|
--- |
|
license: mit |
|
--- |
|
|
|
<p align="center"> |
|
<img src = "https://raw.githubusercontent.com/DevoLearn/devolearn/master/images/banner_1.jpg"> |
|
</p> |
|
|
|
![Build Status](https://github.com/DevoLearn/devolearn/actions/workflows/main.yml/badge.svg) |
|
[![codecov](https://codecov.io/gh/DevoLearn/devolearn/branch/master/graph/badge.svg?token=F8AJZSGWXJ)](https://codecov.io/gh/DevoLearn/devolearn) |
|
[![](https://img.shields.io/github/issues/DevoLearn/devolearn)](https://github.com/DevoLearn/devolearn/issues) |
|
[![](https://img.shields.io/github/contributors/DevoLearn/devolearn)](https://github.com/DevoLearn/devolearn/graphs/contributors) |
|
[![](https://img.shields.io/github/last-commit/DevoLearn/devolearn)](https://github.com/DevoLearn/devolearn/commits/master) |
|
[![](https://img.shields.io/twitter/url?color=green&label=Slack&logo=slack&logoColor=blue&style=social&url=https%3A%2F%2Fopenworm.slack.com%2Farchives%2FCMVFU7Q4W)](https://openworm.slack.com/archives/CMVFU7Q4W) |
|
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DevoLearn/data-science-demos/blob/master/devolearn_docs/devolearn_quickstart.ipynb) |
|
|
|
|
|
## Contents |
|
|
|
* [Example notebooks](https://github.com/DevoLearn/devolearn#example-notebooks) |
|
* [Segmenting the C. elegans embryo](https://github.com/DevoLearn/devolearn#segmenting-the-c-elegans-embryo) |
|
* [Generating synthetic images of embryos with a GAN](https://github.com/DevoLearn/devolearn#generating-synthetic-images-of-embryos-with-a-pre-trained-gan) |
|
* [Predicting populations of cells within the C. elegans embryo](https://github.com/DevoLearn/devolearn#predicting-populations-of-cells-within-the-c-elegans-embryo) |
|
* [Contributing to DevoLearn](https://github.com/DevoLearn/devolearn/blob/master/.github/contributing.md#contributing-to-devolearn) |
|
* [Links to datasets](https://github.com/DevoLearn/devolearn#links-to-datasets) |
|
* [Contact us](https://github.com/DevoLearn/devolearn#authorsmaintainers) |
|
|
|
|
|
### Installation |
|
```python |
|
pip install devolearn |
|
``` |
|
### Example notebooks |
|
<p align="center"> |
|
<img src = "https://raw.githubusercontent.com/DevoLearn/data-science-demos/master/Networks/nodes_matrix_long_smooth.gif" width = "40%"> |
|
<img src = "https://raw.githubusercontent.com/DevoLearn/data-science-demos/master/Networks/3d_node_map.gif" width = "40%"> |
|
</p> |
|
|
|
* [Extracting centroid maps and making 3d centroid models](https://nbviewer.jupyter.org/github/DevoLearn/data-science-demos/blob/master/Networks/experiments_with_devolearn_node_maps.ipynb) |
|
|
|
### Segmenting the Cell Membrane in C. elegans embryo |
|
<p align="center"> |
|
<img src = "https://raw.githubusercontent.com/DevoLearn/devolearn/master/images/pred_centroids.gif" width = "80%"> |
|
</p> |
|
|
|
* Importing the model |
|
```python |
|
from devolearn import cell_membrane_segmentor |
|
segmentor = cell_membrane_segmentor() |
|
|
|
``` |
|
|
|
* Running the model on an image and viewing the prediction |
|
```python |
|
seg_pred = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg") |
|
plt.imshow(seg_pred) |
|
plt.show() |
|
``` |
|
|
|
* Running the model on a video and saving the predictions into a folder |
|
```python |
|
filenames = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = False, save_folder = "preds") |
|
``` |
|
|
|
* Finding the centroids of the segmented features |
|
```python |
|
seg_pred, centroids = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg", centroid_mode = True) |
|
plt.imshow(seg_pred) |
|
plt.show() |
|
``` |
|
|
|
* Saving the centroids from each frame into a CSV |
|
|
|
```python |
|
df = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = True, save_folder = "preds") |
|
df.to_csv("centroids.csv") |
|
``` |
|
|
|
### Segmenting the Cell Nucleus in C. elegans embryo |
|
<p align="center"> |
|
<img src='https://huggingface.co/devoworm-group/Devolearn/resolve/main/images/nucleus_segmentation.gif' width = "60%"> |
