Returns weather type given an image with about 96% accuracy.
See https://www.kaggle.com/code/dima806/weather-types-image-prediction-vit for more details.
Classification report:
precision recall f1-score support
dew 0.9795 0.9897 0.9846 290
fogsmog 0.9715 0.9414 0.9562 290
frost 0.9674 0.9207 0.9435 290
glaze 0.8855 0.9069 0.8961 290
hail 0.9966 0.9966 0.9966 290
lightning 1.0000 1.0000 1.0000 290
rain 0.9561 0.9759 0.9659 290
rainbow 1.0000 1.0000 1.0000 290
rime 0.9078 0.8828 0.8951 290
sandstorm 0.9759 0.9759 0.9759 290
snow 0.9049 0.9517 0.9277 290
accuracy 0.9583 3190
macro avg 0.9587 0.9583 0.9583 3190
weighted avg 0.9587 0.9583 0.9583 3190
- Downloads last month
- 46
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for dima806/weather_types_image_detection
Base model
google/vit-base-patch16-224-in21k