ceva / README.md
dianamihalache27's picture
End of training
71dade0 verified
---
base_model: dianamihalache27/Twroberta-baseB_5epoch
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: ceva
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ceva
This model is a fine-tuned version of [dianamihalache27/Twroberta-baseB_5epoch](https://huggingface.co/dianamihalache27/Twroberta-baseB_5epoch) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1932
- Accuracy: 0.7714
- F1: 0.2892
- Precision: 0.2435
- Recall: 0.3579
- Precision Sarcastic: 0.3372
- Recall Sarcastic: 0.4833
- F1 Sarcastic: 0.3973
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Precision Sarcastic | Recall Sarcastic | F1 Sarcastic |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------------:|:----------------:|:------------:|
| No log | 1.0 | 217 | 0.1618 | 0.7893 | 0.2947 | 0.2611 | 0.3395 | 0.3458 | 0.4611 | 0.3952 |
| No log | 2.0 | 434 | 0.1815 | 0.7629 | 0.3104 | 0.2560 | 0.4059 | 0.3299 | 0.5278 | 0.4060 |
| 0.0559 | 3.0 | 651 | 0.1762 | 0.8 | 0.2957 | 0.2991 | 0.3173 | 0.3721 | 0.4444 | 0.4051 |
| 0.0559 | 4.0 | 868 | 0.1811 | 0.7636 | 0.2933 | 0.2418 | 0.3727 | 0.3297 | 0.5111 | 0.4009 |
| 0.0245 | 5.0 | 1085 | 0.1932 | 0.7714 | 0.2892 | 0.2435 | 0.3579 | 0.3372 | 0.4833 | 0.3973 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1