|
--- |
|
base_model: google/flan-t5-base |
|
library_name: peft |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: phi-3-mini-LoRA |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/dhanishetty-personaluse/huggingface/runs/20xo0xft) |
|
# phi-3-mini-LoRA |
|
|
|
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2883 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: polynomial |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 2.1252 | 0.1688 | 50 | 1.7704 | |
|
| 1.8084 | 0.3376 | 100 | 1.5334 | |
|
| 1.685 | 0.5063 | 150 | 1.4541 | |
|
| 1.5977 | 0.6751 | 200 | 1.4138 | |
|
| 1.5716 | 0.8439 | 250 | 1.3887 | |
|
| 1.579 | 1.0127 | 300 | 1.3644 | |
|
| 1.5354 | 1.1814 | 350 | 1.3511 | |
|
| 1.5126 | 1.3502 | 400 | 1.3405 | |
|
| 1.5133 | 1.5190 | 450 | 1.3294 | |
|
| 1.4913 | 1.6878 | 500 | 1.3193 | |
|
| 1.5546 | 1.8565 | 550 | 1.3127 | |
|
| 1.4793 | 2.0253 | 600 | 1.3075 | |
|
| 1.4723 | 2.1941 | 650 | 1.3037 | |
|
| 1.4818 | 2.3629 | 700 | 1.2983 | |
|
| 1.484 | 2.5316 | 750 | 1.2936 | |
|
| 1.4492 | 2.7004 | 800 | 1.2902 | |
|
| 1.4943 | 2.8692 | 850 | 1.2883 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.43.2 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |