digitalconcretejungle
commited on
Commit
·
6770eb9
1
Parent(s):
a857e7a
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +8 -8
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.81 +/- 0.38
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ed4a6b001cc577e59b722b0120ff7969a2662b8756625dfbaa1cfbf2522d774
|
3 |
+
size 108073
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -24,7 +24,7 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[ 0.
|
38 |
-
"desired_goal": "[[ 0.
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,7 +56,7 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1690645180960895959,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1x+gPvvsj71LRPY+1x+gPvvsj71LRPY+1x+gPvvsj71LRPY+1x+gPvvsj71LRPY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxDUKPUOSir+Ao/C9DaGXv9pkVb9zNus+tViHvbQQpT7CGeI+Skh/PwM6sr8QNJI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADXH6A+++yPvUtE9j7RXpo86qb1u2YpjrvXH6A+++yPvUtE9j7RXpo86qb1u2YpjrvXH6A+++yPvUtE9j7RXpo86qb1u2YpjrvXH6A+++yPvUtE9j7RXpo86qb1u2YpjruUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.31274292 -0.07027622 0.48098978]\n [ 0.31274292 -0.07027622 0.48098978]\n [ 0.31274292 -0.07027622 0.48098978]\n [ 0.31274292 -0.07027622 0.48098978]]",
|
38 |
+
"desired_goal": "[[ 0.03374268 -1.0825886 -0.11749935]\n [-1.1846024 -0.8335701 0.4593998 ]\n [-0.06608716 0.32239306 0.44160277]\n [ 0.9971968 -1.3923954 1.1422138 ]]",
|
39 |
+
"observation": "[[ 0.31274292 -0.07027622 0.48098978 0.01884404 -0.0074967 -0.00433843]\n [ 0.31274292 -0.07027622 0.48098978 0.01884404 -0.0074967 -0.00433843]\n [ 0.31274292 -0.07027622 0.48098978 0.01884404 -0.0074967 -0.00433843]\n [ 0.31274292 -0.07027622 0.48098978 0.01884404 -0.0074967 -0.00433843]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaYDVPXEJm7x2SYg+/eIAPYCMDz7kbhQ+F+trvdKfvT2j2k0+t76nvSJNJb0BzPI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.10424883 -0.0189254 0.26618546]\n [ 0.03146647 0.1401844 0.14495426]\n [-0.05759725 0.09258999 0.20102935]\n [-0.08190673 -0.04035676 0.11855317]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/5YA/FMq77+UhpRSlIwBbJRLMowBdJRHQKVWqWweNkx1fZQoaAZoCWgPQwhuisdFtcjyv5SGlFKUaBVLMmgWR0ClVmtmDlHSdX2UKGgGaAloD0MI6svSTs0l+b+UhpRSlGgVSzJoFkdApVYr2+PBBXV9lChoBmgJaA9DCA/wpIXLqve/lIaUUpRoFUsyaBZHQKVV61pj+aV1fZQoaAZoCWgPQwhtV+iDZSz3v5SGlFKUaBVLMmgWR0ClV9EpRXOodX2UKGgGaAloD0MIOLwgIjXt9b+UhpRSlGgVSzJoFkdApVeTJW/8EXV9lChoBmgJaA9DCJJ6T+W0Z/i/lIaUUpRoFUsyaBZHQKVXU6ClJpZ1fZQoaAZoCWgPQwhcyY6NQDzzv5SGlFKUaBVLMmgWR0ClVxMw+MZQdX2UKGgGaAloD0MIMIFbd/NU6b+UhpRSlGgVSzJoFkdApVj2Kbayr3V9lChoBmgJaA9DCLKC34YYr+q/lIaUUpRoFUsyaBZHQKVYuBoVVPx1fZQoaAZoCWgPQwiQwYpTrQX5v5SGlFKUaBVLMmgWR0ClWHin5zo2dX2UKGgGaAloD0MI4PQu3o8b/b+UhpRSlGgVSzJoFkdApVg4QBgeBHV9lChoBmgJaA9DCLaCpiVWBvy/lIaUUpRoFUsyaBZHQKVaFDkU9IR1fZQoaAZoCWgPQwgtXiwMkdP6v5SGlFKUaBVLMmgWR0ClWdX8GcFydX2UKGgGaAloD0MI4nSSrS5n8b+UhpRSlGgVSzJoFkdApVmWT/yXlnV9lChoBmgJaA9DCA1v1uB9FfK/lIaUUpRoFUsyaBZHQKVZVd/J/5N1fZQoaAZoCWgPQwjwMsNGWb/0v5SGlFKUaBVLMmgWR0ClWzGq5sj3dX2UKGgGaAloD0MIiJ//Hrz247+UhpRSlGgVSzJoFkdApVrzsY2sJnV9lChoBmgJaA9DCEOR7ucU5OW/lIaUUpRoFUsyaBZHQKVatDZUT+N1fZQoaAZoCWgPQwgUl+MViB7xv5SGlFKUaBVLMmgWR0ClWnO01IiDdX2UKGgGaAloD0MIscHCSZo/7b+UhpRSlGgVSzJoFkdApVxQjW07bXV9lChoBmgJaA9DCB+5Nem2ROq/lIaUUpRoFUsyaBZHQKVcEpON5t51fZQoaAZoCWgPQwi29j5VhQbrv5SGlFKUaBVLMmgWR0ClW9MQ2/BWdX2UKGgGaAloD0MIOne7Xpri87+UhpRSlGgVSzJoFkdApVuSgTRIBnV9lChoBmgJaA9DCDI4Sl6dY+G/lIaUUpRoFUsyaBZHQKVda6xPfsN1fZQoaAZoCWgPQwhN27+y0iT0v5SGlFKUaBVLMmgWR0ClXS2hh6SldX2UKGgGaAloD0MISx+6oL4l+b+UhpRSlGgVSzJoFkdApVzuHN5dGHV9lChoBmgJaA9DCLvRx3xAYPC/lIaUUpRoFUsyaBZHQKVcrawD/2l1fZQoaAZoCWgPQwj7ko0HW6zzv5SGlFKUaBVLMmgWR0ClXofChvitdX2UKGgGaAloD0MI4UVfQZox7L+UhpRSlGgVSzJoFkdApV5Jo4+8oXV9lChoBmgJaA9DCOEoeXWOgei/lIaUUpRoFUsyaBZHQKVeCfPHDJl1fZQoaAZoCWgPQwjv5xTkZyPvv5SGlFKUaBVLMmgWR0ClXcl3pwCKdX2UKGgGaAloD0MI+3WnO0+847+UhpRSlGgVSzJoFkdApV+lvl2eQXV9lChoBmgJaA9DCOPg0jHn2fC/lIaUUpRoFUsyaBZHQKVfZ6Q/5cl1fZQoaAZoCWgPQwihMCjTaHLtv5SGlFKUaBVLMmgWR0ClXyfGdZq3dX2UKGgGaAloD0MIKQmJtI0/6L+UhpRSlGgVSzJoFkdApV7nK8tf5XV9lChoBmgJaA9DCHXmHhK+d+2/lIaUUpRoFUsyaBZHQKVgvv5xiod1fZQoaAZoCWgPQwhPB7KeWv3xv5SGlFKUaBVLMmgWR0ClYIEBCD28dX2UKGgGaAloD0MI3nNgOUIG9L+UhpRSlGgVSzJoFkdApWBBVAAyVXV9lChoBmgJaA9DCDYgQlw5O/O/lIaUUpRoFUsyaBZHQKVgALmZE2J1fZQoaAZoCWgPQwgVHF4QkRrtv5SGlFKUaBVLMmgWR0ClYdwsf7rLdX2UKGgGaAloD0MI5ssLsI8O8r+UhpRSlGgVSzJoFkdApWGeCXhOxnV9lChoBmgJaA9DCO4E+69zk/i/lIaUUpRoFUsyaBZHQKVhXm5lOGl1fZQoaAZoCWgPQwjqr1dYcH/wv5SGlFKUaBVLMmgWR0ClYR3ta6jGdX2UKGgGaAloD0MIe0ljtI4q8L+UhpRSlGgVSzJoFkdApWMFbeMyanV9lChoBmgJaA9DCDfg88MI4ee/lIaUUpRoFUsyaBZHQKVix2QGOdZ1fZQoaAZoCWgPQwiWWYRiK+jiv5SGlFKUaBVLMmgWR0ClYofi5uqFdX2UKGgGaAloD0MIbvqzHymi7b+UhpRSlGgVSzJoFkdApWJHc580DXV9lChoBmgJaA9DCAdF8wAWeem/lIaUUpRoFUsyaBZHQKVkKnqmj0t1fZQoaAZoCWgPQwhZ+Ppal9r6v5SGlFKUaBVLMmgWR0ClY+x7AtWddX2UKGgGaAloD0MI0V0SZ0XU67+UhpRSlGgVSzJoFkdApWOs7bL2YnV9lChoBmgJaA9DCGxfQC/cOey/lIaUUpRoFUsyaBZHQKVjbHcUM5R1fZQoaAZoCWgPQwia0CSxpFzqv5SGlFKUaBVLMmgWR0ClZVFUADJVdX2UKGgGaAloD0MI4lZBDHRt67+UhpRSlGgVSzJoFkdApWUTUG3WnXV9lChoBmgJaA9DCPiJA+j3/ei/lIaUUpRoFUsyaBZHQKVk086mwaB1fZQoaAZoCWgPQwifAIqRJTP3v5SGlFKUaBVLMmgWR0ClZJM/Y8MedX2UKGgGaAloD0MILo81I4Pc5b+UhpRSlGgVSzJoFkdApWabi++M63V9lChoBmgJaA9DCP2hmSfX1Pa/lIaUUpRoFUsyaBZHQKVmXk6tDD11fZQoaAZoCWgPQwitvU9VoQHsv5SGlFKUaBVLMmgWR0ClZh6yB06pdX2UKGgGaAloD0MI81fIXBmU8r+UhpRSlGgVSzJoFkdApWXeOZLIxXV9lChoBmgJaA9DCJnU0AZgA+y/lIaUUpRoFUsyaBZHQKVnw+yquKZ1fZQoaAZoCWgPQwhCP1OvW4Tlv5SGlFKUaBVLMmgWR0ClZ4X4j8k2dX2UKGgGaAloD0MIy59vC5bq57+UhpRSlGgVSzJoFkdApWdGSIP9UHV9lChoBmgJaA9DCCQnE7cKYuG/lIaUUpRoFUsyaBZHQKVnBdCVryl1fZQoaAZoCWgPQwir7Lsi+N/yv5SGlFKUaBVLMmgWR0ClaOtMwlBydX2UKGgGaAloD0MInYL8bOS637+UhpRSlGgVSzJoFkdApWitV3ljmXV9lChoBmgJaA9DCJiFdk6zQO6/lIaUUpRoFUsyaBZHQKVobeD3/Px1fZQoaAZoCWgPQwj+uWjIeBTwv5SGlFKUaBVLMmgWR0ClaC1b7j1gdX2UKGgGaAloD0MIk40HW+z24L+UhpRSlGgVSzJoFkdApWoNbkfcOHV9lChoBmgJaA9DCKCnAYOkT/O/lIaUUpRoFUsyaBZHQKVpz3WWhRJ1fZQoaAZoCWgPQwiS6ju/KEHkv5SGlFKUaBVLMmgWR0ClaZALiMo+dX2UKGgGaAloD0MI8Ief/x488r+UhpRSlGgVSzJoFkdApWlPnQpnYnV9lChoBmgJaA9DCJEr9SwI5eO/lIaUUpRoFUsyaBZHQKVrNlEqlP91fZQoaAZoCWgPQwgrweJw5tfgv5SGlFKUaBVLMmgWR0ClavhTn7pFdX2UKGgGaAloD0MI3e9QFOgT4b+UhpRSlGgVSzJoFkdApWq4wIt16nV9lChoBmgJaA9DCEPKT6p9OuO/lIaUUpRoFUsyaBZHQKVqeCqZML51fZQoaAZoCWgPQwju68A5I0rpv5SGlFKUaBVLMmgWR0ClbGW4Vh1DdX2UKGgGaAloD0MIvvkNEw1S1b+UhpRSlGgVSzJoFkdApWwnmHP/rHV9lChoBmgJaA9DCEevBigNNeC/lIaUUpRoFUsyaBZHQKVr6BXjlxR1fZQoaAZoCWgPQwjhXwSNmcTqv5SGlFKUaBVLMmgWR0Cla6eY+jdpdX2UKGgGaAloD0MIrMWnABjP2L+UhpRSlGgVSzJoFkdApW2LlzU7S3V9lChoBmgJaA9DCAdhbvdyn9e/lIaUUpRoFUsyaBZHQKVtTacI7eV1fZQoaAZoCWgPQwiWQiCXOPLmv5SGlFKUaBVLMmgWR0ClbQ5FocrBdX2UKGgGaAloD0MIeGAA4UMJ57+UhpRSlGgVSzJoFkdApWzNyR0U5HV9lChoBmgJaA9DCJy/CYUI+PO/lIaUUpRoFUsyaBZHQKVutH80k4Z1fZQoaAZoCWgPQwgfuqC+ZU7zv5SGlFKUaBVLMmgWR0ClbnZ5iVjadX2UKGgGaAloD0MIgSGrWz0n5L+UhpRSlGgVSzJoFkdApW43AwfyPXV9lChoBmgJaA9DCDHT9q+stPa/lIaUUpRoFUsyaBZHQKVt9o/zJ6p1fZQoaAZoCWgPQwgEyqZc4V3av5SGlFKUaBVLMmgWR0Clb95dWyTqdX2UKGgGaAloD0MImn0eozzz4r+UhpRSlGgVSzJoFkdApW+gZXMhYHV9lChoBmgJaA9DCImWPJ6WH9y/lIaUUpRoFUsyaBZHQKVvYOPvKEF1fZQoaAZoCWgPQwjtKqT8pNrfv5SGlFKUaBVLMmgWR0ClbyBgE2YOdX2UKGgGaAloD0MI8bc9QWK737+UhpRSlGgVSzJoFkdApXEGmHgxanV9lChoBmgJaA9DCBYx7DAmffO/lIaUUpRoFUsyaBZHQKVwyJTER8N1fZQoaAZoCWgPQwgDkxtF1hr3v5SGlFKUaBVLMmgWR0ClcIkOqebvdX2UKGgGaAloD0MI10y+2eZG/L+UhpRSlGgVSzJoFkdApXBIlIEr5XV9lChoBmgJaA9DCGJM+nspvOu/lIaUUpRoFUsyaBZHQKVyLIxQBPt1fZQoaAZoCWgPQwgDllzF4rfrv5SGlFKUaBVLMmgWR0Clce6Rp1zRdX2UKGgGaAloD0MIPglszsFz9L+UhpRSlGgVSzJoFkdApXGvCbc453V9lChoBmgJaA9DCPevrDQphee/lIaUUpRoFUsyaBZHQKVxbp3X7Lt1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd418b2f8a48a379c4fe0adf0d68949e6daef12773db4db9d0507ec8ccfc1e04
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:410d6a4c972b333b09cdeebea7f297dce1e78a7744271a134a6be0119ba3e900
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a49d38d89d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a49d38d26c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690641903560267343, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAmZ28Ptw7FrtdEhM/mZ28Ptw7FrtdEhM/mZ28Ptw7FrtdEhM/mZ28Ptw7FrtdEhM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAL0RLO2NIwL+RTcO//mhCv3h7rr/GKKA+ZKEhvoMUNT/tqRs/j9TPPdZu+r0cQMq+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACZnbw+3DsWu10SEz/hGzI5rLZYus0JLTuZnbw+3DsWu10SEz/hGzI5rLZYus0JLTuZnbw+3DsWu10SEz/hGzI5rLZYus0JLTuZnbw+3DsWu10SEz/hGzI5rLZYus0JLTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.36838987 -0.00229239 0.57449895]\n [ 0.36838987 -0.00229239 0.57449895]\n [ 0.36838987 -0.00229239 0.57449895]\n [ 0.36838987 -0.00229239 0.57449895]]", "desired_goal": "[[ 0.0031016 -1.5022091 -1.5258046 ]\n [-0.75941455 -1.363143 0.31281108]\n [-0.15784222 0.70734423 0.6080616 ]\n [ 0.10147964 -0.12228172 -0.39502037]]", "observation": "[[ 3.6838987e-01 -2.2923863e-03 5.7449895e-01 1.6985789e-04\n -8.2669663e-04 2.6403547e-03]\n [ 3.6838987e-01 -2.2923863e-03 5.7449895e-01 1.6985789e-04\n -8.2669663e-04 2.6403547e-03]\n [ 3.6838987e-01 -2.2923863e-03 5.7449895e-01 1.6985789e-04\n -8.2669663e-04 2.6403547e-03]\n [ 3.6838987e-01 -2.2923863e-03 5.7449895e-01 1.6985789e-04\n -8.2669663e-04 2.6403547e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALNrQvdSWabx3SXA+rlBSvR7zODwluZA+v+KkvYn0Fb46IJk+osPTvaC26T1Zv5g+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10197863 -0.01425715 0.23465525]\n [-0.05134647 0.01128843 0.28266254]\n [-0.08051061 -0.14644064 0.299074 ]\n [-0.10340048 0.11411786 0.29833487]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImIV2TrNAAcCUhpRSlIwBbJRLMowBdJRHQKTmkIX0oSd1fZQoaAZoCWgPQwhzuFZ72KsCwJSGlFKUaBVLMmgWR0Ck5lEqlP8AdX2UKGgGaAloD0MIONpxw+8GFMCUhpRSlGgVSzJoFkdApOYSCOFQEnV9lChoBmgJaA9DCG9+w0SD9AHAlIaUUpRoFUsyaBZHQKTl0xSpBHF1fZQoaAZoCWgPQwgmNEksKYcXwJSGlFKUaBVLMmgWR0Ck57qpT/ACdX2UKGgGaAloD0MIA7StZp2REsCUhpRSlGgVSzJoFkdApOd7JlrdnHV9lChoBmgJaA9DCKdYNQhzu/y/lIaUUpRoFUsyaBZHQKTnO/Y8Md91fZQoaAZoCWgPQwjDKXPzjQgAwJSGlFKUaBVLMmgWR0Ck5vz238XOdX2UKGgGaAloD0MIIEYIjzYuDMCUhpRSlGgVSzJoFkdApOjjfm9xqHV9lChoBmgJaA9DCKg1zTtOcQfAlIaUUpRoFUsyaBZHQKTopAOavzR1fZQoaAZoCWgPQwiHvyZr1OMLwJSGlFKUaBVLMmgWR0Ck6GTvAoG6dX2UKGgGaAloD0MIByeiX1ufAcCUhpRSlGgVSzJoFkdApOgmBH09Q3V9lChoBmgJaA9DCIrNx7WhUhPAlIaUUpRoFUsyaBZHQKTqDc6eXiR1fZQoaAZoCWgPQwjrNT0oKEUBwJSGlFKUaBVLMmgWR0Ck6c5Z0SyudX2UKGgGaAloD0MI5iSUvhAiGMCUhpRSlGgVSzJoFkdApOmPK6nR9nV9lChoBmgJaA9DCBvaAGxABBDAlIaUUpRoFUsyaBZHQKTpUEEkjX51fZQoaAZoCWgPQwgva2KBr2gDwJSGlFKUaBVLMmgWR0Ck6zidrftQdX2UKGgGaAloD0MIwy6KHvi4BcCUhpRSlGgVSzJoFkdApOr5NEgGKXV9lChoBmgJaA9DCDLohNBBl/6/lIaUUpRoFUsyaBZHQKTqujPfKp11fZQoaAZoCWgPQwh2Gf7TDXQEwJSGlFKUaBVLMmgWR0Ck6ntGViWndX2UKGgGaAloD0MIj1IJT+j1/7+UhpRSlGgVSzJoFkdApOxmNm16V3V9lChoBmgJaA9DCEw3iUFg5ei/lIaUUpRoFUsyaBZHQKTsJschkiF1fZQoaAZoCWgPQwiDvvT258IBwJSGlFKUaBVLMmgWR0Ck6+epn6EbdX2UKGgGaAloD0MItmeWBKjJB8CUhpRSlGgVSzJoFkdApOuoqgAZKnV9lChoBmgJaA9DCPm9TX/2o/y/lIaUUpRoFUsyaBZHQKTtkjlgc951fZQoaAZoCWgPQwgPR1fp7vr6v5SGlFKUaBVLMmgWR0Ck7VK2rn1WdX2UKGgGaAloD0MImzv6X64lAsCUhpRSlGgVSzJoFkdApO0TfJmuknV9lChoBmgJaA9DCGRbBpylZAXAlIaUUpRoFUsyaBZHQKTs1IT4+KV1fZQoaAZoCWgPQwgdPX5v078BwJSGlFKUaBVLMmgWR0Ck7rp6Y3NtdX2UKGgGaAloD0MILLZJRWMtFcCUhpRSlGgVSzJoFkdApO567/XGwXV9lChoBmgJaA