Visualize in Weights & Biases

llama-qLoRA

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9713

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: inverse_sqrt
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.9835 0.3350 500 2.0047
1.97 0.6700 1000 1.9901
1.9764 1.0050 1500 1.9838
1.9714 1.3400 2000 1.9799
1.9547 1.6750 2500 1.9770
1.981 2.0101 3000 1.9747
1.9841 2.3451 3500 1.9729
1.9469 2.6801 4000 1.9713

Framework versions

  • PEFT 0.12.0
  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for dhanishetty/Llama-3-8B-Adapters

Adapter
(538)
this model

Collection including dhanishetty/Llama-3-8B-Adapters