dimasik1987's picture
End of training
2bc60d4 verified
|
raw
history blame
4.46 kB
---
library_name: peft
license: llama3
base_model: aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 8daaa4ae-a55a-41cc-b2bd-80d36516e1dd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 9c074260b7c494a6_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/9c074260b7c494a6_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 5
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 6
gradient_checkpointing: true
group_by_length: false
hub_model_id: dimasik1987/8daaa4ae-a55a-41cc-b2bd-80d36516e1dd
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 50
micro_batch_size: 4
mlflow_experiment_name: /tmp/9c074260b7c494a6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 4056
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_dtype: bfloat16
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 8daaa4ae-a55a-41cc-b2bd-80d36516e1dd
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 8daaa4ae-a55a-41cc-b2bd-80d36516e1dd
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
```
</details><br>
# 8daaa4ae-a55a-41cc-b2bd-80d36516e1dd
This model is a fine-tuned version of [aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct](https://huggingface.co/aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 24
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.0 | 0.0005 | 1 | nan |
| 0.0 | 0.0020 | 4 | nan |
| 0.0 | 0.0040 | 8 | nan |
| 0.0 | 0.0059 | 12 | nan |
| 0.0 | 0.0079 | 16 | nan |
| 0.0 | 0.0099 | 20 | nan |
| 0.0 | 0.0119 | 24 | nan |
| 0.0 | 0.0139 | 28 | nan |
| 0.0 | 0.0159 | 32 | nan |
| 0.0 | 0.0178 | 36 | nan |
| 0.0 | 0.0198 | 40 | nan |
| 0.0 | 0.0218 | 44 | nan |
| 0.0 | 0.0238 | 48 | nan |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1