9DCDv7yoP0BBTAlIaUUpRoFUsyaBZHQKTuO7/4qPR1fZQoaAZoCWgPQwh7v9GOG14AwJSGlFKUaBVLMmgWR0Ck7fzZpSJkdX2UKGgGaAloD0MIaD7nbtdbEMCUhpRSlGgVSzJoFkdApO/ovrWy1XV9lChoBmgJaA9DCHpQUIpWjgHAlIaUUpRoFUsyaBZHQKTvqU8FINF1fZQoaAZoCWgPQwgwoYLDC6L7v5SGlFKUaBVLMmgWR0Ck72oXTEzgdX2UKGgGaAloD0MIlstG5/xUAMCUhpRSlGgVSzJoFkdApO8rJ0W/J3V9lChoBmgJaA9DCAIrhxbZLgHAlIaUUpRoFUsyaBZHQKTxFBInSfF1fZQoaAZoCWgPQwhTsTGvI04LwJSGlFKUaBVLMmgWR0Ck8NSI55qudX2UKGgGaAloD0MIGaw41Vq4C8CUhpRSlGgVSzJoFkdApPCVXxOLznV9lChoBmgJaA9DCEK1wYnoNw3AlIaUUpRoFUsyaBZHQKTwVmknCwd1fZQoaAZoCWgPQwiYhXZOswAEwJSGlFKUaBVLMmgWR0Ck8j5OJtSAdX2UKGgGaAloD0MI/WZiuhCr+7+UhpRSlGgVSzJoFkdApPH+3F1jiHV9lChoBmgJaA9DCEOQgxJmmgDAlIaUUpRoFUsyaBZHQKTxv7sOXmh1fZQoaAZoCWgPQwjaci7FVSUDwJSGlFKUaBVLMmgWR0Ck8YDHfdhzdX2UKGgGaAloD0MI3J4gsd19/7+UhpRSlGgVSzJoFkdApPNooCuEEnV9lChoBmgJaA9DCFuaWyGsRhbAlIaUUpRoFUsyaBZHQKTzKS6lLvl1fZQoaAZoCWgPQwh0RSkhWJUDwJSGlFKUaBVLMmgWR0Ck8un+ZPVNdX2UKGgGaAloD0MIpgwc0NJ1AsCUhpRSlGgVSzJoFkdApPKrHp8neHV9lChoBmgJaA9DCDRLAtTUsgPAlIaUUpRoFUsyaBZHQKT0k31BdD91fZQoaAZoCWgPQwhmh/iHLb0JwJSGlFKUaBVLMmgWR0Ck9FQQDmr9dX2UKGgGaAloD0MI4fCCiNRUCsCUhpRSlGgVSzJoFkdApPQU0aZQYXV9lChoBmgJaA9DCBsTYi6p2vK/lIaUUpRoFUsyaBZHQKTz1eD3/Px1fZQoaAZoCWgPQwhgAUwZOMACwJSGlFKUaBVLMmgWR0Ck9byf16E8dX2UKGgGaAloD0MIYAFMGTigAsCUhpRSlGgVSzJoFkdApPV9CgK4QXV9lChoBmgJaA9DCDiCVIodjQXAlIaUUpRoFUsyaBZHQKT1Pfa6BiF1fZQoaAZoCWgPQwj8GHPXEpIIwJSGlFKUaBVLMmgWR0Ck9P8OskprdX2UKGgGaAloD0MItp4hHLMs/b+UhpRSlGgVSzJoFkdApPboAjps43V9lChoBmgJaA9DCAO0rWadkQzAlIaUUpRoFUsyaBZHQKT2qHdoFmp1fZQoaAZoCWgPQwinBS/6CrIIwJSGlFKUaBVLMmgWR0Ck9mlYU34sdX2UKGgGaAloD0MIyNEcWfmFAMCUhpRSlGgVSzJoFkdApPYqZQYUFnV9lChoBmgJaA9DCEnzx7Q2bQjAlIaUUpRoFUsyaBZHQKT4EtGus911fZQoaAZoCWgPQwgQW3o01TMBwJSGlFKUaBVLMmgWR0Ck99Ncv/R3dX2UKGgGaAloD0MIt7jGZ7KfCMCUhpRSlGgVSzJoFkdApPeUH+qBE3V9lChoBmgJaA9DCMBC5sqgGvi/lIaUUpRoFUsyaBZHQKT3VTrmhdt1fZQoaAZoCWgPQwjb+BOVDesCwJSGlFKUaBVLMmgWR0Ck+TypzcREdX2UKGgGaAloD0MIFeY9zjTh9L+UhpRSlGgVSzJoFkdApPj9NlAeJnV9lChoBmgJaA9DCKZIvhJIqQbAlIaUUpRoFUsyaBZHQKT4vfUnXup1fZQoaAZoCWgPQwg9nStKCeEAwJSGlFKUaBVLMmgWR0Ck+H79If8udX2UKGgGaAloD0MIrroO1ZREAsCUhpRSlGgVSzJoFkdApPpoZCOWB3V9lChoBmgJaA9DCCUEq+rl9wvAlIaUUpRoFUsyaBZHQKT6KPHT7VJ1fZQoaAZoCWgPQwjqPCr+7wj7v5SGlFKUaBVLMmgWR0Ck+enSv1UVdX2UKGgGaAloD0MIi+HqAIg7+r+UhpRSlGgVSzJoFkdApPmq4SYgJXV9lChoBmgJaA9DCDwW26Si8QzAlIaUUpRoFUsyaBZHQKT7kM5OrQx1fZQoaAZoCWgPQwj3P8BatWsAwJSGlFKUaBVLMmgWR0Ck+1EtVaOhdX2UKGgGaAloD0MI+mNam8Y2/7+UhpRSlGgVSzJoFkdApPsSBf8dgnV9lChoBmgJaA9DCE6bcRqiqgDAlIaUUpRoFUsyaBZHQKT60xDb8FZ1fZQoaAZoCWgPQwgMOiF00KXrv5SGlFKUaBVLMmgWR0Ck/Nt4A0bcdX2UKGgGaAloD0MIdLM/UG77A8CUhpRSlGgVSzJoFkdApPyb/XGwR3V9lChoBmgJaA9DCH+/mC1ZlQXAlIaUUpRoFUsyaBZHQKT8XaY/mkp1fZQoaAZoCWgPQwhUdCSX/5ACwJSGlFKUaBVLMmgWR0Ck/B6yrxRVdX2UKGgGaAloD0MIkjzX9+Gg+7+UhpRSlGgVSzJoFkdApP4HYe1a4nV9lChoBmgJaA9DCKj/rPnxl/q/lIaUUpRoFUsyaBZHQKT9x