|
--- |
|
license: mit |
|
base_model: roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: roberta-base_gpt-4o-2024-05-13_gpt-4o-mini-2024-07-18_20240913_044355 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta-base_gpt-4o-2024-05-13_gpt-4o-mini-2024-07-18_20240913_044355 |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4503 |
|
- Accuracy: 0.8026 |
|
- F1: 0.8832 |
|
- Precision: 0.8292 |
|
- Recall: 0.9448 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 420 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.4781 | 1.0 | 871 | 0.4503 | 0.8026 | 0.8832 | 0.8292 | 0.9448 | |
|
| 0.4526 | 2.0 | 1742 | 0.4536 | 0.8048 | 0.8822 | 0.8434 | 0.9248 | |
|
| 0.424 | 3.0 | 2613 | 0.4529 | 0.8052 | 0.8837 | 0.8362 | 0.9370 | |
|
| 0.3789 | 4.0 | 3484 | 0.4970 | 0.8029 | 0.8826 | 0.8336 | 0.9379 | |
|
| 0.3275 | 5.0 | 4355 | 0.5587 | 0.7945 | 0.8777 | 0.8286 | 0.9330 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|