See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Maykeye/TinyLLama-v0
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f140ad20081c78ce_train_data.json
ds_type: json
field: title
path: /workspace/input_data/f140ad20081c78ce_train_data.json
type: completion
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 3
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 6
gradient_checkpointing: true
group_by_length: false
hub_model_id: dimasik87/1bc7b11d-8ab3-44f1-bd3f-c2b84e0d0cb0
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 25
micro_batch_size: 2
mlflow_experiment_name: /tmp/f140ad20081c78ce_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 3
sequence_len: 4056
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1bc7b11d-8ab3-44f1-bd3f-c2b84e0d0cb0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1bc7b11d-8ab3-44f1-bd3f-c2b84e0d0cb0
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
1bc7b11d-8ab3-44f1-bd3f-c2b84e0d0cb0
This model is a fine-tuned version of Maykeye/TinyLLama-v0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 9.6964
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 12
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 25
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.2977 | 0.0003 | 1 | 10.2500 |
10.2551 | 0.0010 | 3 | 10.2480 |
10.3599 | 0.0019 | 6 | 10.1868 |
10.2925 | 0.0029 | 9 | 10.0792 |
9.8382 | 0.0039 | 12 | 9.9451 |
9.9685 | 0.0049 | 15 | 9.8311 |
9.741 | 0.0058 | 18 | 9.7523 |
9.0752 | 0.0068 | 21 | 9.7099 |
10.1768 | 0.0078 | 24 | 9.6964 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 12
Model tree for dimasik87/1bc7b11d-8ab3-44f1-bd3f-c2b84e0d0cb0
Base model
Maykeye/TinyLLama-v0