Edit model card

Adapting LLMs to Hebrew: Unveiling DictaLM 2.0 with Enhanced Vocabulary and Instruction Capabilities

The DictaLM-2.0 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters trained to specialize in Hebrew text.

For full details of this model please read our release blog post or the technical report.

This is the full-precision base model. You can view and access the full collection of base/instruct unquantized/quantized versions of DictaLM-2.0 here.

Example Code

from transformers import pipeline
import torch

# This loads the model onto the GPU in bfloat16 precision
model = pipeline('text-generation', 'dicta-il/dictalm2.0', torch_dtype=torch.bfloat16, device_map='cuda')

# Sample few shot examples
prompt = """
עבר: הלכתי
עתיד: אלך

עבר: שמרתי
עתיד: אשמור

עבר: שמעתי
עתיד: אשמע

עבר: הבנתי
עתיד:
"""

print(model(prompt.strip(), do_sample=False, max_new_tokens=8, stop_sequence='\n'))
# [{'generated_text': 'עבר: הלכתי\nעתיד: אלך\n\nעבר: שמרתי\nעתיד: אשמור\n\nעבר: שמעתי\nעתיד: אשמע\n\nעבר: הבנתי\nעתיד: אבין\n\n'}]

Example Code - 4-Bit

There are already pre-quantized 4-bit models using the GPTQ and AWQ methods available for use: DictaLM-2.0-AWQ and DictaLM-2.0-GPTQ.

For dynamic quantization on the go, here is sample code which loads the model onto the GPU using the bitsandbytes package, requiring :

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model = AutoModelForCausalLM.from_pretrained('dicta-il/dictalm2.0', torch_dtype=torch.bfloat16, device_map='cuda', load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained('dicta-il/dictalm2.0')

prompt = """
עבר: הלכתי
עתיד: אלך

עבר: שמרתי
עתיד: אשמור

עבר: שמעתי
עתיד: אשמע

עבר: הבנתי
עתיד:
"""

encoded = tokenizer(prompt.strip(), return_tensors='pt').to(model.device)
print(tokenizer.batch_decode(model.generate(**encoded, do_sample=False, max_new_tokens=4)))
# ['<s> עבר: הלכתי\nעתיד: אלך\n\nעבר: שמרתי\nעתיד: אשמור\n\nעבר: שמעתי\nעתיד: אשמע\n\nעבר: הבנתי\nעתיד: אבין\n\n']

Model Architecture

DictaLM-2.0 is based on the Mistral-7B-v0.1 model with the following changes:

  • An extended tokenizer with 1,000 injected tokens specifically for Hebrew, increasing the compression rate from 5.78 tokens/word to 2.76 tokens/word.
  • Continued pretraining on over 190B tokens of naturally occuring text, 50% Hebrew and 50% English.

Notice

DictaLM 2.0 is a pretrained base model and therefore does not have any moderation mechanisms.

Citation

If you use this model, please cite:

@misc{shmidman2024adaptingllmshebrewunveiling,
      title={Adapting LLMs to Hebrew: Unveiling DictaLM 2.0 with Enhanced Vocabulary and Instruction Capabilities}, 
      author={Shaltiel Shmidman and Avi Shmidman and Amir DN Cohen and Moshe Koppel},
      year={2024},
      eprint={2407.07080},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2407.07080}, 
}
Downloads last month
8,651
Safetensors
Model size
7.25B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dicta-il/dictalm2.0

Finetunes
4 models
Quantizations
9 models

Spaces using dicta-il/dictalm2.0 2

Collection including dicta-il/dictalm2.0