+y7f511fZQoaAZoCWgPQwihvI+jORICwJSGlFKUaBVLMmgWR0Ck/YiuuA7QdX2UKGgGaAloD0MIg9+GGK+5+r+UhpRSlGgVSzJoFkdApP1JpQDV6XV9lChoBmgJaA9DCNxlv+505+y/lIaUUpRoFUsyaBZHQKT/LBguyu91fZQoaAZoCWgPQwgXR+UmaukGwJSGlFKUaBVLMmgWR0Ck/uygf2bodX2UKGgGaAloD0MIhGVs6Gb/9L+UhpRSlGgVSzJoFkdApP6ta8pTdnV9lChoBmgJaA9DCMLexJCc7APAlIaUUpRoFUsyaBZHQKT+bn13+uN1fZQoaAZoCWgPQwiKHvgYrBgAwJSGlFKUaBVLMmgWR0ClAGCk43m3dX2UKGgGaAloD0MIhzO/mgMkDMCUhpRSlGgVSzJoFkdApQAhMewLVnV9lChoBmgJaA9DCED4UKIlz/q/lIaUUpRoFUsyaBZHQKT/4g9vCMx1fZQoaAZoCWgPQwgW31D4bB0DwJSGlFKUaBVLMmgWR0Ck/6L30wrUdX2UKGgGaAloD0MI9OFZgozACcCUhpRSlGgVSzJoFkdApQGFfXwsoXV9lChoBmgJaA9DCBnFckuroQjAlIaUUpRoFUsyaBZHQKUBRhfjS5R1fZQoaAZoCWgPQwheDybFx6flv5SGlFKUaBVLMmgWR0ClAQcFQl8gdX2UKGgGaAloD0MImODUB5K3+r+UhpRSlGgVSzJoFkdApQDH93r2QHV9lChoBmgJaA9DCCMRGsHGtfG/lIaUUpRoFUsyaBZHQKUCqxfv4M51fZQoaAZoCWgPQwgn+RG/Yk0FwJSGlFKUaBVLMmgWR0ClAmuWKMvRdX2UKGgGaAloD0MI8BXdek0PBcCUhpRSlGgVSzJoFkdApQIscOskp3V9lChoBmgJaA9DCOxP4nMnqBDAlIaUUpRoFUsyaBZHQKUB7WNFSbZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a49d38d89d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a49d38d26c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690645180960895959, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1x+gPvvsj71LRPY+1x+gPvvsj71LRPY+1x+gPvvsj71LRPY+1x+gPvvsj71LRPY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxDUKPUOSir+Ao/C9DaGXv9pkVb9zNus+tViHvbQQpT7CGeI+Skh/PwM6sr8QNJI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADXH6A+++yPvUtE9j7RXpo86qb1u2YpjrvXH6A+++yPvUtE9j7RXpo86qb1u2YpjrvXH6A+++yPvUtE9j7RXpo86qb1u2YpjrvXH6A+++yPvUtE9j7RXpo86qb1u2YpjruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.31274292 -0.07027622 0.48098978]\n [ 0.31274292 -0.07027622 0.48098978]\n [ 0.31274292 -0.07027622 0.48098978]\n [ 0.31274292 -0.07027622 0.48098978]]", "desired_goal": "[[ 0.03374268 -1.0825886 -0.11749935]\n [-1.1846024 -0.8335701 0.4593998 ]\n [-0.06608716 0.32239306 0.44160277]\n [ 0.9971968 -1.3923954 1.1422138 ]]", "observation": "[[ 0.31274292 -0.07027622 0.48098978 0.01884404 -0.0074967 -0.00433843]\n [ 0.31274292 -0.07027622 0.48098978 0.01884404 -0.0074967 -0.00433843]\n [ 0.31274292 -0.07027622 0.48098978 0.01884404 -0.0074967 -0.00433843]\n [ 0.31274292 -0.07027622 0.48098978 0.01884404 -0.0074967 -0.00433843]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaYDVPXEJm7x2SYg+/eIAPYCMDz7kbhQ+F+trvdKfvT2j2k0+t76nvSJNJb0BzPI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10424883 -0.0189254 0.26618546]\n [ 0.03146647 0.1401844 0.14495426]\n [-0.05759725 0.09258999 0.20102935]\n [-0.08190673 -0.04035676 