|
--- |
|
library_name: transformers |
|
tags: |
|
- unsloth |
|
license: mit |
|
datasets: |
|
- efederici/alpaca-vs-alpaca-orpo-dpo |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
This is phi-3-mini-4k-instruct ORPO finetuning for the italian language over the Alpaca vs. Alpaca italian dataset: [efederici/alpaca-vs-alpaca-orpo-dpo](https://huggingface.co/datasets/efederici/alpaca-vs-alpaca-orpo-dpo) |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
- **Developed by:** Diego Giorgini |
|
- **Funded by:** AI Technologies SRL - www.aitechnologies.it |
|
- **Language(s) (NLP):** Italian |
|
- **License:** llama3 |
|
- **Finetuned from model:** unsloth/Phi-3-mini-4k-instruct |
|
|
|
## Training Details |
|
|
|
### Environment |
|
|
|
unsloth: 2024.5 |
|
torch: 2.2 |
|
|
|
### Training Data |
|
|
|
[efederici/alpaca-vs-alpaca-orpo-dpo](https://huggingface.co/datasets/efederici/alpaca-vs-alpaca-orpo-dpo): The Alpaca vs. Alpaca dataset is a curated blend of the Alpaca dataset and the Alpaca GPT-4 dataset, both available on HuggingFace Datasets. It uses the standard GPT dataset as the 'rejected' answer, steering the model towards the GPT-4 answer, which is considered as the 'chosen' one. |
|
|
|
### Training Procedure |
|
|
|
#### Preprocessing [optional] |
|
|
|
- No preprocessing has been performed, except for formatting with the phi-3 chat_template from unsloth: |
|
|
|
```tokenizer = get_chat_template(tokenizer, chat_template = "phi-3")``` |
|
|
|
#### Training Hyperparameters |
|
|
|
- **Training regime:** bf16 |
|
|
|
- **Model loading parameters:** |
|
|
|
``` |
|
max_seq_length = 8192 |
|
dtype = None |
|
load_in_4bit = False |
|
``` |
|
|
|
- **PEFT parameters:** |
|
|
|
``` |
|
r = 64 |
|
lora_alpha = 64 |
|
lora_dropout = 0 |
|
bias = "none" |
|
random_state = 3407 |
|
use_rslora = False |
|
loftq_config = None |
|
``` |
|
|
|
- **ORPOConfig parameters:** |
|
|
|
``` |
|
max_length = 8192 |
|
max_prompt_length = max_seq_length//2 |
|
max_completion_length = max_seq_length//2 |
|
warmup_ratio = 0.1 |
|
weight_decay = 0.01 |
|
per_device_train_batch_size = 1 |
|
gradient_accumulation_steps = 16 |
|
learning_rate=8e-6 |
|
beta = 0.1 |
|
optim = "paged_adamw_8bit" |
|
lr_scheduler_type = "linear" |
|
num_train_epochs = 1 |
|
``` |
|
|
|
#### Speeds, Sizes, Times |
|
|
|
7h on an A100-40GB |
|
|
|
## Model Card Contact |
|
|
|
diego.giorgini@icloud.com |