|
</p> |
|
|
|
* Importing the model |
|
```python |
|
from devolearn import cell_nucleus_segmentor |
|
segmentor = cell_nucleus_segmentor() |
|
|
|
``` |
|
|
|
* Running the model on an image and viewing the prediction |
|
```python |
|
seg_pred = segmentor.predict(image_path = "sample_data/images/nucleus_seg_sample.jpg") |
|
plt.imshow(seg_pred) |
|
plt.show() |
|
``` |
|
|
|
### Generating synthetic images of embryos with a Pre-trained GAN |
|
<p align="center"> |
|
<img src = "https://raw.githubusercontent.com/devoworm/GSoC-2020/master/Pre-trained%20Models%20(DevLearning)/images/generated_embryos_3.gif" width = "30%"> |
|
</p> |
|
|
|
* Importing the model |
|
```python |
|
from devolearn import Generator, embryo_generator_model |
|
generator = embryo_generator_model() |
|
|
|
``` |
|
|
|
* Generating a picture and viewing it with [matplotlib](https://matplotlib.org/) |
|
```python |
|
gen_image = generator.generate() |
|
plt.imshow(gen_image) |
|
plt.show() |
|
|
|
``` |
|
|
|
* Generating n images and saving them into `foldername` with a custom size |
|
|
|
```python |
|
generator.generate_n_images(n = 5, foldername= "generated_images", image_size= (700,500)) |
|
``` |
|
|
|
--- |
|
|
|
### Predicting populations of cells within the C. elegans embryo |
|
|
|
<p align="center"> |
|
<img src = "https://raw.githubusercontent.com/devoworm/GSoC-2020/master/Pre-trained%20Models%20(DevLearning)/images/resnet_preds_with_input.gif" width = "60%"> |
|
</p> |
|
|
|
* Importing the population model for inferences |
|
```python |
|
from devolearn import lineage_population_model |
|
``` |
|
|
|
* Loading a model instance to be used to estimate lineage populations of embryos from videos/photos. |
|
```python |
|
model = lineage_population_model(device = "cpu") |
|
``` |
|
|
|
* Making a prediction from an image |
|
```python |
|
print(model.predict(image_path = "sample_data/images/embryo_sample.png")) |
|
``` |
|
|
|
* Making predictions from a video and saving the predictions into a CSV file |
|
```python |
|
results = model.predict_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_csv = True, csv_name = "video_preds.csv", ignore_first_n_frames= 10, ignore_last_n_frames= 10, postprocess = False) |
|
``` |
|
|
|
* Plotting the model's predictions from a video |
|
```python |
|
plot = model.create_population_plot_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_plot= True, plot_name= "plot.png", ignore_last_n_frames= 0, postprocess = False) |
|
plot.show() |
|
``` |
|
|
|
## Links to Datasets |
|
| **Model** | **Data source** | |
|
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| Segmenting the cell membrane in C. elegans embryo | [3DMMS: robust 3D Membrane Morphological Segmentation of C. elegans embryo](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2720-x#Abs1/) | |
|
| Segmenting the nucleus in C. elegans embryo | [C. elegans Cell-Tracking-Challenge dataset](http://celltrackingchallenge.net/3d-datasets/) |
|
| Cell lineage population prediction + embryo GAN | [EPIC dataset](https://epic.gs.washington.edu/) |
|
|
|
|
|
## Links to HuggingFace spaces |
|
| **Model** | **Huggingface** | |
|
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| Segmenting the cell membrane in C. elegans embryo | [Cell Membrane segmentor](https://huggingface.co/spaces/devoworm-group/membrane_segmentation) | |
|
| Segmenting the nucleus in C. elegans embryo | [C. elegans Nucleus segmentor](https://huggingface.co/spaces/devoworm-group/nucleus_segmentor) |
|
| Cell lineage population prediction | [Lineage population](https://huggingface.co/spaces/devoworm-group/Lineage_Population) |
|
|
|
## Authors/maintainers: |
|
* [Mayukh Deb](https://twitter.com/mayukh091) |
|
* [Ujjwal Singh](https://twitter.com/ujjjwalll) |
|
* [Dr. Bradly Alicea](https://twitter.com/balicea1) |
|
|
|
Feel free to join our [Slack workspace](https://openworm.slack.com/archives/CMVFU7Q4W)! |
|
|