0.11855317]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/5YA/FMq77+UhpRSlIwBbJRLMowBdJRHQKVWqWweNkx1fZQoaAZoCWgPQwhuisdFtcjyv5SGlFKUaBVLMmgWR0ClVmtmDlHSdX2UKGgGaAloD0MI6svSTs0l+b+UhpRSlGgVSzJoFkdApVYr2+PBBXV9lChoBmgJaA9DCA/wpIXLqve/lIaUUpRoFUsyaBZHQKVV61pj+aV1fZQoaAZoCWgPQwhtV+iDZSz3v5SGlFKUaBVLMmgWR0ClV9EpRXOodX2UKGgGaAloD0MIOLwgIjXt9b+UhpRSlGgVSzJoFkdApVeTJW/8EXV9lChoBmgJaA9DCJJ6T+W0Z/i/lIaUUpRoFUsyaBZHQKVXU6ClJpZ1fZQoaAZoCWgPQwhcyY6NQDzzv5SGlFKUaBVLMmgWR0ClVxMw+MZQdX2UKGgGaAloD0MIMIFbd/NU6b+UhpRSlGgVSzJoFkdApVj2Kbayr3V9lChoBmgJaA9DCLKC34YYr+q/lIaUUpRoFUsyaBZHQKVYuBoVVPx1fZQoaAZoCWgPQwiQwYpTrQX5v5SGlFKUaBVLMmgWR0ClWHin5zo2dX2UKGgGaAloD0MI4PQu3o8b/b+UhpRSlGgVSzJoFkdApVg4QBgeBHV9lChoBmgJaA9DCLaCpiVWBvy/lIaUUpRoFUsyaBZHQKVaFDkU9IR1fZQoaAZoCWgPQwgtXiwMkdP6v5SGlFKUaBVLMmgWR0ClWdX8GcFydX2UKGgGaAloD0MI4nSSrS5n8b+UhpRSlGgVSzJoFkdApVmWT/yXlnV9lChoBmgJaA9DCA1v1uB9FfK/lIaUUpRoFUsyaBZHQKVZVd/J/5N1fZQoaAZoCWgPQwjwMsNGWb/0v5SGlFKUaBVLMmgWR0ClWzGq5sj3dX2UKGgGaAloD0MIiJ//Hrz247+UhpRSlGgVSzJoFkdApVrzsY2sJnV9lChoBmgJaA9DCEOR7ucU5OW/lIaUUpRoFUsyaBZHQKVatDZUT+N1fZQoaAZoCWgPQwgUl+MViB7xv5SGlFKUaBVLMmgWR0ClWnO01IiDdX2UKGgGaAloD0MIscHCSZo/7b+UhpRSlGgVSzJoFkdApVxQjW07bXV9lChoBmgJaA9DCB+5Nem2ROq/lIaUUpRoFUsyaBZHQKVcEpON5t51fZQoaAZoCWgPQwi29j5VhQbrv5SGlFKUaBVLMmgWR0ClW9MQ2/BWdX2UKGgGaAloD0MIOne7Xpri87+UhpRSlGgVSzJoFkdApVuSgTRIBnV9lChoBmgJaA9DCDI4Sl6dY+G/lIaUUpRoFUsyaBZHQKVda6xPfsN1fZQoaAZoCWgPQwhN27+y0iT0v5SGlFKUaBVLMmgWR0ClXS2hh6SldX2UKGgGaAloD0MISx+6oL4l+b+UhpRSlGgVSzJoFkdApVzuHN5dGHV9lChoBmgJaA9DCLvRx3xAYPC/lIaUUpRoFUsyaBZHQKVcrawD/2l1fZQoaAZoCWgPQwj7ko0HW6zzv5SGlFKUaBVLMmgWR0ClXofChvitdX2UKGgGaAloD0MI4UVfQZox7L+UhpRSlGgVSzJoFkdApV5Jo4+8oXV9lChoBmgJaA9DCOEoeXWOgei/lIaUUpRoFUsyaBZHQKVeCfPHDJl1fZQoaAZoCWgPQwjv5xTkZyPvv5SGlFKUaBVLMmgWR0ClXcl3pwCKdX2UKGgGaAloD0MI+3WnO0+847+UhpRSlGgVSzJoFkdApV+lvl2eQXV9lChoBmgJaA9DCOPg0jHn2fC/lIaUUpRoFUsyaBZHQKVfZ6Q/5cl1fZQoaAZoCWgPQwihMCjTaHLtv5SGlFKUaBVLMmgWR0ClXyfGdZq3dX2UKGgGaAloD0MIKQmJtI0/6L+UhpRSlGgVSzJoFkdApV7nK8tf5XV9lChoBmgJaA9DCHXmHhK+d+2/lIaUUpRoFUsyaBZHQKVgvv5xiod1fZQoaAZoCWgPQwhPB7KeWv3xv5SGlFKUaBVLMmgWR0ClYIEBCD28dX2UKGgGaAloD0MI3nNgOUIG9L+UhpRSlGgVSzJoFkdApWBBVAAyVXV9lChoBmgJaA9DCDYgQlw5O/O/lIaUUpRoFUsyaBZHQKVgALmZE2J1fZQoaAZoCWgPQwgVHF4QkRrtv5SGlFKUaBVLMmgWR0ClYdwsf7rLdX2UKGgGaAloD0MI5ssLsI8O8r+UhpRSlGgVSzJoFkdApWGeCXhOxnV9lChoBmgJaA9DCO4E+69zk/i/lIaUUpRoFUsyaBZHQKVhXm5lOGl1fZQoaAZoCWgPQwjqr1dYcH/wv5SGlFKUaBVLMmgWR0ClYR3ta6jGdX2UKGgGaAloD0MIe0ljtI4q8L+UhpRSlGgVSzJoFkdApWMFbeMyanV9lChoBmgJaA9DCDfg88MI4ee/lIaUUpRoFUsyaBZHQKVix2QGOdZ1fZQoaAZoCWgPQwiWWYRiK+jiv5SGlFKUaBVLMmgWR0ClYofi5uqFdX2UKGgGaAloD0MIbvqzHymi7b+UhpRSlGgVSzJoFkdApWJHc580DXV9lChoBmgJaA9DCAdF8wAWeem/lIaUUpRoFUsyaBZHQKVkKnqmj0t1fZQoaAZoCWgPQwhZ+Ppal9r6v5SGlFKUaBVLMmgWR0ClY+x7AtWddX2UKGgGaAloD0MI0V0SZ0XU67+UhpRSlGgVSzJoFkdApWOs7bL2YnV9lChoBmgJaA9DCGxfQC/cOey/lIaUUpRoFUsyaBZHQKVjbHcUM5R1fZQoaAZoCWgPQwia0CSxpFzqv5SGlFKUaBVLMmgWR0ClZVFUADJVdX2UKGgGaAloD0MI4lZBDHRt67+UhpRSlGgVSzJoFkdApWUTUG3WnXV9lChoBmgJaA9DCPiJA+j3/ei/lIaUUpRoFUsyaBZHQKVk086mwaB1fZQoaAZoCWgPQwifAIqRJTP3v5SGlFKUaBVLMmgWR0ClZJM/Y8MedX2UKGgGaAloD0MILo81I4Pc5b+UhpRSlGgVSzJoFkdApWabi++M63V9lChoBmgJaA9DCP2hmSfX1Pa/lIaUUpRoFUsyaBZHQKVmXk6tDD11fZQoaAZoCWgPQwitvU9VoQHsv5SGlFKUaBVLMmgWR0ClZh6yB06pdX2UKGgGaAloD0MI81fIXBmU8r+UhpRSlGgVSzJoFkdApWXeOZLIxXV9lChoBmgJaA9DCJnU0AZgA+y/lIaUUpRoFUsyaBZHQKVnw+yquKZ1fZQoaAZoCWgPQwhCP1OvW4Tlv5SGlFKUaBVLMmgWR0ClZ4X4j8k2dX2UKGgGaAloD0MIy59vC5bq57+UhpRSlGgVSzJoFkdApWdGSIP9UHV9lChoBmgJaA9DCCQnE7cKYuG/lIaUUpRoFUsyaBZHQKVnBdCVryl1fZQoaAZoCWgPQwir7Lsi+N/yv5SGlFKUaBVLMmgWR0ClaOtMwlBydX2UKGgGaAloD0MInYL8bOS637+UhpRSlGgVSzJoFkdApWitV3ljmXV9lChoBmgJaA9DCJiFdk6zQO6/lIaUUpRoFUsyaBZHQKVobeD3/Px1fZQoaAZoCWgPQwj+uWjIeBTwv5SGlFKUaBVLMmgWR0ClaC1b7j1gdX2UKGgGaAloD0MIk40HW+z24L+UhpRSlGgVSzJoFkdApWoNbkfcOHV9lChoBmgJaA9DCKCnAYOkT/O/lIaUUpRoFUsyaBZHQKVpz3WWhRJ1fZQoaAZoCWgPQwiS6ju/KEHkv5SGlFKUaBVLMmgWR0ClaZALiMo+dX2UKGgGaAloD0MI8Ief/x488r+UhpRSlGgVSzJoFkdApWlPnQpnYnV9lChoBmgJaA9DCJEr9SwI5eO/lIaUUpRoFUsyaBZHQKVrNlEqlP91fZQoaAZoCWgPQwgrweJw5tfgv5SGlFKUaBVLMmgWR0ClavhTn7pFdX2UKGgGaAloD0MI3e9QFOgT4b+UhpRSlGgVSzJoFkdApWq4wIt16nV9lChoBmgJaA9DCEPKT6p9OuO/lIaUUpRoFUsyaBZHQKVqeCqZML51fZQoaAZoCWgPQwju68A5I0rpv5SGlFKUaBVLMmgWR0ClbGW4Vh1DdX2UKGgGaAloD0MIvvkNEw1S1b+UhpRSlGgVSzJoFkdApWwnmHP/rHV9lChoBmgJaA9DCEevBigNNeC/lIaUUpRoFUsyaBZHQKVr6BXjlxR1fZQoaAZoCWgPQwjhXwSNmcTqv5SGlFKUaBVLMmgWR0Cla6eY+jdpdX2UKGgGaAloD0MIrMWnABjP2L+UhpRSlGgVSzJoFkdApW2LlzU7S3V9lChoBmgJaA9DCAdhbvdyn9e/lIaUUpRoFUsyaBZHQKVtTacI7eV1fZQoaAZoCWgPQwiWQiCXOPLmv5SGlFKUaBVLMmgWR0ClbQ5FocrBdX2UKGgGaAloD0MIeGAA4UMJ57+UhpRSlGgVSzJoFkdApWzNyR0U5HV9lChoBmgJaA9DCJy/CYUI+PO/lIaUUpRoFUsyaBZHQKVutH80k4Z1fZQoaAZoCWgPQwgfuqC+ZU7zv5SGlFKUaBVLMmgWR0ClbnZ5iVjadX2UKGgGaAloD0MIgSGrWz0n5L+UhpRSlGgVSzJoFkdApW43AwfyPXV9lChoBmgJaA9DCDHT9q+stPa/lIaUUpRoFUsyaBZHQKVt9o/zJ6p1fZQoaAZoCWgPQwgEyqZc4V3av5SGlFKUaBVLMmgWR0Clb95dWyTqdX2UKGgGaAloD0MImn0eozzz4r+UhpRSlGgVSzJoFkdApW+gZXMhYHV9lChoBmgJaA9DCImWPJ6WH9y/lIaUUpRoFUsyaBZHQKVvYOPvKEF1fZQoaAZoCWgPQwjtKqT8pNrfv5SGlFKUaBVLMmgWR0ClbyBgE2YOdX2UKGgGaAloD0MI8bc9QWK737+UhpRSlGgVSzJoFkdApXEGmHgxanV9lChoBmgJaA9DCBYx7DAmffO/lIaUUpRoFUsyaBZHQKVwyJTER8N1fZQoaAZoCWgPQwgDkxtF1hr3v5SGlFKUaBVLMmgWR0ClcIkOqebvdX2UKGgGaAloD0MI10y+2eZG/L+UhpRSlGgVSzJoFkdApXBIlIEr5XV9lChoBmgJaA9DCGJM+nspvOu/lIaUUpRoFUsyaBZHQKVyLIxQBPt1fZQoaAZoCWgPQwgDllzF4rfrv5SGlFKUaBVLMmgWR0Clce6Rp1zRdX2UKGgGaAloD0MIPglszsFz9L+UhpRSlGgVSzJoFkdApXGvCbc453V9lChoBmgJaA9DCPevrDQphee/lIaUUpRoFUsyaBZHQKVxbp3X7Lt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.8118579404079356, "std_reward": 0.3823678709126136, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-29T16:25:29.145631"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf205b6a80b99a7cb13787b34d394509f3d6eaa9a56ae539ef8a97a8b893bc27
|
3 |
size 2387
|