|
from model import model_init, BraggNN |
|
from torch.utils.data import DataLoader |
|
from dataset import PatchWiseDataset |
|
import torch, argparse, os |
|
from util import str2bool, str2tuple, s2ituple |
|
from plot import plot_loss, plot_error |
|
import numpy as np |
|
|
|
parser = argparse.ArgumentParser(description='Bragg peak finding for HEDM.') |
|
parser.add_argument('-p_file', type=str, default="debug", help='frame/patch metadata h5 file') |
|
parser.add_argument('-f_file', type=str, default="debug", help='frame/patch h5 file') |
|
parser.add_argument('-m_file', type=str, help='model state_dict file') |
|
parser.add_argument('-psz', type=int, default=15, help='working patch size') |
|
parser.add_argument('-fcsz', type=s2ituple, default='16_8_4_2', help='size of dense layers') |
|
parser.add_argument('-expName',type=str, default="debug", help='Experiment name') |
|
args, unparsed = parser.parse_known_args() |
|
|
|
def main(args): |
|
device = torch.device("cpu") |
|
|
|
if device.type == 'cpu': |
|
model=torch.load(args.m_file,map_location=torch.device('cpu')) |
|
else: |
|
model=torch.load(args.m_file) |
|
model.eval() |
|
|
|
ds_valid = PatchWiseDataset(psz=args.psz, rnd_shift=0, use='validation', pfile=args.p_file, ffile=args.f_file) |
|
dl_valid = DataLoader(dataset=ds_valid, batch_size=len(ds_valid), shuffle=True, \ |
|
num_workers=4, drop_last=False, pin_memory=True) |
|
mse=0.0 |
|
with torch.no_grad(): |
|
for i, (inputs, labels) in enumerate(dl_valid): |
|
inputs = inputs.to(device) |
|
y_pred = model(inputs) |
|
y_pred = y_pred.cpu().numpy() |
|
labels = labels.cpu().numpy() |
|
plot_error(y_pred,labels,args.expName) |
|
mse += np.power(y_pred[:,0] - labels[:,0],2) + np.power(y_pred[:,1] - labels[:,1],2) |
|
if __name__ == "__main__": |
|
main(args) |
|
|
|
|