dimasik2987's picture
End of training
5c4620d verified
|
raw
history blame
4.04 kB
metadata
library_name: peft
license: llama3.2
base_model: NousResearch/Llama-3.2-1B
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: 469a38ab-62f1-4bec-a86f-f84336a58e49
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/Llama-3.2-1B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 4fd73f75b106d080_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/4fd73f75b106d080_train_data.json
  type:
    field_input: substituted_context
    field_instruction: question
    field_output: original_context
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: 25
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: true
hub_model_id: dimasik2987/469a38ab-62f1-4bec-a86f-f84336a58e49
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 74GiB
max_steps: 75
micro_batch_size: 2
mlflow_experiment_name: /tmp/4fd73f75b106d080_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 2048
special_tokens:
  pad_token: <|end_of_text|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 469a38ab-62f1-4bec-a86f-f84336a58e49
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 469a38ab-62f1-4bec-a86f-f84336a58e49
warmup_ratio: 0.05
weight_decay: 0.01
xformers_attention: true

469a38ab-62f1-4bec-a86f-f84336a58e49

This model is a fine-tuned version of NousResearch/Llama-3.2-1B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0341

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 3
  • training_steps: 75

Training results

Training Loss Epoch Step Validation Loss
0.0272 0.0011 1 0.3232
0.0193 0.0287 25 0.0424
0.3323 0.0574 50 0.0346
0.0241 0.0861 75 0.0341

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1