.0 240 1.3372 0.5875 0.5998 0.5838
0.3381 25.0 250 1.4000 0.55 0.5589 0.5468
0.3786 26.0 260 1.3531 0.5687 0.6269 0.5764
0.3614 27.0 270 1.3696 0.5687 0.6019 0.5704
0.312 28.0 280 1.3523 0.6125 0.6351 0.6148
0.2643 29.0 290 1.4510 0.5813 0.6286 0.5825
0.3553 30.0 300 1.5255 0.6062 0.6560 0.6113
0.2807 31.0 310 1.5901 0.5813 0.5921 0.5655
0.3252 32.0 320 1.5669 0.575 0.5764 0.5639
0.3796 33.0 330 1.6251 0.5375 0.5776 0.5431
0.2635 34.0 340 1.7397 0.4938 0.5513 0.4944
0.2583 35.0 350 1.4806 0.6 0.6566 0.6099
0.3006 36.0 360 1.4808 0.5813 0.6310 0.5863
0.3082 37.0 370 1.7077 0.5188 0.5680 0.5156
0.3346 38.0 380 1.6861 0.575 0.6725 0.5638
0.291 39.0 390 1.5484 0.5625 0.5631 0.5535
0.2313 40.0 400 1.4933 0.5563 0.5564 0.5526
0.2163 41.0 410 1.5836 0.5938 0.6046 0.5929
0.2201 42.0 420 1.6363 0.5687 0.5954 0.5672
0.2077 43.0 430 1.6746 0.5687 0.5623 0.5622

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3