See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Yarn-Mistral-7b-128k
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 081adefbeff5d439_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/081adefbeff5d439_train_data.json
type:
field_instruction: text
field_output: target
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 25
eval_table_size: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: diaenra/5eb46825-b54e-4c8a-bb73-60acbff95428
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/081adefbeff5d439_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
sequence_len: 4056
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: diaenra-tao-miner
wandb_mode: online
wandb_name: 5eb46825-b54e-4c8a-bb73-60acbff95428
wandb_project: tao
wandb_run: diaenra
wandb_runid: 5eb46825-b54e-4c8a-bb73-60acbff95428
warmup_ratio: 0.05
weight_decay: 0.01
xformers_attention: true
5eb46825-b54e-4c8a-bb73-60acbff95428
This model is a fine-tuned version of NousResearch/Yarn-Mistral-7b-128k on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0611
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.7994 | 0.0008 | 1 | 1.5392 |
5.3043 | 0.0193 | 25 | 1.1093 |
3.6488 | 0.0387 | 50 | 1.0772 |
4.0698 | 0.0580 | 75 | 1.0643 |
3.4783 | 0.0773 | 100 | 1.0611 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 13
Model tree for diaenra/5eb46825-b54e-4c8a-bb73-60acbff95428
Base model
NousResearch/Yarn-Mistral-7b-128k